
Journal of Web Engineering, Vol. 5, No.2 (2006) 121-149
© Rinton Press

THE WEBSA APPROACH: APPLYING MODEL DRIVEN ENGINEERING TO WEB
APPLICATIONS

SANTIAGO MELIÁ and JAIME GOMEZ

Universidad de Alicante, Spain
{santi, jgomez}@dlsi.ua.es

Received December 22, 2005

Revised April 26, 2006

The Web engineering research community has proposed several Web design methods that have proven
successful in the specification of the functional aspects (such as domain, navigation and presentation)
posed by Web applications. However, the architectural aspects are often ignored in the design and the Web
application is not specified enough. This development process produces a gap between the Web design
models and the final implementation. To overcome this limitation, we extend the different Web
methodologies with a generic approach called WebSA. WebSA is based on the Model Driven Engineering
(MDE) paradigm that promotes models as the primary artifacts needed to carry out a software project from
beginning to end. To do this, WebSA proposes a Model Driven Development made up of a set of UML
architectural models and QVT model transformations as a mechanism for (1) integrating the functional
aspects of the current Web methodologies with the architectural models as well as for (2) defining a set of
transformations from the architectural models to platform-specific models such as J2EE, .NET, etc. To
illustrate our approach, in this paper we combine WebSA with the OO-H method, to tackle the design of a
running example such as the Travel Agency system.

Keywords: Web Engineering, Model Driven Engineering, Software Architecture, Transformations,
UML, QVT, Architectural Patterns
Communicated by: N Koch

1 Introduction

The Web Engineering community is well aware that, in order to keep track of changes and assure the
feasibility of applying their methods to commercial Web applications, the different proposals that
should now incorporate the explicit consideration of architectural features in the Web application
design process need to be carried through to a more complete development. In order to do so, several
authors propose the use of well- known techniques in the Software Architecture discipline [2] to
identify and formalize which subsystems, components and connectors (software or hardware) should
make up the Web application. As Booch [4] has stated, the presence (or absence) of a meaningful
architecture is an essential predictor of the success of a Web application for two reasons: first of all,
the creation of a stable architecture helps cut the highest risks out of the project. Secondly, the
presence of a stable architecture provides the basis upon which the system may be continuously
developed with minimal scrap and rework.

The integration of architectural features into the different Web proposals provides a closer match
between the system modeled and the final implementation of the Web application. This feature is
especially important in methodologies that provide a code generation environment such as WebML
[7], OO-H [11], etc. The inclusion of one such model would therefore decrease the set of predefined
architectural decisions that are usually taken in generating the code in such environments. These are

122 The WebSA Approach: Applying Model Driven Engineering to Web Applications

decisions that are often not the most appropriate as regards the solution sought by the customer.
Moreover, the addition of an architectural viewpoint would provide a mechanism for discussing,
documenting and reusing (by means of pattern catalogs) the architectural decisions which answer the
different non-functional user requirements.

For this purpose, we propose the WebSA (Web Software Architecture) [18] [19] approach based
on the MDE (Model Driven Engineering) paradigm [3] and more specifically on the OMG’s Model
Driven Architecture (MDA) framework [21] [22]. Basically, WebSA provides the designer with a set
of architectural models and transformation models for specifying a Web application. Starting from
these models, the designer can integrate the Web functional models (domain, navigation and
presentation) with the architectural models, applying a set of model transformations. The result is the
Integration model, which is a platform independent model that can be transformed into the different
platforms such as J2EE, .NET, etc. For defining these transformations, there are several initiatives
related to the MDA approach- the new Draft Adopted Specification for a
Query/Views/Transformations (QVT) [24] language, among others. QVT is, in our opinion, the most
interesting one, as it is a well defined language and has a graphical as well as a textual notation.

This paper explains each of the steps in the WebSA process by means of a running example: the
Travel Agency system. To do this, WebSA has been combined with a well-known Web design method
called OO-H. It allows us to merge the architectural models into the Web functional models which
have been applied in many real Web applications. It can be seen in [10].

In order to understand this process, we should first give an overview of the WebSA approach in
section 2 and introduce the user requirements of the Travel Agency in section 3. Thus we start the
process with the analysis phase. On the one hand, section 4 presents the functional viewpoint provided
by the domain and navigation models of the OO-H approach. And on the other hand, section 5 presents
the architectural viewpoint with the most important model in the analysis phase of WebSA, the
Configuration model. Once the analysis models are defined, section 6 proposes the specification of the
transformation which for its part specifies the merging of the functional and the architectural models in
the QVT language. As a result of the first transformation, the Integration model is obtained and
described in section 7. The last step is explained in section 8 and shows how a second transformation
is defined in QVT, to convert the Integration model into a J2EE implementation. Finally, the relevant
related work and the future lines of research are outlined in section 9 and 10, respectively.

2 An Overview of the WebSA Approach

WebSA is a proposal whose main target is to cover all the phases of the Web application development
and to contribute to covering the gap existing between traditional Web design models and the
application implementation. In order to achieve this, it defines a set of architectural models (see section
2.1) for specifying the architectural viewpoint which complements current Web engineering
methodologies such as [11], [16].

Furthermore, WebSA defines an instance of the MDA Development Process [14] for the Web
application domain, which allows for the integration of the different viewpoints of a Web application
by means of transformations between models (see section 2.2). As the reader may already know, MDA
is an initiative that can be defined as the realization of MDE principles, that is, the models as the

 S. Meliá and J. Gómez 123

primary artifacts needed to carry out a software project, from the definition of the requirements to the
representation of transformations. In addition, MDA proposes a framework around a set of OMG
standards (such as MOF, UML, XMI, etc.). This standardization allows us to specify the WebSA
models in different tools, interchange the metamodels and models with different approaches and
reduce the learning curve of the stakeholders. Consequently, MDA paves the path for the development
of WebSA which includes model compilation capabilities and processes based on extreme
programming.

2.1 WebSA Architectural Models
The WebSA approach proposes three architectural models:

• Subsystem Model (SM): determines the subsystems that make up our application. It is
based mainly on the classical architectural style defined in [5] – the so called “layers
architecture” – where a layer is a subsystem encapsulating a certain level of abstraction.
Furthermore, it makes use of the set of architectural patterns defined in [26] that
determines what the best layer distribution for our system is.

• Configuration Model (CM): defines an architectural style based on a structural view of
the Web application by means of a set of Web components and their connectors, where
each component represents the role or the task performed by one or more common
components identified in the family of Web Applications. This is explained in more detail
in section 5.

• Integration Model (IM): merges the functional and the architectural views into a
common set of concrete components and modules that will make up the Web application.
This model is inferred from the mapping of the components which are defined in the
configuration model, the subsystem model and the models of the functional view. This is
explained in more detail in section 7.

The formalization of these models is obtained by means of a MOF-compliant [23] repository
metamodel and a set of OCL constraints (both part of the OMG proposed standards) that together
specify (1) what the semantics associated with each model element are, (2) what the valid
configurations are and (3) which constraints apply.

2.2 WebSA Development Process

The WebSA Development Process is based on the MDA development process, which includes the
same phases as the traditional life cycle (Analysis, Design, and Implementation). However, unlike in
the traditional life cycle, the artifacts that result from each phase in the MDA development process
must be computable models. These models represent the different abstraction levels in the system
specification and are, namely: (1) Platform Independent Models (PIMs) defined during the analysis
phase and the conceptual design, (2) Platform Specific Models (PSMs) defined in the low-level design,
and (3) code.

In order to meet these requirements, the WebSA development process establishes a
correspondence between the Web-related artifacts and the MDA artifacts. Another major contribution

124 The WebSA Approach: Applying Model Driven Engineering to Web Applications

is that WebSA defines a transformation policy driven by the architectural viewpoint, that is, an
“architectural-centric” process [13] (see figure 1).

Functional
Models

(OO-H,UWE)

T1

J2EE models .NET models Other models

T2'

Web Functional Viewpoint Web Architectural Viewpoint

Merge Models to Model
Transformation

Subsystem
Model

Configuration
Model

Analysis

Platform
Independent Design

Implementation

Integration Model

T2 T2'’

Functional
Models

(OO-H,UWE)

T1

J2EE models .NET models Other models

T2'

Web Functional Viewpoint Web Architectural Viewpoint

Merge Models to Model
Transformation

Subsystem
Model

Configuration
Model

Analysis

Platform
Independent Design

Implementation

Integration Model

T2 T2'’

Figure 1. The WebSA Development Process

Figure 1 also shows how in the analysis phase the Web application specification is divided
vertically into two viewpoints. The functional-perspective is given by the Web functional models
provided by approaches such as OO-H [11] or UWE [16], while the Subsystem Model (SM) and the
Configuration Model (CM) define the software architecture of the Web Application. In the analysis
phase, the architectural models propose two new architectural styles for the representation of the Web
application. As defined in [5], “an architectural style is independent from its realization, and does not
directly refer to a concrete application problem it is intended to solve”. The specific architectural
styles introduced by WebSA are more suitable for the Web applications than the pre-existing general
architectural styles because they use a set of specific elements of the Web domain. In this way, these
models fix the application architecture orthogonally to its functionality, thereby allowing for their
reuse in different Web applications.

The PIM-to-PIM transformation (T1 in figure 1) from analysis models to platform independent
design models provides a set of artifacts in which the conceptual elements of the analysis phase are
mapped to design elements where the information about functionality and architecture is integrated.
The model obtained is called Integration Model (IM), which brings together, in a single architectural
model, the information gathered in the functional viewpoint and the information provided by the
Configuration and Subsystem Models.

 S. Meliá and J. Gómez 125

It is important to note that the Integration model, being still platform independent, is the basis on
which several transformations, one for each target platform (see e.g. T2, T2’ and T2’’ in figure 1), can
be defined. The output of these PIM-to-PSM transformations is the specification of the Web
application for a given platform.

The inclusion of an architectural perspective in this process plays a pre-eminent role in the
completion of the specification of the final Web application, and drives the refinement process from
analysis to implementation.

2.3 WebSA Profile

The WebSA approach is completed by the standardization which is performed by the definition of a
UML Profile, just as other Web methodologies [16] have done previously. The WebSA Profile
comprises a profile for each model: (1) SM Profile, (2) CM Profile and (3) IM Profile. Figure 2 depicts
these profiles and the dependency between the CM and IM packages because both models share
architectural elements as WebComponents, WebConnectors, etc. However, SM profile is defined with
different artifacts as Subsystems which are later converted into IM elements by the T1 transformation.
Finally, it also shows how the WebSA profile has been applied to the Travel Agency running example.

WebSA
<<profile>>

SM
<<profile>>

CM
<<Profile>>

IM
<<profile>>

Travel Agency

<<apply>>

<<import>>

WebSA
<<profile>>

SM
<<profile>>

CM
<<Profile>>

IM
<<profile>>

Travel Agency

<<apply>>

<<import>>

WebSA
<<profile>>

SM
<<profile>>

CM
<<Profile>>

IM
<<profile>>

Travel Agency

<<apply>>

<<import>>

WebSA
<<profile>>

SM
<<profile>>

CM
<<Profile>>

IM
<<profile>>

Travel Agency

<<apply>>

<<import>>

Figure 2. The WebSA Profile

The WebSA Profile focuses on:

• Providing modeling elements for a particular platform or domain. The WebSA domain is
the set of components of the family of Web applications.

• Adding information that can be used when transforming one model to another model or
code. On the one hand, the CM Profile and the SM profile provide the information for the
transformation rules of T1 (see figure 1), which allow for the integration of the Web
functionality with the architectural aspects. The result of this integration is the IM model.
On the other hand, in the T2 transformation (see figure 1) the IM Profile provides the
information needed to obtain the different PSMs models.

126 The WebSA Approach: Applying Model Driven Engineering to Web Applications

To show the usefulness of the WebSA approach, we have chosen the travel agency system
proposed in the workshop Model Driven Web Engineering 2005 [30]. The next section illustrates the
functional and the accessibility requirements of the travel agency system.

3 A Running Example: The Travel Agency System

To help make our approach understandable, we present an example that describes the process followed
by a travel agency for selling trips to its customers. It is a Web Application that provides these services
electronically. To make matters simple, we will concentrate on just Transport services, which can be
carried out using planes, trains, cars, boats, or combinations of these. Accommodation, tourist
packages, excursions, and other services also sold at travel agencies are not gone into here. The Web
travel agency is a system of open distribution, because it uses some services from other legacy systems
in fulfilling customer requirements. It is worth highlighting that it is only the legacy connection that is
designed - it is assumed that these legacy systems exist previously.

At this point we bring in the functional requirements dictated by the client. The system starts when
the Customer provides a description of the trip required to the Personal Travel Assistant, including
personal constraints and preferences. The trip description contains the cities of origin and the
destination, as well as the dates of departure and return. For one-way trips, only the places of departure
and the dates are required. Constraints on the trip may include limits on the total price of the trip,
duration of the trip itself, and any undesired Transport method (e.g. the customer may not like planes).
Preferences may include the preferred means of transport for each way, as well as rules that can be
applied to the set of acceptable service offers, thereby yielding an ordered sequence of service offers.

Once the Personal Travel Assistant receives the request from the Customer, it checks that it is
well-formed, then selects the Broker Agents that work with the agency and who can service the trip.
The Personal Travel Assistant also interacts with each Broker Agent, asking them for an offer that
meets the demands of the Customer’s requested trip.

Each Broker Agent may work with several Transport Companies, asking them to provide an offer
for the service requested. If the offer matches the customer requirements, the Broker Agent will ask the
Transport Company to book the service provisionally, and pass the offer (with the corresponding
surcharge in the case of external Brokers) to the Personal Travel Assistant of the Travel Agency.
Where the service has to be split (e.g. a plane, a train and a boat all need to be used), the Broker Agent
will have the task of dividing it into separate services and of asking different Transport Companies for
separate offers. If a complete service can be successfully put together with all the Transport
Companies’ offers, the Broker Agent will book them temporarily, and the separate offers will then be
combined, to provide a single offer to the Personal Travel Assistant.

The Personal Travel Assistant will then sort the list of all suitable trips and quotations received
from all the Broker Agents, according to the Customer preferences, and provide that sorted list to the
Customer for him or her to choose one option. The Customer may select one of the offered trips, reject
them all and quit, or refine his or her requirements and start the process again. Whenever the Customer
selects one of the trips, he/she will provide credit card details to the Personal Travel Assistant, who
will process payment through the corresponding Financial Company. When the payment is completed
correctly, the Personal Travel Assistant will notify the corresponding Broker Agent to confirm the

 S. Meliá and J. Gómez 127

booking(s), and this Agent will then pass on this confirmation to the appropriate Transport Companies.
If the Personal Travel Assistant cannot process the payment (not enough credit, invalid or expired card,
etc.) the Customer will be asked to either re-enter his payment details, or quit.

In any case, the Personal Travel Assistant will notify those Broker Agents whose offers have not
been selected so they can cancel their bookings- information about this cancellation will then be passed
on to the appropriate Transport Companies.

Once a month, the travel agency will pay each external Broker Agent for the services it has
provided during the previous month. The payment will be done by by means of a money transfer to the
bank account number of the Broker Agent.

The way Broker Agents pay their Transport Companies depends on their particular arrangements,
and is not part of this specification.

Finally, as regards the description of the system, its accessibility requirements are as follows: (1)
Customers may access the system using three different kinds of devices: browsers, PDAs, and mobile
phones. The particular characteristics of each constrain the possible interfaces and functionality that
need to be offered to each one. Potentially, the application will have to interact with new kinds of
devices, although what their specific characteristics may turn out to be are unknown as yet. (2)
Frequent customers will be able to store and modify their preferences, and will be eligible for
discounts, depending on agency policy.

The rest of the article details this process step by step, applying it to the travel agency. The
following section presents the OO-H method Web engineering approach used by the WebSA process
in gathering the functional aspects.

4 A Web Functional Design Method: OO-H

The OO-H (Object-Oriented Hypermedia) method [11] is a generic model, based on the object-
oriented paradigm, which provides the designer with the semantics and notation necessary for the
development of Web-based interfaces. OO-H defines a set of models, techniques and tools that shape a
sound approach to the modeling of Web interfaces. The OO-H proposal includes: (1) a design process,
(2) a pattern catalog, (3) a domain model, (3) a navigation model, and (4) a presentation model.

The extension to “traditional software” production environments is achieved by means of
complementary views: (1) the domain model which represents the domain entities of the Web
application, (2) the navigation model that gathers the concepts related to the abstract structure of the
site, and (3) the presentation diagram which represents specific presentation details. In this paper, we
have only focused on the domain model and the navigation model, because they can provide important
information as a contribution to the architectural point of view.

Figure 3 depicts the domain model for the travel agency running example. As you can see, this
model represents the most important domain entities, free from any technical or implementation
details, so in other words it represents an ideal class model. The customer class contains a set of
different attributes that represent personal data such as (credit card, name and address) and it also
provides a description of the trip required (TripReq), including personal constraints (TripConstrains)
and preferences (CusDetails). The TripRep class contains a set of attributes to represent the places of

128 The WebSA Approach: Applying Model Driven Engineering to Web Applications

departure and destination, as well as the dates of departure and return. The TripConstraints class
includes the limits on the total price of the trip along with the duration of the trip itself, and any
undesired means of transport. Finally, the CustDetails class has two attributes such as any undesired
means of transport (e.g. if the customer does not like planes) and an order criteria of the services
offered.

Customer

CusDetails

1..1

1..1

TripReq

BrokerAgent

*

*

TripConstrains

Offer

new

Trip

TransportationCompanyFinancialCompany

1..1
1..*

* *

*

1..1

1..1

*

preferredTransport
ordenCriteria

creditCard

cityOrg
cityDest
dateDest
dateReturn
isOneWay

custOrder
price
isSelected
isPaid

name accNumber

isPart

name

priceUBound
duration
preferredTransport

cityOrg
cityDst
dateDep
dateArrival
price

select
reject

newRequest
rejectAllOffers

createOffer
bookOffer

createOffer
createGlobalOffer

confirmBooking
cancelBooking

setPaid
delete

setBrokers
createOfferSet
orderOffers

chargeAccount
transferAccount

freeOffer
confirmBooking

has2Split
splitTrip

setParts
getParts
hasOffers4AllParts

*

1..1

*

1..1

1..1

* selectOffer

customerName
customerAddress

newTripConst

Customer

CusDetails

1..1

1..1

TripReq

BrokerAgent

*

*

TripConstrains

Offer

new

Trip

TransportationCompanyFinancialCompany

1..1
1..*

* *

*

1..1

1..1

*

preferredTransport
ordenCriteria

creditCard

cityOrg
cityDest
dateDest
dateReturn
isOneWay

custOrder
price
isSelected
isPaid

name accNumber

isPart

name

priceUBound
duration
preferredTransport

cityOrg
cityDst
dateDep
dateArrival
price

select
reject

newRequest
rejectAllOffers

createOffer
bookOffer

createOffer
createGlobalOffer

confirmBooking
cancelBooking

setPaid
delete

setBrokers
createOfferSet
orderOffers

chargeAccount
transferAccount

freeOffer
confirmBooking

has2Split
splitTrip

setParts
getParts
hasOffers4AllParts

*

1..1

*

1..1

1..1

* selectOffer

customerName
customerAddress

newTripConst

Figure 3. Domain Model of the Travel Agency

Once trip requirements have been selected, the system receives the request from the Customer,
checks that it is well-formed, and selects the Broker Agents (BrokerAgent) that work with the agency
and that can service the trip. The system interacts with each instance of BrokerAgent, asking them for
an offer (Offer) that satisfies the demands of the Customer’s requested trip. Each BrokerAgent may
work with several Transport Companies (TransportCompany), asking them to provide an offer for the
service requested. If the offer matches the customer requirements (select method of the Offer class),
the BrokerAgent will ask the TransportCompany to book the service provisionally (confirmBooking
operation of the BrokerAgent class). If the service has to be split (e.g. a plane, a train and a boat need
to be used), the BrokerAgent will be in charge of dividing it into separate services and will ask
different TransportCompanies for separate offers.

 S. Meliá and J. Gómez 129

Once the designer has specified the domain model, a navigation model must be designed to define
navigation and visualization constraints. The navigation model is based on a MOF navigation
metamodel (see figure 4) which defines a set of different types of navigational constructs such as: (1)
NavigationalClass, (2) NavigationalTarget, (3) NavigationalAssociation and (4) Collection.

TravesalAssociation

NavigationalArgument

ServiceAssociation

0..n

1

0..n

1
hasArgLink

NavigationalOperation

1

0..n

1

0..nActFrom

NavigationalAttribute

NavigationalClass

0..n

1

0..n

1

hasOp

0..n

1

0..n

1

hasAttr

NavigationalCollection

NavigationalAssociation
contextPattern : String
isSameNode : Boolean
filterOrigin : String
filterTarget : String
activationMode : String
targetNavigationPattern : AccessType
originObjectNumber : PopulationType
isRequirementEntry : Boolean

NavigationalModel

0..n

1

0..n

1 hasLinks

NavigationalConstruct
isEntry : bool

0..n

0..1

0..n

0..1

hasNodes

0..n0..1 0..n0..1
origin

0..n1 0..n1
target

NavigationalTarget

1

0..1

1

0..1

pointTo

0..n

0..1

0..n

0..1

ntHasNodes

TravesalAssociation

NavigationalArgument

ServiceAssociation

0..n

1

0..n

1
hasArgLink

NavigationalOperation

1

0..n

1

0..nActFrom

NavigationalAttribute

NavigationalClass

0..n

1

0..n

1

hasOp

0..n

1

0..n

1

hasAttr

NavigationalCollection

NavigationalAssociation
contextPattern : String
isSameNode : Boolean
filterOrigin : String
filterTarget : String
activationMode : String
targetNavigationPattern : AccessType
originObjectNumber : PopulationType
isRequirementEntry : Boolean

NavigationalModel

0..n

1

0..n

1 hasLinks

NavigationalConstruct
isEntry : bool

0..n

0..1

0..n

0..1

hasNodes

0..n0..1 0..n0..1
origin

0..n1 0..n1
target

NavigationalTarget

1

0..1

1

0..1

pointTo

0..n

0..1

0..n

0..1

ntHasNodes

Figure 4. Simplified OOH Navigation metamodel

In addition to all this, when defining the navigation structure, the designer must take into account
some orthogonal aspects such as the desired navigation behavior, the object population selection, and
the order in which objects should be navigated, or the cardinality of the access. These features are
captured by means of different kinds of navigation patterns and filters associated with the metaclass
NavigationalAssociation.

Figure 5 depicts an OO-H navigation model for the travel agency case study. The navigation starts
with a home page which has a link to create a new instance of customer trip constraints. Once an
instance of TripConstraints (navigational class TC) has been set, the trip description, including places
of departure and destination as well as dates of departure and return, must be keyed in by the customer.
The execution of the SLNR ServiceAssociation produces a set of offers (navigational class Offer1 as a
result). Each offer has a reference of the broker that provides the offer (navigational class BA), the
name of the Transport company that manages the trip (navigational class TCo), and finally a
combination of one or several trips that fulfill the customer’s travel requirements from origin to
destination (navigational class Trip1). The customer can accept an offer by means of the SLSO
ServiceAssociation (selectOffer). In that case, the customer must provide his credit card data to
formalize the booking. This is modeled with the SLCA ServiceAssociation (chargeAccount) from the
navigational class FinancialCompany. If the transfer is accepted, the application will come back to the
home page.

A default presentation reflecting the page structure of the interface can be derived from the
navigation model. The OO-H CASE tool (VisualWADE) gives tool support to this process. This

130 The WebSA Approach: Applying Model Driven Engineering to Web Applications

default presentation gives a functional but rather simple interface (with default location and styles for
each information item), which will probably need further refinements in order to become useful for its
inclusion in the final application. It can, however, serve as a prototype on which to validate that the
user requirements have been correctly captured. We have modeled the travel agency running example
with VisualWADE [29].

TC: TripConstrains home

Entry PointContext.TC->isEmpty()

TripReq2: TripReq

newRequest

newTripConst
S
LT
C

Offer1: Offer

custOrder
price

selectOffer

SLNR

TCo: TransportationCompany

name

BA: BrokerAgent

accNumber

FC1: FinancialCompany

chargeAccount

Trip1: Trip

cityOrg
cityDst

Customer: Customer

customerName
customerAddress

ok charge

SL
SO

home
ba
ck
2H
om
e

SLCA

Context.TC->isNotEmpty()

TC: TripConstrains home

Entry PointContext.TC->isEmpty()

TripReq2: TripReq

newRequest

newTripConst
S
LT
C

Offer1: Offer

custOrder
price

selectOffer

SLNR

TCo: TransportationCompany

name

BA: BrokerAgent

accNumber

FC1: FinancialCompany

chargeAccount

Trip1: Trip

cityOrg
cityDst

Customer: Customer

customerName
customerAddress

ok charge

SL
SO

home
ba
ck
2H
om
e

SLCA

Context.TC->isNotEmpty()

Figure 5. Navigation Model of the Travel Agency

At this point functional models (domain and navigation) have been specified. The next step in the
analysis phase of WebSA is to specify the Web architectural models. For the purposes of this paper,
only the configuration model needs to be specified.

5 Web Architectural Viewpoint: Configuration Model

The Configuration model defines an architectural style based on the structural view of the Web
application by means of a set of Web components and their connectors. Each element represents the
role or the task performed by one or more common components identified in the family of Web
applications. In this way, CM uses a topology of components defined in the Web application domain.
This in turn allows us to specify the architectural configuration without knowing anything about the

 S. Meliá and J. Gómez 131

problem domain. At this level, we can also define architectural patterns for the Web application as a
reuse mechanism.

A Configuration model is built by means of a UML 2.0 Profile of the new composite structure
model. This model is well-suited to the task of specifying the software architecture of applications. The
main modeling elements of the CM are WebComponent, WebConnector, WebPart and WebPattern.

To formalize the Configuration model elements and their relationships, we define the
Configuration metamodel (see figure 6).

Store
access : String
organization : String
type : String

UserInterface
Component

Server
Component

EntityWeb
isShared : Boolean
isDistributed : Boolean
isManaged : Boolean

ServerPage

Persistence
Component

DatasourceView

WebConnectorEnd
lower : Integer

...
WebPort 0..1 0..n0..1 0..n

WebInterface 0..n 1..n0..n

+provided

0..n 0..n0..n 0..n
+required

WebComponent
name : String

0..n

0..1

+CPorts

0..n

0..1

0..n

1

0..n

1

+CInterfaces

WebPart
Multiplicity : UnlimitedNatural

0..n

0..1

0..n

0..1

+PPorts

0..1

0..n

0..1

0..n

0..n

0..1
+CParts0..n

0..1
1

0..n

1

0..n+type

WebPattern
0..10..n 0..1

+Ocurrence

0..n

0..n

0..1

WebConnector

2

1

2

1

0..n

0..1

0..n

0..1

0..n

0..1

Store
access : String
organization : String
type : String

UserInterface
Component

Server
Component

EntityWeb
isShared : Boolean
isDistributed : Boolean
isManaged : Boolean

ServerPage

Persistence
Component

DatasourceView

WebConnectorEnd
lower : Integer

...
WebPort 0..1 0..n0..1 0..n

WebInterface 0..n 1..n0..n

+provided

0..n 0..n0..n 0..n
+required

WebComponent
name : String

0..n

0..1

+CPorts

0..n

0..1

0..n

1

0..n

1

+CInterfaces

WebPart
Multiplicity : UnlimitedNatural

0..n

0..1

0..n

0..1

+PPorts

0..1

0..n

0..1

0..n

0..n

0..1
+CParts0..n

0..1
1

0..n

1

0..n+type

WebPattern
0..10..n 0..1

+Ocurrence

0..n

0..n

0..1

WebConnector

2

1

2

1

0..n

0..1

0..n

0..1

0..n

0..1

Figure 6. Simplified CM metamodel

5.1 WebComponent

A WebComponent in the Configuration Model represents an abstraction of one or more software
components with a shared functionality or role in the context of a Web application. For example, a
ClientPage is a WebComponent that contains presentation data and/or user interaction code. Note how
this kind of component does not necessarily map to a single physical page but reflects a general task
that must be performed by the application, such as showing certain information to the user. The most
important properties of a WebComponent are defined by the classes WebPort, WebInterface and
WebPart.

The WebComponent is the root class of a type hierarchy that represents the different roles or tasks
that may be performed by the components identified in the family of Web Applications. For example,
the subclass EntityWeb is an object representing a concept of the application domain (see figure 6). In
addition to the subtypes of WebComponent, which are shown in figure 6, the Travel Agency example
will also use the following subtypes: ServerPage, ProcessComponent, UserAgent, DAC, LegacyView,

132 The WebSA Approach: Applying Model Driven Engineering to Web Applications

Controller, View, Store and EntityData. The complete topology of the WebSA components can be
seen in [20].

5.2 WebPort

WebPort is an interaction point between a WebComponent and its environment. It decouples the
internals of the component from the interaction with other components, making that component
reusable in any environment that conforms to the interaction constraints imposed by its WebPorts. So a
WebComponent can only communicate with the outside through its WebPorts.

5.3 WebInterface

WebInterface represents the functionality the component to which it is associated offers to, or requires
from, the rest of the system in order to be able to perform its task. Each WebInterface is associated
with a WebPort specifying the nature of the interactions that may occur over this WebPort (see figure
6). On the one hand, the required interfaces of a WebPort characterize the requests which may be made
from the WebComponent to its environment. On the other hand, the interfaces provided in a WebPort
characterize requests the environment makes to the WebComponent.

5.4 WebConnector

WebConnector specifies a link that allows the communication in the system between two or more
WebComponents or/and WebParts of the WebComponents (see 5.6). This communication is
established through the WebPorts. However, in the case of a WebPart this relationship may affect
either a WebPort or the whole WebPart. Each WebConnector has associated two WebConnectorEnd
(see figure 6).

5.5 WebConnectorEnd

WebConnectorEnd represents an endpoint of the connector that attaches the connector to a WebPort or
a WebPart. The WebConnectorEnd has two properties: (1) lower which specifies the lower bound of
elements which could be connected with the WebConnectorEnd. (2) upper which specifies the upper
bound of elements which could be connected with the WebConnectorEnd.

5.6 WebPart

WebPart represents a set of instances that are owned by composition belonging to a WebComponent
instance. A WebPart has a property multiplicity, which, using the notation [x{…y}] specifies the
initial instance or the amount of instances (x) when the WebComponent is created, and the maximum
amount of instances at any time (y).

5.7 WebPattern

WebPattern represents a Web architectural pattern, which is specified by a composite element made up
of a set of WebConnectors, and WebParts that corresponds to Web components playing roles to
accomplish a specific task or function. WebPattern instances are elements of reuse in a configuration

 S. Meliá and J. Gómez 133

model. For example, the Travel Agency application has one WebPattern called Façade (see Figure 10)
which contains some possible configuration of elements that represent the pattern Façade of [9].

In order to represent the architectural style defined by the Configuration Model, the CM Profile
has been defined as an extension of the UML Composite Structure model including Web components
and properties of the Web application domain. Some authors [15], [27], consider the Composite
Structure model as one of the major improvements incorporated into UML 2.0, because it permits us to
specify software architectures following a proper component-based notation which incorporates ports,
connectors and parts.

 As [1] have observed, there are several ways of using UML profiles. One of these is to support the
classification of classes as a means of emulating metamodel extensions. Thus, WebSA has defined a
CM metamodel (see Figure 6) whose purpose is to represent the specific components of its Web
specific architectural style. A CM profile was proposed later, in an effort to adapt the CM metamodel
classes to the UML metaclasses. This provides with us two benefits: (1) the CM model can be
specified in any UML tool and (2) the learning curve of the CM model is reduced.

Apart from all outlined above, the CM profile will also provide the necessary information for the
T1 transformation defined in the WebSA development process (see figure 1) for integrating the
functionality with the architecture in the IM model.

A UML 2.0 Profile mechanism is defined as a UML package stereotyped «profile» that can extend
either a metamodel or another profile. UML profiles are defined in terms of three basic mechanisms:
stereotypes, constraints, and tag definitions.

Figure 7 shows how the CM profile has incorporated all the classes of its metamodel as
stereotypes, extending the UML metaclasses. The CM stereotyped classes will add the domain-specific
semantic defined in the Configuration metamodel (see figure 6) to the semantics inherited from the
UML metaclasses (see figure 7).

UML 2.0 has incorporated a relationship named extension, to specify how a stereotype extends a
metaclass in a profile. It is depicted by an arrow with filled arrowhead (see figure 7). An extension is a
binary relation, i.e., a stereotype is dependent on only one element of the underlying metamodel. An
extension is marked as {required}, when the stereotype is always created if an instance of the extended
class is created. In the CM profile, for example, an instance of WebComponent stereotype must be
created when an instance of metaclass Class of UML is created (see figure 7).

We will only describe in detail the central modeling element of the profile, i.e. the stereotyped
class WebComponent which extends the UML 2.0 metaclass “CompositeStructure::
StructuredClasses::Class”. This metaclass Class defined by the Composite Structure Model extends the
Class of Kernel so as to incorporate the capability to have an internal structure and ports. The
WebComponent extends this metaclass Class, because by doing this it obtains two benefits: (1) The
hierarchical decomposition of the components into subcomponents (called parts) the which increases
the detail and the expressiveness of the component model and (2) the definition of architectural
patterns using the Collaboration element which allows us to define and apply the architectural pattern
in any CM.

134 The WebSA Approach: Applying Model Driven Engineering to Web Applications

Interested readers can download the complete profile at [20]. The description includes the
constraints on the Composite Structure Model.

CM
<<Profile>>

ServerPage
<<stereotype>>

EntityWeb
isShared
isDistributed
isManaged

<<stereotype>>

WebPart
Multiplicity

<<stereotype>>

WebPort
<<stereotype>>

WebComponent
<<stereotype>>

WebConnector
<<stereotype>>

WebPattern
<<stereotype>>

WebInterface
<<stereotype>>

Collaboration
<<metaclass>>

Interface
<<metaclass>>

Connector
<<metaclass>>

Port
<<metaclass>>

Property
<<metaclass>>

Class
<<metaclass>>

ConnectorEnd
<<metaclass>>

WebConnectorEnd
upper
lower

<<stereotype>>

Store
access
organization
type

<<stereotype>>
Datasource

<<stereotype>>
ClientPage

<<stereotype>>

{required}

{required}

{required}

{required} {required} {required}

{required}

CM
<<Profile>>

ServerPage
<<stereotype>>

EntityWeb
isShared
isDistributed
isManaged

<<stereotype>>

WebPart
Multiplicity

<<stereotype>>

WebPort
<<stereotype>>

WebComponent
<<stereotype>>

WebConnector
<<stereotype>>

WebPattern
<<stereotype>>

WebInterface
<<stereotype>>

Collaboration
<<metaclass>>

Interface
<<metaclass>>

Connector
<<metaclass>>

Port
<<metaclass>>

Property
<<metaclass>>

Class
<<metaclass>>

ConnectorEnd
<<metaclass>>

WebConnectorEnd
upper
lower

<<stereotype>>

Store
access
organization
type

<<stereotype>>
Datasource

<<stereotype>>
ClientPage

<<stereotype>>

{required}

{required}

{required}

{required} {required} {required}

{required}

Figure 7. Configuration Model Profile

Name: WebComponent
Description
This stereotype extends a UML metaclass
“CompositeStructures::StructuredClasses::Class” (see figure 7)
Constraints
context CompositeStructures::StructuredClasses::Class
inv: self.isStereotyped (“WebComponent”) implies
-- A WebComponent has not got features (attributes and operations).
self.attributes->isEmpty() and self.ownedBehavior->isEmpty()
--The Interfaces of a WebComponent must be instances of WebInterface
and self.implementation->forAll(i| i.contract.oclIsTypeOf (WebInterface))
--All connectors are WebConnectors
and self.ownedConnector->forAll (c| c.oclIsTypeOf(WebConnector))
-- All its ports must be instances of WebPort
and self.ownedPort->forAll (p | p.oclIsTypeOf(AWebPort))

where isStereotyped is an OCL operation defined as follows:
isStereotyped (stereotypeName:String) : Boolean;
self.extension-> exists (x | x.ownedEnd.type = stereotypeName)

For the visual representation of the CM profile elements we stick to the notation of the
corresponding UML metaclass elements. These modeling elements are described in Table 8.

 S. Meliá and J. Gómez 135

«WebComponent»
A

WebPort
Provided WebInterface

Required WebInterface

«WebComponent»
A

WebPort
Provided WebInterface

Required WebInterface

«WebComponent»
A

WebPort
Provided WebInterface

Required WebInterface

WebComponent keeps the notation of
UML structure class. It has
incorporated the WebPort, by means of
a small square on the boundary.
WebPorts are associated to required or
provided WebInterfaces with the
lollipop notation.
All subtypes of WebComponent such
as ClientPage, ServerPage and Entity-
Web (see figure 6) are represented
using this same notation.

«WebComponent»
A

«WebComponent»
B

1 0..1

«WebComponent»
A

«WebComponent»
B

1 0..1

WebConnector establishes the
communication directly between the
WebPorts of WebComponents or/and
WebParts. This connector is
represented with the notation of a UML
association.

«WebComponent»
A

«WebComponent»
B

1 1..*

«WebComponent»
A

«WebComponent»
B

1 1..*

WebConnector is attached to two
WebPorts which has required attached
by two WebInterfaces – one required
interface and one provided interface –
that are compatible. This connector is
called assembly.

«WebComponent »
A

«WebComponent »

B [1{4}]

«WebComponent »
A

«WebComponent »
:B [4]

«WebComponent »
A

«WebComponent »

B [1{4}]

«WebComponent »
A

«WebComponent »
:B [4]

«WebComponent »
A

«WebComponent »

B [1{4}]

«WebComponent »
A

«WebComponent »
:B [4]

WebPart is shown as a box inside a
WebComponent or a WebPattern. As
stated in section 5.6, a multiplicity for a
WebPart can be specified within the
container WebComponent.

«WebPattern»
Pattern1

1 1..*
«WebComponent»

:B [0..1]

«WebComponent»

:A [1]

«WebPattern»
Pattern1

1 1..*
«WebComponent»

:B [0..1]

«WebComponent»

:A [1]

WebPattern is represented as a UML
collaboration with a dashed ellipse icon
containing the name of a WebPattern.
The internal structure of a WebPattern
comprises WebParts and
WebConnectors. It is shown in the
compartment within the dashed ellipse
icon.

«WebComponent»
A

«WebPattern»
Pattern1

«represents»

«WebComponent»
A

«WebPattern»
Pattern1

«represents»

«WebComponent»
A

«WebPattern»
Pattern1

«represents»

A dashed arrow with a stick arrowhead
and labeled with the keyword
«represents» means that a WebPattern
is used in a WebComponent.

Table 8. Notation used in a Configuration Model

In this article, therefore, we give an overview of the Travel Agency configuration model. figure 9
shows a general view of the CM representing the Travel Agency architecture, which is made up of the
set of components and connectors that are described next.

136 The WebSA Approach: Applying Model Driven Engineering to Web Applications

«UserAgent»
Browser

«UserAgent»
PDA

«UserAgent»
Mobile

«ServerPage»
WebPages

WebInterface PDAInterface MobileInterface

«WebComponent»
Façade «WebPattern»

FaçadePattern

«Datasource»
DS1

«Store»
DB

0..* 0..* 0..*

0..*

1..*

0..*0..*

1..* 1..*1..*

«Controller»
MainController

«View»
ViewClass

«EntityData»
Model

1..*

1..*
1

111

«LegacyView»
ExtEntities

«Store»
NavigationalPaths

0..*

1

1..*

1..*1..*

1

ILegacyServices

ILogicServices

model

IDataConnection

clientHandler
viewData

modelData modelData

dbInterface

<<Store>>
access=read
organization=flat
type=navigational

<<LegacyView>>
isSynchronous = false

<<Store>>
access=read/write
organization=relational
type=domain

<<Datasource>>
isRemote = true
isTransactional = true
numConnections = 5

otherInterface

«represents»

1

3..*

«UserAgent»
Browser

«UserAgent»
PDA

«UserAgent»
Mobile

«ServerPage»
WebPages

WebInterface PDAInterface MobileInterface

«WebComponent»
Façade «WebPattern»

FaçadePattern

«Datasource»
DS1

«Store»
DB

0..* 0..* 0..*

0..*

1..*

0..*0..*

1..* 1..*1..*

«Controller»
MainController

«View»
ViewClass

«EntityData»
Model

1..*

1..*
1

111

«LegacyView»
ExtEntities

«Store»
NavigationalPaths

0..*

1

1..*

1..*1..*

1

ILegacyServices

ILogicServices

model

IDataConnection

clientHandler
viewData

modelData modelData

dbInterface

<<Store>>
access=read
organization=flat
type=navigational

<<LegacyView>>
isSynchronous = false

<<Store>>
access=read/write
organization=relational
type=domain

<<Datasource>>
isRemote = true
isTransactional = true
numConnections = 5

otherInterface

«represents»

1

3..*

Figure 9. Configuration Model of Travel Agency

To deduce architectural aspects needed for the travel agency, we have based our work on the
accessibility requirements and non functional requirements. We have thereby established five
architectural assumptions:

• There must be a separation between the user interface that has to adapt to the different
devices (e.g. cell phone, PDA, Web, etc.) and the presentation logic which is common to
all users.

• Due to the fact that navigation requirements are different for each device, the MVC 2
pattern is applied. It allows us to locate the navigation from the different devices in an
independent way (e.g. in an external file or store).

• The application presents different offers from the agencies continually, and the user
interface is modified every day.

 S. Meliá and J. Gómez 137

• The travel agency is an Internet application and has a large amount of clients. This
application has to provide very good performance by means of middleware with
distributed components, applying the Façade pattern.

• In order to obtain data from different companies about the trips offered, the Web
application will need to connect to legacy systems.

Having obtained the architectural assumptions of the travel agency, we established its
Configuration model (see figure 9). In the front-end part of the model we can find three different
UserAgent components; we refer to the component or device that allows the user to interact with the
system. In the travel agency there are three UserAgent: browsers, PDAs and mobiles. In order to
decouple the different graphical interfaces with the same presentation logic, we have applied the
Model-View-Controller 2 pattern. First, the view is provided by the ServerPage which receives the
user’s requests and renders the response in their device. Each ServerPage component provides a
separate interface for attending to each UserAgent. It also contains the functionality information and is
responsible for sending messages to the Controller component. The instances of a ServerPage are
obtained from the navigational classes of the navigation models of OO-H [11] or UWE [16].

«WebPattern»
Facade

«ProcessComponent»
FacadeComponent

{1..*}

«EntityWeb»
EntityComp

{1..*}

homeInterface

remoteInterface

<<ProcessComponent>>
hasState = false

<<EntityWeb>>
isShared = true

IDataConnection

ILegacyServices
ILogicServices

«WebPattern»
Facade

«ProcessComponent»
FacadeComponent

{1..*}

«EntityWeb»
EntityComp

{1..*}

homeInterface

remoteInterface

<<ProcessComponent>>
hasState = false

<<EntityWeb>>
isShared = true

IDataConnection

ILegacyServices
ILogicServices

Figure 10. WebPattern Façade of Travel Agency

The Controller receives the requests through the WebPort ClientHandler. To establish navigation,
it is connected to a Store component (Navigational Path) containing information about the links
between pages. It separates the navigational aspects from the presentation aspects.

Each instance ServerPage needs an interface to access the required data objects. Such interface is
provided by the WebPort ViewData of the View component. We can observe that the model component
needs information from the components that implement the business logic. This is obtained through
the IProcessComponent interface offered by the Façade WebPattern. Finally, the specified remote and
transactional Datasource allows the connection to a Store component that contains the information

138 The WebSA Approach: Applying Model Driven Engineering to Web Applications

modeled in the conceptual model of the functional view, which also has a read/write access, as well as
a relational organization.

In addition, the Façade WebPattern has a group of one or more EntityWeb components called
EntityComp that represents the elements of the domain in the business logic layer and each component
contains the state of one domain entity (e.g., it could be implemented by an EJB Entity). In the Façade
WebPattern, the set of EntityWeb components have the tagged value isShare=true indicating that they
can be shared by multiple transactions and users. The EntityComp is also related to the component
LegacyView, which offers a series of services that come from the ILegacyServices port to other
applications and converts the received asynchronous calls into requests, sending them to the business
logic. Finally, the EntityComp is connected with the persistence through the DataConnection Web
Interface, to store the information of the application.

6 The WebSA Transformation Process

The WebSA transformation policy is driven by the architectural viewpoint, i.e. it is defined by a set of
transformations in which first class citizens are the classes of the architectural view. The WebSA
development process consists of two types of transformations: T1 and T2. T1 merges the elements of
the architectural models of WebSA with those of the functional models, and translates them into a
platform independent design model called Integration Model. T2 maps the platform specific
implementation models (e.g. J2EE or .NET) from the Integration Model. Both transformations are
complex, i.e. they are made up of a set of smaller transformation rules, which are executed in a
deterministic way to bring about the completion of the transformation.

In MDA [22] there are different alternatives available for getting the information necessary to
transform one model into another (e.g. using a profile, using metamodels, patterns and markings, etc).
For WebSA we have selected a metamodel mapping approach to specify the transformations, because
it allows us to obtain the information of the different Web approaches with just their MOF metamodel.
Furthermore, the T1 transformation uses the model-merge approach defined by [22] which allows us to
obtain information from several functional and architectural models and convert them into one design
model. In this article we limit ourselves to explain the merging process of WebSA with the OO-H
models (T1 in figure 1). For the purpose of obtaining this integration, we extend the MDA model
transformation pattern of Bézivin [3]. The extension of this pattern integrates the OO-H and WebSA
models by means of the metamodel based transformations. These metamodels based on the MOF
language are the source of the transformation models that carry out the transformation to the target
metamodel elements. The transformation models are defined in the QVT language, which is an MDA
standard also based on the MOF language.

Recently, OMG has launched a new Draft Adopted Specification for QVT on MOF 2.0 [24]. This
new version of QVT has been developed by the different groups of people who presented the previous
proposals of QVT. The QVT specification has a hybrid declarative/imperative nature. The declarative
part is split into a user-friendly part, based on transformations and composed of a rich graphical and
textual notation. It also contains a core part which provides a more verbose and formal definition of the
transformations. The declarative notation is used to define the transformations that indicate the
relationships between the source and target models, but without specifying how a transformation is
actually executed. In this way, QVT also defines operational mappings that extend the metamodel of

 S. Meliá and J. Gómez 139

the declarative approach with additional concepts. This allows us to define the transformations which
use a complete imperative approach.

The QVT metamodel is defined using EMOF from MOF 2.0 and extends the MOF 2.0 and OCL
2.0 specifications. It allows for the expression of higher order transformations and fits in the central
concept of MDA, namely, that transformations are themselves models. QVT transformations can be
composed and extended by inheritance or overriding, which is necessary for scalability and reusability.

In the following lines, we present an example of a T1 transformation using the graphical notation
of QVT. Due to the complexity of the T1 transformation, it is helpful to build a map of transformation
rules (also called relations in QVT) that indicates the flow of execution and avoids redundancies in the
specification. In the transformation map each transformation rule is related to the rest by means of
three different types of relationships: (1) Composition – A transformation rule can be composed of one
or more transformation rules (2) Dependency – One transformation rule must be executed before
another transformation rule (3) Inheritance – A transformation rule extends or overrides another
transformation rule.

We have therefore chosen to define a simple UML profile to represent the transformation map as a
UML class model (see figure 11). The first transformation shown in the T1 map is from Subsystem
Model to Integration Model.

CM2IM

Subsystem2Module

UI2Module

Server2Module

Persistence2Module

PlaceCompCM2Module

CompCM2CompIM

OOH&CM2IM

PlacePersistentComp2Module

CacheWebCM2CacheWebIM

NavigationalOOH&CM2IM

ConceptualOOH&CM2IM

SM2IM

Functional&CM2IM

Figure 11. T1 Transformation Map

The second transformation rule (CM2IM) maps from Configuration Model to Integration Model. It
is composed of a set of two types of rules.

140 The WebSA Approach: Applying Model Driven Engineering to Web Applications

The first one places components into the modules (PlaceComp2Modules), and the second one
transforms each configuration component into one or more integration components
(CompCM2CompIM). The last transformation rule Functional&CM2IM merges the functional OO-H
models (conceptual and navigation) with the Configuration Model and introduces the functional
aspects into the components of the Integration Model.

Figure 12 shows an example using the QVT graphical notation for the ServerPage-OO-
H2Integration relation which involves three domains: Navigation, Configuration and Integration
models. First, the relation checks if there is a set of instances in the Navigation model and another set
of instances in the Configuration model (the arrow with the ‘c’ indicates that only this domain is being
checked). It is at this particular moment that a set of instances in the Integration Model will be created,
modified or deleted (the arrow with the ‘e’ indicates enforced, that is, the values of this domain will be
modified so as to satisfy the rule).

Figure 12. Example of T1: ServerPage and Navigational Class to Integration Model

To be specific, this relation checks whether there is at least one instance of ServerPage in the
Configuration model (see figure 7), as well as two NavigationalClasses with a set of NAttributes and
NOperations which are related through a NavigationalLink with its isSamePage attribute with true
value in the Navigational model (see figure 5). Only if all these conditions are satisfied will the
transformation rule create one ServerPage in the Integration model that merges the NOperations and
NAttributes from the two NavigationalClasses into WebServices that represent a behavioural property
of the Integration WebComponent and WebAttributes which in turn represent a structural property of
the Integration WebComponent. Additionally, the “where” clause contains a set of relations that

 S. Meliá and J. Gómez 141

extends the previous relation. SPOperation2WebService generates for all NOperation of each
NavigationClass element a WebService in a ServerPage. SPNAttribute2WebAttribute generates for all
NAttribute of each NavigationClass element a WebAttribute in a ServerPage.

Figure 13 uses the QVT graphical notation to define the FacadeDomain2Integration relation. This
transformation checks (‘c’ arrow) whether there is a class in the Domain model that contains a set of
operations (see NOperation o1set in figure 13). It also checks in the Configuration model whether
there is a WebPattern called Façade that contains both a ProcessComponent and an EntityWeb
instances. If both patterns are found, the transformation enforces (‘e’ arrow) that both one stateless
Process Component (that is, with its WebAttribute hasState=false) and an EntityWeb are created in the
Integration model. In addition, the o1set from the class c1 is transformed into a set of WebServices
associated to the Process component (s1set) and a set of WebServices associated to the EntityWeb
component (s2set). As well as all this, the NAttributes from the Domain model (a1set) are converted
into a set of WebAttributes in the Integration model (a2set).

Figure 13. Example of T1: Façade and Domain Class to Integration Model

The links among the n-ary elements (depicted by two superimposed rectangles) in the T1
transformation rule are defined in the Operations2WebServices and Attributes2WebAttributes
transformation rules included in its Where clause. On one hand, Operations2WebServices generates,
for all NOperations of each Class element, a WebService in a Component. Operations2WebServices is
a composed transformation where the name, type and parameters of each Operation are queried, the
aim being to create a new WebService in the Integration component. On the other hand,
Attributes2WebAttributes generates, for all NAttributes of each Class element, a WebAttribute with
the same name and type in an EntityWeb.

142 The WebSA Approach: Applying Model Driven Engineering to Web Applications

7 Integration Model

IM defines a complete structural design of our application in a platform independent way. It integrates
SM and CM with the functional viewpoint made for a specific problem. IM is also built by means of a
UML 2.0 Profile of the composite structure model. From the T1 transformation, IM inherits some
elements of CM such as the hierarchy of WebComponent, WebConnector and WebPort. But in
contrast to CM, IM has introduced additional elements with the aim of representing a complete design
of the Web Application. The most important element is WebModule, which allows us to represent a
Subsystem from the SM. Moreover, gathered from the functional models, IM represents the functional
properties of the WebComponent as WebServices and WebAttributes.

So it is clear that this model plays a preponderant role in WebSA, due to the fact that certain
application characteristics are only identifiable when we consider functional and non-functional
aspects together. For instance, in order to determine the granularity of the business logic components,
it is necessary to know both architectural structure (e.g. whether this logic is likely to be distributed)
and the business logic functionality itself (the tasks to be performed).

The IM does not need to be built up from scratch. The model is obtained by means of a PIM-to-
PIM transformation applied on the SM and the CM together with the functional view (see T1 in figure
1). This mapping is based on a set of transformation rules defined in QVT that may vary, depending on
the abstract component and/or the abstract dependency types. This automated mapping reduces the
modeling effort. Another aspect of note is that this automated mapping causes the IM to inherit the
architecture and design patterns defined in the CM, which will now be reflected in the concrete
application.

Important, too, is the need to stress that this model still centers on design aspects
(WebComponents, their WebPorts and WebParts, WebInterfaces, WebModules and WebConnectors),
and does not show any detail about a specific platform. It should be said, furthermore, that the model is
still independent from the target platform. Thus we will establish from this model a set of
transformations to the different specific platforms such as J2EE, .NET, PHP, etc (see T2 figure 1).
This makes it possible to classify it as a PIM (Platform Independent Model) in the context of MDA.

At this point we will focus on the Integration Model of the Travel Agency system. This model is
made up of four WebModules (Presentation, UserControl, BusinessLogic and Persistence) which
correspond to the four-tier distribution specified by the Subsystem Model. Each WebModule contains
a set of WebComponents and WebConnectors located into a specific subsystem (e.g. the WebModule
UserControl contains the WebComponents ServerPage and Controller which must be located into the
UserControl subsystem).

Firstly, we present the WebModule Presentation which represents a thin user interface subsystem
separated from the User Control functionality. This thin client has a poor graphical aspect, but it has a
lower distribution cost, more security, and a better level of reuse. A typical implementation of
Presentation layer is the HTML interface. The WebComponents like UserAgent, StaticPage,
FunctionalPage can be contained within the WebModule Presentation. The Configuration model of the
travel agency (see figure 7) only includes three UserAgents as possible candidates for this
WebModule.

 S. Meliá and J. Gómez 143

Figure 14 shows how the WebModule presentation contains the three types of UserAgent
(Browser, PDA and Mobile) which are defined in the Configuration Model (see figure 9). Each
UserAgent is connected with the only interaction point of the WebModule which is a WebPort with
three required WebInterfaces: the WebInterface, the PDAInterface and the MobileInterface. These
interfaces are offered by the next WebModule UserControl which will receive the different requests
from the three UserAgents. At this point, it is worthy highlighting that the three UserAgents are pre-
existing components like Web Browsers, PDA browsers, etc. For this reason, we do not need to
generate these components. However, in order to communicate the UserAgents with the UserControl
WebModule, the three interfaces must be obtained in the final implementation.

«WebModule»
Presentation

«UserAgent»
Browser

«UserAgent»
PDA

«UserAgent»
Mobile

WebInterface

PDAInterface

MobileInterface

«WebModule»
Presentation

«UserAgent»
Browser

«UserAgent»
PDA

«UserAgent»
Mobile

WebInterface

PDAInterface

MobileInterface

Figure 14. Presentation WebModule of the Travel Agency Integration Model

Following the top-down description of the travel agency Integration model, the next model is
UserControl WebModule (see figure 15). This WebModule manages the request from the Presentation,
establishes the navigation and redirects the logic services requests to the WebModule BusinessLogic.

Figure 15 shows a simplified WebModule UserControl of the Travel Agency IM. This module
contains a set of WebComponents and their WebConnectors obtained by the T1 transformation. On the
top, the module has three interfaces which are provided by the ServerPages that correspond to the three
UserAgents. Each ServerPage WebComponent is obtained from one or more navigational classes (e.g.
Offer, FunctionalCompany, Menu, etc.). A ServerPage has one required interface to access the View
component (e.g. the serverPage TripReq has a required IViewTripReq to access the view TripReqV)
and another required interface called IClientHandler to access the Controller called MainController.
The MainController receives the requests through the IClientHandler and invokes the interfaces
defined by the model components. Each of these model components is derived from one class of the
domain model (e.g. TripReqModel, TripModel, OfferModel, etc.). We can also observe that each
different model component sends information to the Business Logic through the ILogicServices
interface.

Finally, we will show the BusinessLogic and Persistence WebModule of the travel agency IM. On
the one hand, the BusinessLogic WebModule’s task is to resolve the business rules established by the
problem domain. In this case, this Business logic is composed of a set of different distributed
components. On the other hand, the Persistence WebModule provides a storage system for the
application Web data.

144 The WebSA Approach: Applying Model Driven Engineering to Web Applications

«WebModule»
UserControl

«ServerPage»
Menu

+ goToTripReq() : void

«WebCompIM»
Offer

- custOrder: string
- price: double

+ selectOffer():void

«ServerPage»
TripReq

+ newRequest():TripReq

«ServerPage»
FinancialCompany

+ chargeAccount():void

«View»
Offer

+ getCustOrder():String
+ getPrice():double

«View»
Trip

+ getCityOrg():String
+ getCityDst():String

«Controller»
MainController

+ post() : HTTPResponse
+ get() : HTTPResponse
+ getNavigationalLink():String

«Model»
TripReqModel

- cityOrg: String
- cityDest: String
- ...: ...

+ getCityOrg():String
+ getCityDest():String
+ ...() : ...

«Model»
OfferModel

- custOrder: int
- isSelected: bool
- price: double
- isPaid: bool

+ getCustOrder() : int
+ ...() : ...

«View»
TripReqV

+ getCityOrg():String
+ getCityDst():String
+ getDateDst() : date

«Model»
TripModel

- isPart: bool
- cityDest: int
- cityOrg: String
- ...:

+ getIsPart():bool
+ getCityOrg():String
+ ...() : ...

«Model»
FinancialCoModel

- name: String

+ getName() : String
+ chargeAccount():void
+ transferAccount():bool

«Store»
NavigationalPaths

<<Store>>
access=read
organization=flat
type=navigational

WebInterface

PDAInterface

MobileInterface

ILogicServices

IModelTripReq

IViewTrip

IClientHandler
IClientHandler

IViewTripReq

IModelOffer

IModelTrip IModelFinancialCo

IClientHandler

IModelOffer

IClientHandler

«WebModule»
UserControl

«ServerPage»
Menu

+ goToTripReq() : void

«WebCompIM»
Offer

- custOrder: string
- price: double

+ selectOffer():void

«ServerPage»
TripReq

+ newRequest():TripReq

«ServerPage»
FinancialCompany

+ chargeAccount():void

«View»
Offer

+ getCustOrder():String
+ getPrice():double

«View»
Trip

+ getCityOrg():String
+ getCityDst():String

«Controller»
MainController

+ post() : HTTPResponse
+ get() : HTTPResponse
+ getNavigationalLink():String

«Model»
TripReqModel

- cityOrg: String
- cityDest: String
- ...: ...

+ getCityOrg():String
+ getCityDest():String
+ ...() : ...

«Model»
OfferModel

- custOrder: int
- isSelected: bool
- price: double
- isPaid: bool

+ getCustOrder() : int
+ ...() : ...

«View»
TripReqV

+ getCityOrg():String
+ getCityDst():String
+ getDateDst() : date

«Model»
TripModel

- isPart: bool
- cityDest: int
- cityOrg: String
- ...:

+ getIsPart():bool
+ getCityOrg():String
+ ...() : ...

«Model»
FinancialCoModel

- name: String

+ getName() : String
+ chargeAccount():void
+ transferAccount():bool

«Store»
NavigationalPaths

<<Store>>
access=read
organization=flat
type=navigational

WebInterface

PDAInterface

MobileInterface

ILogicServices

IModelTripReq

IViewTrip

IClientHandler
IClientHandler

IViewTripReq

IModelOffer

IModelTrip IModelFinancialCo

IClientHandler

IModelOffer

IClientHandler

Figure 15. UserControl Module of the Travel Agency Integration Model

Figure 16 shows a portion of the travel agency IM that represents the simplified WebModule
BusinessLogic and the WebModule Persistence. These WebModules contain a set of WebComponents
and WebConnectors obtained by the T1 transformation. On the top, the WebModule called
BusinessLogic has the ILogicServices WebInterface that gathers the requests from the UserControl
components. This interface grants access to the different ProcessComponents in charge of obtaining all
the requests from the client and launching the transactions into the business logic. As stated in the
FaçadeDomain2Integration transformation (see figure 13), each ProcessComponent is obtained from
one or more domain classes (Offer, TripReq, BrokerAgent, etc., see figure 3). When a
ProcessComponent begins the transaction, it creates an EntityWeb by means of a Home Interface (e.g
IHomeOffer), and subsequently invokes such an EntityWeb to access their WebServices through the
Remote interface (e.g. IRemoteOffer). In our example, the EntityWeb stores the state of the class
instances of the Domain model by means of a ServiceWeb store that invokes the Persistence
WebModule. In the same way, the EntityWeb recovers the state of the class instances of the Domain
model by means of the ServiceWeb load.

 S. Meliá and J. Gómez 145

«Module»
BusinessLogic

«ProcessComponent»
PCTripReq

+ newRequest() : ETripReq
+ rejectAllOffers() : void
+ setBrokers() : void

tags
hasState = false

«ProcessComponent»
PCOffer

+ select() : boolean
+ reject() : boolean
+ setPaid() : void

tags
hasState = false

«ProcessComponent»
BrokerAgent

+ confirmBooking() : boolean
+ cancelBooking() : boolean
+ has2Split() : void

«EntityWeb»
ETripReq

- cityOrg: string
- cityDest: string
- dateDep: date
- dateArrival: date

+ load() : ETripReq
+ store() : boolean

«EntityWeb»
EOffer

- custOrder: string
- price: double
- isSelected: boolean

+ load() : EOffer
+ store() : boolean

«LegacyView»
LVBrokerAgent

+ confirmBooking() : boolean

«WebModule»
Persistence

«Datasource»
DS

«Store»
DB

<<LegacyView>>
isSynchronous = true

<<ProcessComponent>>
hasState = false

<<EntityWeb>>
isShared = true

<<Store>>
access=read/write
organization=relational
type=domain

<<Datasource>>
isRemote = true
isTransactional = true
numConnections = 5

ILegacyServices

ILogicServices

IDataConnection

IHomeTripR
ILVBrokerAgent

IHomeOfferIRemoteTripR

IDB

IRemoteProfile

«Module»
BusinessLogic

«ProcessComponent»
PCTripReq

+ newRequest() : ETripReq
+ rejectAllOffers() : void
+ setBrokers() : void

tags
hasState = false

«ProcessComponent»
PCOffer

+ select() : boolean
+ reject() : boolean
+ setPaid() : void

tags
hasState = false

«ProcessComponent»
BrokerAgent

+ confirmBooking() : boolean
+ cancelBooking() : boolean
+ has2Split() : void

«EntityWeb»
ETripReq

- cityOrg: string
- cityDest: string
- dateDep: date
- dateArrival: date

+ load() : ETripReq
+ store() : boolean

«EntityWeb»
EOffer

- custOrder: string
- price: double
- isSelected: boolean

+ load() : EOffer
+ store() : boolean

«LegacyView»
LVBrokerAgent

+ confirmBooking() : boolean

«WebModule»
Persistence

«Datasource»
DS

«Store»
DB

<<LegacyView>>
isSynchronous = true

<<ProcessComponent>>
hasState = false

<<EntityWeb>>
isShared = true

<<Store>>
access=read/write
organization=relational
type=domain

<<Datasource>>
isRemote = true
isTransactional = true
numConnections = 5

ILegacyServices

ILogicServices

IDataConnection

IHomeTripR
ILVBrokerAgent

IHomeOfferIRemoteTripR

IDB

IRemoteProfile

Figure 16. Business Logic and Persistence Modules of the Travel Agency Integration Model

The persistence WebModule is composed of two WebComponents. The DataSource provides one
or more physical connections to store data. In this example, the DataSource provides a pool of five
remote and transactional connections. It is connected to a relational database represented by a store DB
WebComponent which contains the data information from the domain model.

In the next section, we will present the T2 transformation which allows us to obtain the specific
platform models from the IM.

8 T2: Transformation from PIM to a PSM

Once the transformation T1 is completely executed, the functionality becomes interwoven into the
architectural aspects in the Integration Model. Now we can tackle the final step of the WebSA
development process, defining a set of PIM-to-PSM transformations for each target platform, such as
J2EE, .NET from the Integration Model. As is specified in [22], in order to make a transformation

146 The WebSA Approach: Applying Model Driven Engineering to Web Applications

from PIM-to-PSM, design decisions must be made. These decisions are specified in the transformation
T2 and taken in the context of a specific implementation design. Hence T2 is made up of a set of
simple transformations in which one Integration Model component is transformed into a platform
specific component with the specific properties of this platform. To specify the T2 transformation, it is
necessary to have the metamodels of the target platforms (e.g. the J2EE metamodel can be obtained
from [25]).

relation ServerPage2J2EE {

checkonly domain IntegrationModel sp:ServerPage {
 name=nc,
 services = Set((WService) {name=on,
type=ot}),

 views = Set ((View) {name = vn})
 }
 enforce domain J2EEModel jsp:JavaServerPage {
 name=nc,

 forms = Set((Form) {name=on, type=ot}),
 beans = Set((JavaClass) {name = vn}

 }
 where {

 services->forAll (s1| WebService2Form (s1, forms))
 views-> forall (v | View2Bean (v, beans))
}

 }

Figure 17. Example of T2: A ServerPage to a JSP of J2EE

Figure 17 shows a QVT example of the transformation rule of T2 for J2EE using the textual
notation. It transforms each ServerPage component of the Integration Model specified in the first
domain into a JavaServerPage specified in the second domain. The elements of the Integration Model
domain are for the purpose of accomplishing the relation, but the J2EEModel domain has to create,
modify or delete its elements to satisfy it. In this example, the ServerPage has a set of WebServices;
each one of them is translatable into a java method, a javascript method or an HTML form. In this
example, we have chosen a translation into an HTML form by the WebService2Form transformation
rule defined in the forall OCL sentence of the {where} part. In the same way, each of the View
elements related to the ServerPage is translated into a JavaBean through the View2Bean
transformation rule. The PSMs obtained from the WebSA process are considered as an
implementation, because they provide all the information needed to construct an executable system. It
should be underlined that the implementation obtained is not complete because the behavioral aspects
have to be introduced manually. The behavioral models will be introduced soon, and this will provide
WebSA with a complete code generation.

9 Related Work

This section compares our work with related research in the areas of Model Driven Engineering and
Software Architecture for Web applications.

 S. Meliá and J. Gómez 147

An example of approach based on MDA for Web applications is Tai et al [28]. They provide a set
of models based on a metamodel that is used as a central contract between the developers. They also
describe a tool implemented on the basis of the metamodel. The tool provides a variety of code
generators and a mechanism for checking whether view artifacts, such as JavaServer Pages, are
compliant with the model. Our approach improves this idea with (1) the integration of proven
successful models from the Web engineering field and (2) the formalization of the code generation
phase by means of transformation rules.

Another Model Driven methodology for Web Information System development is MIDAS [6].
This methodology applies a MDA metamodel to the Web platform using XML and object-relational
technology. MIDAS proposes different PIMs and PSMs and defines some mapping rules between
models. Unlike the WebSA approach, it establishes the transformation mapping following a low level
solution in XML, instead of defining the transformations using standard models as QVT which are
easier and more understandable for the stakeholders. Furthermore, MIDAS does not provide any Web
application aspect that is architectural.

For their part, the Web architecture approaches focus on emphasizing scalability, independent
deployment, interaction latency reduction, security enforcement and legacy systems encapsulation. The
first approach we are going to review is the Representational State Transfer (REST) [8] which is an
architectural style aimed at representing Web architectures and focused on the generic connector
interface of resources and representations. However, REST has only served both as a model for design
guidance and as a test for architectural extensions to the Web protocols, whereas WebSA has used
some concepts of these architectural styles to define a process development for the production of Web
applications.

Hassan and Holt [12] also present an approach aimed at recovering the architecture of Web
applications. Their approach uses a set of specialized parsers/extractors that analyze the source code
and binaries of Web applications. They describe the schemas used to produce useful architecture
diagrams from highly detailed extracted facts. Conversely, WebSA follows the opposite process that
goes from the representation of the architecture to implementation.

Conallen’s work is another well-known approach to extending UML [6] for the modeling of the
architecture and design of Web applications. Conallen presents the Web Application Extension (WAE)
for UML, which generates the skeleton code for a Web application. Unlike this approach, WebSA
represents the software architecture of Web applications at different levels of abstraction, and this
allows for a better scalability and reusability, improving the productivity in the development of Web
applications.

Finally, a more recent approach is WAM (WebComposition Architecture Model) [17] which is an
extension of WebComposition that introduces an architectural description and serves as a map to keep
track of the interrelations between the different federated Web applications. Among the modeled
artifacts are Web services, Web Applications and organizational zones of control that are all subject to
evolution in the sense of the WebComposition approach. In contrast with WebSA, WAM is not based
on model driven development and does not formalize the mapping from the architectural model to the
implementation.

148 The WebSA Approach: Applying Model Driven Engineering to Web Applications

10 Conclusions and Further Work

WebSA is an approach that, with techniques for the development of Web architectures, complements
the currently existing methodologies for the design of Web applications. WebSA contains a set of
UML architectural models and QVT transformations, a modeling language and a development process.
The development process also includes the description of the integration of these architectural models
with the functional models of the OO-H approach.

In this paper we focus on the development process of WebSA and describe how models are
integrated and generated, based on model transformations. For the specification of the transformations
we choose a promising QVT approach that allows for visual and textual description of the mapping
rules.

Despite the fact that WebSA can be modeled using any standard UML 2.0 tool, we are working on
a WebSA tool which would establish the set of Web models and represent QVT transformation models
that support the WebSA refinement process. First, the Web models are represented in a UML 2.0 tool
of the market which generates XMI documents. The WebSA tool reads the XMI documents and the
QVT models are specified on this tool. Finally, the tool generates an XMI file when the target is a
model and a source code file when the target is the implementation. This allows us to define the
transformations while guaranteeing the traceability between those models and the final
implementation.

Acknowledgments

This work has been partially funded by the METASIGN project (TIN2004-00779) from the Spanish
Ministry of Education and Science, by the DADASMECA project (GV05/220) from the Valencia
Government, and by the MESSENGER (PCC-03-003-1) and DADS (PBC-05-012-2) projects from the
Regional Science and Technology Ministry of Castilla-La Mancha (Spain). This article is expended
from the work presented at the 1st Workshop on Model-Driven Web Engineering (MDWE 2005), at
the 5th International Conference on Web Engineering (ICWE 2005).

References

1. C. Atkinson, T. Kühne, B. Henderson-Sellers. Systematic stereotype usage, Software and System
Modeling 2 (3), 153-163, 2003

2. L. Bass, M. Klein, F. Bachmann. Quality Attribute Design Primitives, CMU/SEI-2000-TN-017,
Carnegie Mellon, Pittsburgh, December 2000

3. J. Bézivin. In Search of a Basic Principle for Model Driven Engineering, Novática nº1, June 2004
4. G. Booch. The Architecture of Web Applications, DeveloperWorks: IBM developer solutions,

June 2001
5. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-Oriented Software

Architecture – A System of Patterns, John Wiley & Sons Ltd. Chichester, England, 1996
6. P. Cáceres, E. Marcos, B. Vela. A MDA-Based Approach for Web Information System,

Workshop in Software Model Engineering (WisME), 2004
7. S. Ceri, P. Fraternali, M. Matera. Conceptual Modeling of Data-Intensive Web Applications,

IEEE Internet Computing 6, No. 4, 20–30, July 2002

 S. Meliá and J. Gómez 149

8. R. Fielding, R. Taylor. Principled Design of the Modern Web Architecture, ACM Transactions
on Internet Technology, Vol. 2, No. 2 , 115-150, May 2002

9. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995

10. J. Gómez, A. Bía, A. Párraga. Tool Support for Model-Driven Development of Web
Applications. The 6th International Conference on Web Information Systems Engineering (WISE,
2005), 721-730, November 2005

11. J. Gómez, C. Cachero, O. Pastor. Conceptual Modeling of Device-Independent Web
Applications. IEEE Multimedia, 8(2), 26–39, 2001

12. A. Hassan, R. Holt. Architecture Recovery of Web Applications, International Conference on
Software Engineering (ICSE’02), May 2002

13. I. Jacobson, G. Booch, J. Rumbaugh. The Unified Software Development Process, Addison-
Wesley, 1999

14. A. Kleppe, J. Warmer, W. Bast. MDA Explained. The Model Driven Architecture, Practice and
Promise, Addison-Wesley, 2003

15. C. Krobyn. UML 3.0 and the Future of Modeling, Software and System Modeling, Vol. 3, No. 1,
4-8, 2004

16. N. Koch, A. Kraus. The Expressive Power of UML-based Web Engineering, In Proc. of the 2nd.
Int. Workshop on Web-Oriented Software Technology, CYTED, Spain, 105-119, June 2002

17. J. Meinecke, M. Gaedke, M. Nussbaumer. A Web Engineering Approach to Model the
Architecture of Inter- Organizational Applications. COEA’05, 125-137, 2005

18. S. Meliá, J. Gomez. Applying Transformations to Model Driven Development of Web
applications. 1st International Workshop on Best Practices of UML (ER, 2005).LNCS 3770,63-
73, Austria, October 2005

19. S. Meliá, A. Kraus, N. Koch. MDA Transformations applied to Web Application Development,
In Proc. of 5th International Conference on Web Engineering (ICWE’05), LNCS 3579, 465-472,
July 2005

20. S. Meliá. The WebSA Composition Model Profile. Technical Report TR-WebSA2,
http://www.dlsi.ua.es/~santi/papers/WebSA%20CM%20profile.pdf, November 2004

21. OMG. Model Driven Architecture, OMG doc. ormsc/2001-07-01
22. OMG. MDA Guide, OMG doc. ab/2003-05-01
23. OMG. Meta Object Facility (MOF) v1.4, OMG doc. formal/02-04-03
24. OMG. MOF Query/Views/Transformations Draft Adopted specification: OMG doc. ptc/05-11-01
25. OMG. UML Profile for Enterprise Distributed Object Computing Specification. OMG doc.

ad/2001-06-09
26. K. Renzel, Wolfgang Keller. Client/Server Architectures for Business Information Systems. A

Pattern Language, PLoP Conference, 1997
27. B. Selic. An Overview of UML 2.0 (Tutorial), UML 2004
28. H. Tai, K. Mitsui, T. Nerome, M. Abe, K. Ono. Model-Driven Development of Large-scale Web

Applications, IBM J. Res. & Dev. Vol. 48 No. 5/6, Sep/November 2004
29. VisualWADE Case Tool. http://www.visualwade.com, May 2005
30. Workshop on Model-driven Web Engineering (MDWE 2005). http://www.lcc.uma.es/~av

/mdwe2005

