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Web Ontology Language (OWL) and Model-Driven Architectures (MDA) are two technologies being 
developed in parallel, but by different communities. They have common points and issues and can be 
brought closer together. Many authors have so far stressed this problem and have proposed several 
solutions. The result of these efforts is the recent OMG’s initiative for defining an ontology development 
platform. However, the problem of transformation between  ontology and MDA-based languages has been 
solved using rather partial and ad hoc solutions, most often by XSLT. In this paper we analyze OWL and 
MDA-compliant languages as separate technological spaces. In order to achieve a synergy between these 
technological spaces we define ontology languages in terms of MDA standards, recognize relations 
between OWL and MDA-based ontology languages, and propose mapping techniques. In order to illustrate 
the approach, we use an MDA-defined ontology architecture that includes ontology metamodel and 
ontology UML Profile. Based on this approach, we have implemented a transformation of the ontology 
UML Profile into OWL representation. 
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1 Introduction  

The Semantic Web initiative tries to establish better semantic connections between different resources 
on the Web using AI techniques. Domain ontologies are the most prominent part of this research that 
should provide a formal way to represent a conceptualization of some domain [30]. Accordingly, many 
ontological languages are defined within the Semantic Web community. Most of these languages are 
XML-based (e.g. SHOE, OML, RDF Schema - RDFS, DAML, DAML+OIL, etc.) [29]. Even though 
Semantic Web languages use XML, they have more rigorous foundation closely related to the well-
known AI paradigms (e.g. Description Logic, semantic networks, frames, etc.). Thus, most of current 
Semantic Web ontologies are developed in AI laboratories. 

Researchers have been trying to integrate the ongoing software engineering efforts with the 
concept of the Semantic Web for a while [35]. The main question they want to answer is how to 
develop the Semantic Web ontologies using well-accepted software engineering languages and 
techniques in order to have a large number of practitioners developing and using ontologies in real-
world applications. Many researchers have previously suggested using UML in order to solve this 
problem. However, UML is based on object-oriented paradigm, and has some limitation regarding 
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ontology development (e.g. properties in ontology languages are fist-class concepts, while UML 
properties (i.e. attributes and associations) are defined in the scope of a class they belong to [3]. 
Furthermore, UML classes and their inheritance covers behavioral characteristics of abstractions they 
model whereas ontologies considers model-theoretical ones. For a detail overview of differences 
between UML and ontology language see [3]). Hence, we can only use UML in initial phases of 
ontology development. We believe that these limitations can be overcome using UML extensions (i.e. 
UML profiles) [22], as well as other Object Modeling Group (OMG) standards, like Model Driven 
Architecture – MDA. In addition, if we want to offer a solution consistent with MDA proposals, we 
should also support automatic generation of completely operational ontology definitions (e.g. in OWL 
language) that are model driven [52]. Currently, the most important direction toward this goal is the 
one pursued by a dedicated research group within OMG that tries to converge many different 
proposals of solutions to this problem [46]. The result of this effort should be a standard language (i.e. 
a metamodel) based on the MDA standards [39] and the W3C Web Ontology Language (OWL) 
recommendation [5]. 

Technological spaces have been recently introduced as a means to figure out how to work more 
efficiently by using the best possibilities of different technologies [37]. In this paper we use this 
concept to bring closer together two technological spaces: MDA-compliant languages and OWL. To 
this end, we identify similarities between these technological spaces regarding their epistemological 
organization and layered architecture. For example, MDA has a four-layer metamodeling architecture 
whereas the ontology languages like OWL have three-layer architecture according to [16]. Also, the 
XML technological space is important for our analysis since both MDA and OWL use XML formats 
for sharing metadata. In order to develop valid transformations we find equivalences among them in 
terms of epistemological equivalencies between concepts existing in all of them. As a result we give 
recommendations on how to develop transformations between the MDA languages and OWL as well 
as what specific technologies can be used for implementation. On top of those theoretical 
considerations we developed a practical example. The example implements an XSLT-based solution 
for transforming an ontology UML profile into OWL language. That way, we illustrate all pros and 
cons of such an approach to bridging gaps between UML Profiles (i.e. MDA TS) and OWL TS.  

The next section formally defines MDA, metamodeling, UML Profiles, and technological spaces. 
Section 3 briefly depicts an example of an MDA-based ontology development architecture, which we 
defined according to the OMG initiative. Using this architecture, we give a conceptual solution for 
mapping between MDA-compliant ontology languages and OWL in section 4. Section 5 contains an 
XSLT-based implementation example for transforming ontology UML Profile into OWL, as well as 
our experiences in using this transformation. In Section 6 we give an overview of related work in 
transforming MDA-based models into ontology languages, whereas in section 7 we discuss some 
further specifics of the proposed solution. The approach presented in the paper is a part of research 
efforts of the GOOD OLD AI research group (http://goodoldai.org.yu). The efforts are focused on 
development of an ontology metamodeling architecture based on the current OMG initiative for 
Ontology Definition Metamodel (ODM) [21]. 

2     Formal framework 

In this section we describe the MDA-supported standards, give important definitions related to these 
standards, and define technological spaces. We rely on these definitions in the rest of the paper. We 
need all these concepts in order to explain metamodeling described ontology languages as well as their 
transformations to OWL ontologies. 
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2.1 MDA basics 

Our work is based on MDA – an ongoing software engineering effort under the auspices of OMG. The 
central part of MDA is the four-layer architecture that has a number of standards defined at each of its 
layers (see Figure 1). Most of MDA standards are developed as metamodels using metamodeling. The 
topmost layer (M3) is called meta-metamodel and the OMG’s standard defined at this layer is Meta-
Object Facility (MOF) [45]. This is a self-defined language intended for defining metamodels. In terms 
of MDA, a metamodel makes statements about what can be expressed in the valid models of a certain 
modeling language. In fact, a metamodel is a model of a modeling language [51]. Examples of the 
MDA’s metamodels are UML and Common Warehouse Metamodel (CWM). The MDA’s metamodel 
layer is usually denoted as M2. At this layer we can define a new metamodel (e.g., a modeling 
language) that would cover some specific application domains (e.g., ontology development). The next 
layer is the model layer (M1) – the layer where we develop real-world models (or domain models). In 
terms of UML models, that means creating classes, their relations, states, etc. There is an XML-based 
standard for sharing metadata that can be used for all of the MDA’s layers. This standard is called 
XML Metadata Interchange (XMI) [50]. The bottom layer is the instance layer (M0). There are two 
different approaches to explaining this layer, and we note both of them: 

1. The instance layer contains instances of the concepts defined at the model layer (M1), e.g. objects 
in programming languages. 

2. The instance layer contains things from our reality – concrete (e.g. Mark is an instance of the 
Person class, Lassie is an instance of the Dog class, etc.) and abstract (e.g. UML classes – Dog, 
Person, etc.) [2]. Other authors also mentioned that difference, like Bézivin [9], who says that the 
M0 layer covers program executions as well. Accordingly, the ongoing UML 2.0 [49] accepted 
this approach to the M1 layer, so in the reset of the paper we rely on such a presumption.  
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Figure 1 The four-layer Model Driven Architecture and its orthogonal instance-of relations: linguistics and ontological 

In UML, both classes and objects are at the same layer (the model layer) in the MDA four-layer 
architecture. Actually, MDA layers are called linguistic layers, and there is linguistic instatiation 
relation between them. An exception is the relation between M1 and M0 layers. Since we create 
models of the reality (i.e. the M0 layer) as well as executable programs at the M1 layer. That means, 
the M1 layer represents the M0 layer. On the other hand, concepts from the same linguistic layer can 
be at different ontological layers. Hence, UML classes and objects are at different ontological layers, 
but at the same linguistic layer. There is no any explicit definition how many ontological layers can be 
at a linguistic layer. We give an excerpt from the Petri net ontology [25] as an illustration of this 
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approach (see Figure 2). There is the concept of modules in Petri nets that means components of Petri 
net models we can reuse in other different Petri net models. In fact, Petri net modules are similar to 
UML classes – it is a sort of template that we use for creating module instances. However, both of 
them we modeled using UML classes, but there was a need to make difference between them. So, we 
modeled modules as a metaclass, while module instances as a regular class. Note that we did not 
change UML metamodel by defining Module metaclass, but we just created ontological metaclass. 
That means, modules are at the O2 ontological layer, while module instances are at the O1 ontological 
layer. Finally, module instances represent (model) real Petri net modules. As Petri nets themselves are 
modeling tool, they are at the O0 ontological layer, but sill at the M1 (i.e. model) linguistic layer. 

UML metamodel 

Module ModuleInstance

O2 O1 O0

concrete 
module 

instances 

Ontological instantiation

M2 

M1 

M0 
  

Figure 2 An illustration of ontological layers: An excerpt of the Petri net ontology consisting of three ontological layers (O2, 01, 
O0) at the same linguistic layer 

2.2 Specific MDA metamodels and UML Profiles 

One possible solution for using MDA capacities in a specific domain is to develop a metamodel that 
would be able to model relevant domain concepts. That means creating a domain language (i.e. the 
metamodel) using metamodeling; such a language is created using MOF. Having defined a domain 
specific metamodel, we should develop suitable tools for using that metamodel. However, it is rather 
expensive and time-consuming to develop new tools (e.g. for ontology development compliant with an 
MDA-based language), so we try to use existing, well-known tools. Current software tools do not 
implement many of the MDA basic concepts. However, most of these tools are currently oriented 
primarily towards UML and the M1 layer (i.e., the model layer) [26]. Generally, UML itself is a MOF-
defined general-purpose language (i.e. a metamodel) that contains a set of core primitives. The 
problem of tools can be overcome using UML Profiles – a way to adapt UML to specific domains (e.g. 
ontology development). UML Profiles extend the UML metamodel with domain-specific primitives 
(through stereotypes, tagged values, and constraints), and hence these primitives can be used as the 
regular UML concepts. With Profiles, UML can be seen as a family of languages [22]. 

A very important issue is the place of UML Profiles in the MDA four-layer architecture. The UML 
specification states that UML Profiles are defined at the metamodel layer (M2), and thus they are 
meta-concepts. Here we use a definition of UML Profiles in a strict metamodeling framework [1], 
where UML Profiles are placed at both the metamodel layer (M2) and the model layer (M1). 

2.3 Technological spaces 

Nowadays, using only a single technology in solving different engineering problems is usually not 
enough. For example, software engineers can benefit from ontological engineering, or database 
developers can find useful improvements in using the XML technology. Problems of bridging different 
technologies are discussed in [37] where the term of technological spaces is introduced. A 
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technological space is a working context with a set of associated concepts, body of knowledge, tools, 
required skills, and possibilities. Although some technological spaces are difficult to define, they can 
be easily recognized (e.g. XML, MDA, and ontology technological spaces in the case of approaching 
MDA and OWL). In order to get a synergy of different technological spaces we should create bridges 
between them, and some of these bridges are bi-directional. The bridges can be created in a number of 
ways (e.g. in the XML technological space by using XSLT, in ontological engineering through 
transformations that can be mapped into XSLT, etc.). Of course, sometimes it is not enough to create a 
bridge between technological spaces using just one technology (e.g. XSLT), but we should/could 
employ two-three of them (e.g., for importing/exporting between MDA and XML we can use both 
XSLT and QVT). Note that technological spaces can be classified according to their layers of 
abstraction (e.g. MDA and ontological engineering are high-level spaces, whereas XML and databases 
are low-level spaces). The Semantic Web integrates XML and ontological engineering technological 
spaces. 

Currently, there is an OMG initiative (Request for Proposal – RFP) entitled MOF 2.0 
Query/View/Transformation (QVT) [47]. This is a platform-neutral part of MDA aiming to define a 
language for querying and transforming models as well as viewing metamodels. Atlas Transformation 
Language (ATL) is an example of submission to the OMG’s QVT RFP. ATL can be used to bridge 
different technological spaces, and the potentials of this language are shown in [7] where it is used to 
transform XSLT documents to XQuery. Although this transformation can be done inside the XML 
technological space through XSLT (because an XSLT document is a valid XML document), it is 
performed in both MDA and XML technological spaces. 

3    Ontology development and MDA 

In this section we first explain an OMG effort for building a set of standards supporting ontology 
development. First, we describe starting points of OMG’s proposal for Ontology Definition 
Metamodel. Then, we give a short overview of the ontology metamodeling architecture [21] we 
developed on top of OMG’s initiative. Finally, we describe the Ontology UML Profile [21] since we 
use that UML Profile to demonstrate a practical implementation of the mapping an MDA-compatible 
language into OWL (see Section 5).  

3.1 Starting points for OMG’s ontology standard 

All concepts we explained in the previous section are developed to be used in software engineering 
tools and by software engineering practitioners. On the other hand, the practitioners are manly 
unfamiliar with ontology development techniques. Researches proposed using well-known tools and 
techniques (e.g. UML) for ontology development as a solution of this problem [35]. The problem of 
using UML for ontology development has been firstly addressed in [14]. In fact, this was a pioneering 
work in integrating MDA and ontologies. Until now there were another few attempts to use MDA 
standards for the benefit ontological engineering. Currently, there is an OMG RFP aiming to define a 
suitable language for modeling Semantic Web ontology languages in the context of MDA [39]. In the 
context of that RFP we present in Figure 3 our proposal for such an architecture [21]. The key 
components in the architecture are: 

 Ontology Definition Metamodel (ODM); 

 Ontology UML Profile (OUP) – a UML Profile that supports UML notation for ontology 
definition; 
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 Two-way mappings between OWL and ODM, ODM and OUP, and from OUP to other UML 
profiles. 

 
Figure 3 Ontology modeling in the context of MDA and the Semantic Web (This figure does not try to identify the relations 
between MDA and OWL layers) 

In Figure 3 we inserted mappings between OUP and OWL although it is not a part of the ongoing 
OMG specification. The transformation from OUP to OWL is a practical extension of present UML 
tools that gives them capability to be used for full development of ontology described by a real 
Semantic Web language. We note this transformation, as the example we present in section 5 is its 
implementation. Further discussion about the transformation is given in section 7.  

3.2 Ontology metamodeling architecture 

A natural way to define an MDA-based ontology language is to develop a metamodel. In terms of 
OMG RFP this metamodel is entitled ODM. ODM should be designed to enclose common ontology 
concepts. A good starting point for ODM construction is OWL since it is the result of evolution of 
existing ontology representation languages, and is a W3C’s recommendation [5]. It is at the Logical 
layer of the Semantic Web [6], on top of RDF Schema (Schema layer). In order to make use of 
graphical modeling capabilities of UML, it would be useful for ODM to have a corresponding UML 
Profile [53]. This profile enables graphical editing of ontologies using UML diagrams as well as other 
benefits resulting from the use of the mature UML CASE tools. Both UML and ODM models are 
serialized in XMI format so the two-way transformation between them can be done using XSLT. OWL 
can be also represented in XML format, so another pair of XSLTs should be provided for two-way 
mapping between ODM and OWL. For mapping from OUP into other, technology-specific UML 
Profiles, additional transformations can be added to support using ontologies in application design in 
other domains and vice versa. 

We have defined ODM using MOF [19] [21]. A brief comparative description of the most 
important metamodeling constructs in MOF and RDF(S), is shown in Table 1. Using that comparative 
analysis we defined ODM, and its comprehensive overview can be seen in [21]. Detailed description 
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of MOF can be found in the OMG’s MOF specification document [45]. RDF, RDFS and their concepts 
are described in detail in W3C documents [12]. The ODM gives us a metamodel-based semantic 
foundation [51] for ontology languages, so we can use MDA capabilities for ontology development. 
But, if we want to use standard CASE tools for ontology development we need a UML Profile whose 
formal semantics is compliant with the ODM. Thus, in the next subsection we shortly outline the 
ODM-based UML Profile – OUP. 

Table 1 A brief description of basic MOF and RDF(S) metamodeling constructs 

MOF element Short description RDF(S) element Short description 

ModelElement 

ModelElement classifies the 
elementary, atomic constructs of 
models. It is the root element within 
the MOF Model. 

rdfs:Resource 
Represents all things described by 
RDF. Root construct of majority of 
RDF constructs. 

DataType 
Models primitive data, external 
types, etc. rdfs:Datatype 

Mechanism for grouping primitive 
data. 

Class 
Defines a classification over a set of 
object instances by defining the state 
and behavior they exhibit. 

Classifier 
Abstract concept that defines a 
classification. It is specialized by 
Class, DataType, etc. 

rdfs:Class 

Provides an abstraction mechanism 
for grouping similar resources. 
In RDF(S), rdfs:Class also
have function that is similar to a 
MOF concept of Classifier. 

Association 
Expresses relationships in the 
metamodel between pairs of 
instances of  Classes 

Attribute 
Defines a notional slot or value 
holder, typically in each instance of 
its Class. 

rdf:Property 
Defines relation between subject 
resources and object resources. 

TypedElement 

The TypedElement is an element 
that requires a type as part of its 
definition. A TypedElement does 
not itself define a type, but is 
associated with a Classifier. 
Examples are object instances, data 
values etc. 

 
In RDF(S), any rdfs:Resource 
can be typed (via the rdf:type 
property) by some rdfs:Class 

3.3 Ontology UML Profile 

Here, we briefly outline OUP defined as a part of the ODM-compatible ontology metamodeling 
architecture we developed [21]. OUP’s details are given in [20]. In fact, OUP uses the standard UML 
extension and customization mechanisms defined in the UML Specification [49]: stereotypes, tag 
definitions, tagged values, and constraints. Stereotypes enable defining virtual subclasses of UML 
metaclasses, assigning them additional semantics. Creating UML stereotypes means extending 
concepts that are regular part of the UML metamodel (e.g. class, association, dependency). Since we 
extend UML metamodel, those extensions are done at M2 layer. In development of our Ontology 
UML Profile we used experiences of other UML Profile designers (e.g., see [31]). Applying those 
experiences to our case, we wanted our OUP to: 

 offer stereotypes and tags for all recurring ontology design elements, such as classes, individuals, 
properties, complements, unions, and the like; 
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 make specific ontology modeling and design elements easy to represent in UML diagrams 
produced by standard CASE tools, thus keeping track of ontology information in UML models; 

 enable encapsulating ontological knowledge in an easy-to-read format and offer it to software 
engineers; 

 make possible evaluation of ontology UML diagrams that would indicate possible inconsistencies; 

 support ODM, hence be able to represent all ODM concepts. 

In the rest of this subsection we try to illustrate some of OUP stereotypes in order to give a reader 
a better picture of the UML Profile under study. All of those stereotypes are introduced at the M2 layer 
by using the UML2 extension relation for defining stereotypes. The examples are parts of the well-
known Wine ontology and all of them belong to the M1 layer.    

Since there are some differences between traditional UML Class or OO programming language 
Class concept and ontology class as it is defined in OWL (owl:Class) we used stereotyped 
<<OntClass>> UML classes to model ontology classes in OUP. However, ontology languages (i.e. 
ODM and OWL) have several other class species, namely Enumeration, Union, 
Intersection, Complement, Restriction and AllDifferent. These constructs in OUP 
are all inherited from the UML concept that is the most similar to them, i.e. from UML Class. That 
means, we defined a new class stereotype for each of them.  

In Figure 4 we show a part of the well-known Wine ontology. WineDescriptor is a class 
equivalent to the union of classes WineTaste and WineColor, whereas the WineColor class is 
an enumeration of the WineColor class’ instances (i.e. individuals): White, Rose, and Red. Note 
that there are two anonymous classes (Union and Enumeration) in Figure 4. Those classes are 
defined through other classes (e.g. the anonymous Enumeration is defined in the class 
WineColor) and cannot be used outside of their definitions. Note also that we use the tag value 
odm.anonymous with the value true, to denote anonymous classes. This helps us differentiate between 
anonymous and non-anonymous classes in automatic transformation of OUP models. 

 
Figure 4 Ontology UML Profile class-oriented stereotypes (an excerpt of the Wine ontology) 

In UML, an instance of a Class is an Object. Since ontology (i.e. ODM and OWL) individuals 
and UML Object have some differences, OUP Individuals are modeled as stereotyped UML 
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Objects, as it is shown in Figure 4. Here we had difficulties deciding on what stereotype to attach to 
UML objects to make them represent ODM individuals. It would be natural to have a stereotype with 
the name «Individual», but the UML specification [48] explicitly prompts that the stereotype for 
an object must match the stereotype for its class. Accordingly, in OUP we have attached the 
«OntClass» stereotype to the OUP instances. 

The next OUP concept we discuss is property. In ontology languages (e.g. OWL) Property is a 
stand-alone concept and can be modeled using a stand-alone concept in UML. This is opposite to 
UML class Attributes that are part of UML classes (i.e. each UML attribute is owned by an UML 
class). That concept could be the UML Class’ stereotype «Property». However, Property must 
be able to represent relationships between Resources (Classes, Datatypes, etc. in case of 
UML), which UML Class alone is not able to do. In fact, in UML it is the role of relationships. 
Furthermore, according to the OWL’s semantics there are two types of Properties: 
ObjectProperty and DatatypeProperty. ObjectProperty, which can have only 
Individuals in its range and domain, is represented in OUP as the Class’ stereotype 
«ObjectProperty». DatatypeProperty is modeled with the Class’ stereotype 
«DatatypeProperty». An example of a class diagram that depicts ontology properties modeled in 
UML is shown in Figure 5. The example means the Wine class has the «ObjectProperty» 
locatedIn, i.e. the Wine class is the domain of the property locatedIn. Also, the range of 
«ObjectProperty» locatedIn is the Region class. Since, ontology languages (i.e. OWL and 
ODM) may additionally specify object properties, we introduced tagged values describing those 
additional characteristics: symmetric, transitive, functional, and inverseFunctional. 

In OUP we use the «Restriction» stereotype to refine property’s restrictions. As a result, we 
have an association (e.g. stereotype «someValuesFrom») between a class and an unnamed 
«Restriction», and two stereotyped dependencies from «Restriction» – «onProperty», 
and for example, «someValuesFrom» (but stereotypes «hasValue» and «someValuesFrom» 
can also be used). However, adding this «Restriction» construct in OUP is not the same as adding 
a class into property domain. Actually, it is mapped as a super class for the given class. Figure 5 
depicts a class’ restriction on a property – the Wine’s «ObjectProperty» locatedIn has as 
someValuesFrom restriction the «OntClass» Region. That means, each instance of the Wine class 
must have at list one instance of the property locatedIn whose range is the Region class. An 
additional restriction is multiplicity (i.e. how many property instances can be attached to a class) 
defined through the multiplicity at the association between the Wine class and the locatedIn 
property. 

ODM Statement is a concept that represents concrete links between ontology instances: 
Individuals and DataValues. In UML, this is done through a Link (an instance of an 
Association) or an AttributeLink (an instance of an Attribute). 

Since in UML a Class’ instance is an Object, in OUP Statement is modeled with 
Object’s stereotype «ObjectProperty» or «DatatypeProperty». UML Links are used to 
represent the subject and the object of a Statement. To indicate that a Link is the subject of a 
Statement, LinkEnd’s stereotype «subject» is used, while the object of the Statement is 
indicated with LinkEnd’s stereotype «object». LinkEnd’s stereotype is used because in UML 
Link cannot have a stereotype. These Links are actually instances of the properties «domain» and 
«range». In brief, in OUP Statement is represented as an Object with two Links – the subject 
Link and the object Link, which is shown in Figure 6. Here we have a statement that says the 
Region’s instance MendocinoRegion is locatedIn SonomaRegion, and its 
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adjacentRegion is CaliforniaRegion. Unlike other MDA-based approaches to ontology 
development both ODM and OUP support modeling of body of knowledge (i.e. class instances) [13]. 

 

 
Figure 5 OUP class property and its restriction in the Wine ontology 

 

 
Figure 6 OUP fully supports ontology body of knowledge (i.e. instances) through OUP statements: the Wine ontology example 

4    Conceptual solution 

The presented ontology languages (ODM and OUP) are MOF-compliant languages defined in the 
context of the MDA’s metamodeling architecture. However, they are not sufficient; they need 
interaction with real-word ontologies, e.g. with OWL ontologies. It is obvious that we should develop 
transformations to support conversions between MDA ontology languages and OWL. All these 
transformations can be explained in the context of technological spaces. So, we firstly identify all 
technological spaces related to this problem and depict their mutual relations. 

4.1 Relations between technological spaces 

Figure 7 shows all technological spaces we recognized as important for MDA standards and 
ontological engineering to be used cooperatively. In the MDA technological space we defined ODM 
and OUP. It is important to note that ODM is defined at M2 layer, while OUP resides at both M1 and 
M2 layers according to [1]. Concrete real world models are at M1 layer and they consist of classes and 
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their instances. That means, we must not have one ontological layer at M1 layer according to [2], and 
it the case of UML we have two ontological layers: one for classes and one for class instances (i.e. 
objects). For all MDA layers one can use XMI, an XML-compatible format for sharing metadata. 

The OWL technological space includes the W3C’s recommendation for the Web Ontology 
Language. This ontology language is based on XML and RDF(S), and thus an XML format is being 
used for interchanging OWL ontologies. In this technological space we identify different abstraction 
layers in order to find relations with the MDA technological space. Two bottom-most layers are 
denoted O1 and O0. At O1 layer we build ontologies, i.e. we create classes, properties, relations, and 
restrictions. On the other hand, ontological instances are at O0 layer in the OWL technological space. 
We use an analogy of the top-most layer defined in the OWL technological space with the results 
given in [16]. In that paper the authors described an ontology language (i.e. Ontology Inference Layer 
– OIL) using another ontology language (i.e. RDF(S)). In fact, they created a meta-ontology. Finally, 
we can say there is a meta-ontology that defines OWL and this meta-ontology is at O2 layer. Note that 
this three-layer organization of ontologies is already known in AI as Brachman’s distinction of 
knowledge representation systems [11]. 

 

 
Figure 7 An overview of technological spaces, which are important for the collaborative use of the MDA-compliant ontology 
languages and OWL, and their mutual relations:  MDA, OWL, and XML technological spaces 

 

We can give some important statements in order to provide transformations between these two 
technological spaces: 
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1. O2 layer's role (meta-ontology) is similar role to that of the metamodel (M2) layer (e.g. ODM and 
OUP) – they both specify an ontology language 

2. Both O1 and O0 layers have role similar to that of the MDA model (M1) layer. In fact, this 
conclusion comes form the Atkinson and Kühne’s ontological and linguistic layers [2] where one 
linguistic layer (in this case M1) can contain many ontological layers (in this case O1 and O0). 
Accordingly, O1 layer is equivalent to M1 classes and O0 layer is equivalent to M1 objects. 

Since these two technological spaces both use XML for sharing their metadata, we can include a 
new technological space in this discussion. Of course, this is the XML technological space, which also 
has its own layered organization. This organization is very similar to that of OWL, but it is defined in 
terms of syntax (not semantics) [33]. We observe the XML technological space in terms of W3C XML 
Schema recommendation. S2 layer is a schema for schemas (i.e. meta-schema) – this schema defines 
the validity of XML Schema definition documents. Domain specific XML vocabularies (i.e. schemas) 
are defined at S1 layer. Concrete XML documents are at S0 layer. Epistemologically, one can say that 
these three layers are equivalent to the OWL layers (i.e. S2 ⇔ O2, S1 ⇔ O1, S0 ⇔ O0). Accordingly, 
there exists the same relation between MDA layers and XML layers (i.e. M2 with S2, M1 with both S1 
and S0). Finally, we can define OWL and MDA languages in terms of the XML Schema. That means 
we can define schemas that specify the OWL’s XML syntax and an XML syntax of a metamodel (e.g. 
ODM and OUP). 

4.2 Transformations between technological spaces 

It is obvious from the previous descriptions that we cannot provide direct mappings between the 
MDA technological space and the OWL technological space. In fact, this transformation can only be 
defined through the XML technological space. It is important to define a pair of transformations in 
order to enable two-way mapping (one transformation for either direction) between all OWL 
ontologies and all ontologies represented in an MDA-based ontology language. The transformations 
can be based on “meta-definitions” of OWL (i.e. on its meta-ontology) and an MDA-compliant 
language (i.e. a metamodel). This transformation principle is compliant with the Bézivin’s principle of 
metamodel-based model transformation [8]. Practically, in the case of the XML technological space 
the transformations are based on the XML schemas of both OWL and XMI (i.e. the XML Schema of 
the UML XMI format). Furthermore, since an XSLT document is a valid XML document we can say 
that XSLT itself is defined as an XML Schema vocabulary. Figure 8 shows the OUP/OWL 
transformation of an OUP model (i.e. an OUP document in the XMI format) to its equivalent OWL 
ontology (i.e. an OWL document in XML format). The transformation maps the MDA M1 layer into 
its corresponding OWL layers (O1 and O0). The most suitable implementation for this transformation 
is XSLT, since in this case an XML document is converted into another XML document. The opposite 
transformation (from OWL to OUP) can also be implemented in XSLT. However, we do not 
recommend this kind of implementation since we may use different XML representations (e.g. XML 
Schemas) with different XML tag names to represent the semantics of an OWL ontology and its 
instances (for details see [16]). For example, the book concept can be represented by different tags 
(book, bookInfo, etc.), but the ontology defines that all these tags represent the same ontology concept. 
In this case we suggest using a programming language to implement the transformation. For example, 
this transformation can be implemented in Java, but Java should be empowered with an OWL parser 
(e.g. http://jena.sourceforge.net/). 
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Figure 8 An example of transformation in the XML technological space: the transformation of OUP into OWL 

Figure 9 shows an example of transformations in the MDA technological space. This figure is 
organized according to the transformation schema proposed in [36] for transforming XML schemas to 
application models. In the MDA technological space we can only transform those ontology languages 
that have an MDA-compliant metamodel. We illustrate the transformation between OUP and ODM. In 
terms of the MDA technological space the transformations between these languages should be 
implemented in one of QVT languages (e.g. ATL [47]), and the chosen QVT language should have its 
own metamodel. This example shows that there are no problems related to a different metamodeling 
layer, since both metamodels are defined at the same layer (M2 layer). Actually, the OUP metamodel 
can reside at both M1 and M2 layers. For the sake of symmetry, we placed the OUP metamodel only at 
M2 layer in Figure 9. As a matter of fact, this can be true if we would use a standard UML Profile for 
ontology development without the user’s extensions (see [1] for details). Note that this transformation 
can also be implemented through the XML technological space in terms of XML schemas and XML 
documents. 

 
Figure 9 Transformation in the MDA technological space: transformations between OUP and ODM 

Summarizing all these facts about transformations between OWL and MDA, Table 2 gives some 
guidelines on how to make transformation between each pair of the languages discussed above. In the 
table we only indicate the transformations between each of the observed languages that can be done by 
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employing one transformation technique. At the first look at the table one might think that 
transformation between MDA-based languages (i.e. ODM and OUP) and OWL can be done within the 
MDA technical space. But, it is not possible since OWL is not a part of MDA technical space, and it is 
not a MOF-based language. That means, the MDA transformation technology (e.g. QVT) cannot be 
applied to that transformation pair. QVT can only be applied to MOF-based languages. So, we have to 
look for intersection between those two languages. Since there exist bridges between OWL and XML, 
and MDA and XML, but not between OWL and MDA, the transformation can only be defined in 
XML TS as it is shown in Table 2. However, if understand OMG’s ongoing model-to-text initiative 
[44] as a part of MDA technical space, then transformations between ODM and OWL are possible in 
terms of MDA TS. Since, model-to-text is its initial stage of the development (i.e. there is just a 
request for proposals at OMG [44]) and there is no any test implementation of that proposal at the 
moment, we do not consider that case in the table. Consequently, the table should not be understood as 
a definite list of possible transformations. 

Table 2 Overview of possible transformations between OWL, ODM and OUP: technological spaces in which the 
transformations can be done (XML TS and MDA TS) and implementation technologies for these transformations (XSLT, 

Query/View/Transformation – QVT, and programmed) 

  Target language 

  ODM OUP OWL 

XML TS MDA TS XML TS 
ODM – 

XSLT QVT XSLT 

XML TS  MDA TS XML TS 
OUP 

XSLT QVT 
– 

XSLT 

XML TS XML TS 

So
ur

ce
 la

ng
ua

ge
 

OWL 
Programmed*, XSLT Programmed*, XSLT 

– 

* preferred case (e.g. Java empowered with a library for parsing OWL) 

5    An implementation example: an XSLT-based approach 

In the previous section we explained the conceptual solutions for transforming MDA-based ontology 
languages (i.e. ODM and OUP) and OWL. In this section we show an implementation example that 
transforms an OUP-based ontology to its equivalent OWL ontology [27] [28]. That way we develop 
Semantic Web ontologies that can be used in real-world Semantic Web applications [34]. 

5.1 Implementation details 

The main idea of having a UML Profile for ontology development is to use existing UML tools. In 
fact, current UML tools (e.g. Rational Rose and Poseidon for UML) mainly support XMI standard [50] 
– an MDA XML-based standard for metametamodel, metamodel, and model sharing. Since XMI is 
XML-based, one can employ XSLT to transform XMI documents into target documents that are not 
XML documents. These target documents can be written in some ontology language, for example 
OWL. On the other hand, when we use an approach based on XSLT (XSLT principle) we do not need 
to modify a UML tool; instead, we just apply an XSLT to the output of the UML tool. Accordingly, we 
can use the well-defined XML/XSLT procedure shown in Figure 10. 
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Figure 10 Using XSLT principle: extensions of present UML tools for ontology development 

A UML tool can export an XMI document that an XSLT processor (e.g. Xalan – 
http://xml.apache.org) can use as input. An OWL document is produced as the output, and this format 
can be imported into a tool specialized for ontology development (e.g. Protégé, 
http://protege.stanford.edu/), where it can be further refined. On the other hand, since we obtain an 
OWL document, we do not need to use any ontology tool; the document obtained can be used as the 
final OWL ontology. 

The XSLT we have implemented for mapping OUP models to the OWL ontologies contains a set 
of rules (i.e. XSLT templates) that match XMI constructs and transform them into equivalent OWL 
primitives. While developing these rules we had to face some serious obstacles resulting from evident 
differences between source and target formats. We note some of them: 

 The structure of an XMI document is fairly awkward since it contains full description of a UML 
model. For example, classes, attributes, relations (associations, dependencies, generalization), 
stereotype descriptions, etc. 

 In some cases, OUP uses more than one UML construct to model one OWL element. For 
example, to model someValesFrom restriction using OUP (see Figure 5), we need three UML 
classes and three relations (i.e. one association and two dependencies). This is especially difficult 
because each UML construct belongs to a different stereotype. 

 UML tools can only draw UML models, but they do not have an ability to check the completeness 
of an OUP ontology. Thus, the XSLT is incurred to check XMI documents. This is the only way 
to avoid generation of erroneous OWL ontologies. 

 The XSLT must make difference between classes that are defined in other classes (and can not be 
referenced from other classes using their ID), and classes that can be referenced using their ID. 
Accordingly, we included into OUP odm.anonymous tagged values that help us detect these two 
cases. 

Taking all this into account, it becomes obvious that the developed XSLT is too large to be 
included in this paper; however, it can be seen at http://www.sfu.ca/~dgasevic/projects/UMLtoOWL/  

Figure 11 depicts an output OWL document resulting from applying the XSLT. Figure 11a shows 
the OWL description of the classes we have defined in Figure 4. Note how OUP classes that have the 
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tagged value odm.anonymous are mapped into OWL (e.g., WineDescriptor has an equivalent 
anonymous class that is defined as a union of WineTaste and WineColor classes). Figure 11b we 
shows the OWL description of the locatedIn property, which has the Region class as its range, 
and both Region and Wine classes as its domain. On the other hand, the Wine class additionally 
restricts this property using the OWL someValuesFrom restriction. Since OUP has a full support for 
OWL statements, we are able to transform them into equivalent OWL constructs (i.e. full individual 
descriptions). Figure 11c contains OWL instances defined as parts of statements in Figure 6. This 
feature empowers our solution to generate both the ontology armature [17] (classes, properties, etc) 
and ontology instances (body of knowledge) [13]. This feature is not supported in other MDA-based 
proposals for ontology development. 

The second important decision is how to generate the OWL description, since the same OWL 
definition (e.g. OWL class) can be generated in more than one way (e.g. an OWL class can be defined 
using an unnamed class as either equivalent class or subclass). We decided to generate OWL 
ontologies using a technique similar to the Protégé OWL plugin 
(http://protege.stanford.edu/plugins/owl/). Hence we have managed to provide an additional way to 
import Poseidon’s models into Protégé through OWL. Of course, since Protégé has more advanced 
features for ontology development, an OUP-defined ontology can be further improved and refined. 

 <owl:ObjectProperty rdf:ID="locatedIn"> 
  <rdfs:range rdf:resource="#Region"/> 
  <rdfs:domain rdf:resource="#Wine"/> 
 </owl:ObjectProperty> 
 
 <owl:Class rdf:ID="Wine"> 
  <!-- ... --> 
  <rdfs:subClassOf rdf:resource="#PotableLiquid"/> 
  <rdfs:subClassOf> 
   <owl:Restriction> 
    <owl:onProperty rdf:resource="#locatedIn"/> 
    <owl:someValuesFrom 

rdf:resource="#Region"/> 
   </owl:Restriction> 
  </rdfs:subClassOf> 
 </owl:Class> 

b) 

  
 <owl:Class rdf:ID="WineDescriptor"> 
  <owl:equivalentClass> 
   <owl:Class> 
    <owl:unionOf rdf:parseType="Collection"> 
     <owl:Class rdf:about="#WineTaste"/> 
     <owl:Class rdf:about="#WineColor"/> 
    </owl:unionOf> 
   </owl:Class> 
  </owl:equivalentClass> 
 </owl:Class> 
 
 <owl:Class rdf:ID="WineTaste"> 
  <rdfs:subClassOf rdf:resource="#WineDescriptor"/> 
 </owl:Class> 
 
 <owl:Class rdf:ID="WineColor"> 
  <rdfs:subClassOf rdf:resource="#WineDescriptor"/> 
  <owl:equivalentClass> 
   <owl:Class> 
    <owl:oneOf rdf:parseType="Collection"> 
     <WineColor rdf:about="#Red"/> 
     <WineColor rdf:about="#Rose"/> 
     <WineColor rdf:about="#White"/> 
    </owl:oneOf> 
   </owl:Class> 
  </owl:equivalentClass> 
 </owl:Class> 

 
 <Region rdf:ID="SonomaRegion"/> 
 <Region rdf:ID="CaliforniaRegion"/> 
 <Region rdf:ID="MendocinoRegion"> 
  <locatedIn rdf:resource="#SonomaRegion"/> 
  <adjacentRegion rdf:resource="#CaliforniaRegion"/> 
 </Region> 
 
 

a) c) 
 

Figure 11 Resulting OWL description: a) classes generated for the OUP model from Figure 4; b) Object property OWL 
descriptors for the model from Figure 5 c) OWL statements from Figure 6 

Of course, we should note that Figure 11 is only a part of the OWL description of the Wine 
ontology obtained by the XSLT. In the next section we outline our first practical experience with this 
solution. 
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5.2 Practical experience 

We have already noted that the developed transformation acts as an extension to standard UML tools 
and thus let us create complete OWL ontologies without the need to use ontology-specific 
development tools. In order to use OUP and the developed XSLT in practice, we should employ an 
adequate UML tool that supports: 

 attaching stereotypes to all UML concepts that we have in OUP. For instance, present UML tools 
rarely allow objects and link ends to have a stereotype (e.g. objects in Figure 4); 

 a convenient way to use tagged values and attach them to each UML element (e.g 
odm.anonymous tagged value in Figure 4); 

 making relations between UML concepts, like those shown in Figure 4. We especially emphasize 
the importance of relations (e.g. dependency) between a UML class and an UML object. This kind 
of relation is regular in UML syntax, and can be represented on class diagrams (that are also 
called static structure diagrams in the UML specification [48]); 

 the XMI standard for UML serialization since our XSLT is based on the UML XMI format that 
transforms to OWL representation in order to create ready-to-use ontologies. 

 
Figure 12 An example of OWL ontology generated from OUP and imported into Protégé: Wine ontology 

We have analyzed two UML tools: IBM/Rational Rose (a leading UML tool – 
http://www.rational.com), and Poseidon for UML (http://www.gentleware.com). We have decided to 
use Poseidon for UML since it supports all requirements we have mentioned above, unlike 
IBM/Rational Rose that does not provide support for most of them (e.g. object can not have a 
stereotype, or a class and an object can not be related using any UML’s relation). Additionally, 
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Poseidon for UML is suitable since it uses NetBeans' MDR repository for MOF-compliant metamodel 
storing (http://mdr.netbeans.org), as well as MOF definition itself. This is an important feature because 
using model repositories enables us to benefit from all advantages of MDA [10]. From another point of 
view, this tool also has a closer applicability in ontological engineering since it is a UML tool 
recommended to be used with Protégé UML backend (http://protege.stanford.edu/plugins/uml) for 
importing UML models. 

We tested our solution using the well-known example of the Wine ontology [40]. Firstly, we 
represented this ontology in Poseidon using OUP. Parts of this ontology are used in the previous 
section in order to illustrate OUP (e.g. Figures 3 and 4). Then we exported this extended UML into 
XMI. After performing the XSLT, we obtained an OWL document. Finally we imported this document 
into Protégé using its OWL plugin. A screenshot that depicts a part of this imported OWL ontology is 
shown in Figure 12. 

We must admit that we have found a certain difference between OWL generated by the XSLT and 
OWL produced by Protégé. The difference was detected in the representation of OWL individuals. To 
represent individuals Protégé uses owl:Thing with the attribute rdf:type that refers to its type (i.e. 
its OWL class). For example, Red is an instance of the WineColor class, and it is represented as 
follows: 

<owl:Thing rdf:ID="Red" rdf:type="#WineColor"/> 

In our solution, an individual is represented using a tag that has the same name as its OWL class. 
For example, the same Red instance is represented as follows: 

<WineColor rdf:ID="Red"/> 

We found this difference unimportant since Protégé is able to recognize OWL instances defined in 
both forms. Also, these two individual representations have the same meaning in the OWL notation. 
The current XSLT version has a limitation in that it does not support packages (i.e. multiple OUP 
ontologies in one UML model). This means, it is unable to produce more than one OWL document 
(i.e. ontology). Actually, OUP supports multiple ontologies within the same XMI project, but the 
XSLT standard and XSLT processors introduce this limitation. Of course, this can be overcome using 
some XSLT’s non-standard primitives (i.e. XSLT extensions) that provide multiple documents 
production from one source XML document (e.g. SAXON XSLT processor and its XSLT extensions). 

5.3 Applications 

So far, we have developed two ontologies using the OUP that we later transformed in OWL using the 
XSLT. The two ontologies are the ontology of saints and philosophers and the Petri net ontology. The 
first has a theological and philosophical character, but also contains a multimedia part that 
semantically annotates picture collection (icons) [15]. This ontology was developed using the 
Porphyry's tree method [54] – starting from the Porphyry's tree schema, performing forward 
classification, and establishing the class hierarchy.  

The Petri net ontology was developed in order to provide the Semantic Web support for Petri nets 
[25]. Petri nets described that way can be inserted into other, non-Petri net XML-based formats, such 
as Scalable Vector Graphics (SVG, the XML-based W3C standard for 2D vector graphics), which 
makes possible to reconstruct Petri net models using metadata and annotations according to the Petri 
net ontology. We defined the Petri net ontology using experience from previous Petri net formal 
descriptions (metamodels, ontologies, and syntax). 
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6    Related work 

In this section we describe existing efforts to enable using UML, current UML tools, as well as MDA-
based standards in ontological engineering. Our goal is to explain the formal background of each 
approach and their mappings to ontology languages. Table 3 summarizes the analyzed frameworks, 
their formal definitions, the kinds of model interchange description they use, their proposals for 
implementing the mappings, and the target ontology languages. 

The idea to use UML in ontological engineering was firstly suggested by Cranefield [14]. He has 
found connections between the standard UML and ontology concepts: classes, relations, properties, 
inheritance, etc. However, there are some dissimilarities between them, and the most important one is 
related to the property concept – in UML, an attribute's scope is the class that defines it, whereas in 
ontology a property is a first-class concept that can exist independently of a class. This approach 
suggests using UML class diagrams for development of ontology taxonomy and relations between 
ontological concepts, whereas UML object diagrams were intended to be used for modeling ontology 
instances (i.e. body of knowledge) [13]. Also a practical software support was provided in the form of 
two XSLTs that were developed to enable transformation of the UML XMI format to RDFS and Java 
classes. However, we have noticed some limitations as well (that are also propagated to generated 
languages): 

• one cannot conclude whether the same property was attached to more than one class; 

• one cannot create a hierarchy of properties; 

• target RDFS ontology description does not have advanced restriction concepts (e.g. 
multiplicity). 

Backlawski and his colleagues have introduced two approaches to ontology development. The first 
one extends the UML metamodel by introducing new metaclasses [3]. For instance, these metaclasses 
define a property as a first class concept, as well as a restriction on a property. This way they solved 
the “property problem” in UML. This solution is mainly based on the DAML+OIL ontology language 
[38]. In order to enable using standard UML tools, they propose a UML profile and its mapping to 
DAML+OIL. The authors realized that this solution was fairly awkward because it introduced some 
new concepts in the UML metamodel. Therefore, they have developed an independent ontology 
metamodel using the MOF, which they named the Unified Ontology Language (UOL) [4]. This 
metamodel was also inspired by DAML+OIL. We have been unable to find any practical software tool 
that would be able to map these two MDA-based ontology languages into a Semantic Web language.  

Falkovych and her associates [23] do not extend the standard UML metamodel in order to enable 
transformation of UML models into equivalent DAML+OIL descriptions. They use a UML-separated 
hierarchy to define the kinds of ontology properties. A practical mapping from UML models to 
DAML+OIL is implemented using XSLT. The main limitations of this solution are:  

1) the lack of mechanisms for formal property specification (e.g. defining property 
inheritance, or inverseOf relation between properties); 

2) it is based on UML class diagrams, which contain only graphical artifacts of real UML 
elements included in a model (e.g. all associations titled with the same name are assumed to 
represent the same property, although each association is a distinct model element in 
UML). Of course, this diagram problem can be partly overcome with XMI for UML 2.0 
that supports diagram representation. 
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Protégé is the leading ontological engineering tool [42]. It has a complex software architecture, 
easily extensible through plug-ins. Many components that provide interfaces to other knowledge-based 
tools (Jess, Argenon, OIL, PAL constraint, etc.) have been implemented in this way, as well as support 
for different ontology languages and formats like XML, DAML+OIL (backends), and OIL (tab). In 
fact, Protégé has a formally defined MOF-based metamodel. This metamodel is extensible and 
adaptable. This means that Protégé can be adapted to support a new ontology language by adding new 
metaclasses and metaslots into a Protégé ontology. Introduction of these new metamodeling concepts 
enable users to add necessary ontology primitives (e.g. the Protégé class has different features from 
OWL class). In that way it can, for instance, support RDFS [41] or OWL. It is especially interesting 
that Protégé has backends for UML and XMI. These two backends use the NetBeans’ MetaData 
Repository (MDR – http://mdr.netbeans.org). The first backend exchanges UML models (i.e. classes, 
and their relations) using the standard UML XMI format, while the second one uses the XMI format 
that is compliant with the Protégé MOF-defined metamodel. It is obvious that one can share ontologies 
through Protégé (e.g. import an ontology in the UML XMI format and store it in the OWL format). 
However, Protégé has one limitation in its UML XMI support – it does not map class relations (i.e. 
associations) into a Protégé ontology (i.e. it does not attach instance slots to classes). This limitation 
was expected since Protégé imports UML models without any extension (i.e. a UML Profile). 

Table 3 An overview of present UML and MDA based ontology development frameworks and their transformations to the 
Semantic Web languages 

Approach Metamodel Model description Transformation 
mechanism 

Generated 
ontology 
language 

Cranefield [14] Standard UML UML XMI XSLT RDFS, Java classes 

Backlawski et al 
[3] [4] 

UML Profile, MOF-
based ontology 
language 

(not given - UML XMI, 
and MOF XMI can be 
used) 

- DAML 

Falkovych at al 
[23] Standard UML UML XMI XSLT DAML + OIL 

Protégé metamodel Protégé XMI 
Protégé  

Standard UML UML XMI 
Programmed 

OWL, RDF(S), 
DAML+OIL, XML, 
UML XMI, Protégé 
XMI, … 

DUET UML Profile Rational Rose, 
ArgoUML Programmed DAML+OIL 

Xpetal Standard UML  Rational Rose mdl files Programmed RDFS 

 

The software tool called DUET (http://codip.grci.com/Tools/Tools.html), which enables importing 
DAML ontologies into Rational Rose and ArgoUML as well as exporting UML models into the 
DAML ontology language [24], has been developed in order to support ontological engineering. This 
tool uses a quite simple UML Profile that contains stereotypes for modeling ontologies (based on 
UML package) and properties (based on UML class). Additionally, DUET uses an XSLT that 
transforms RDFS ontologies into equivalent DAML ontologies. That way, an RDFS ontology can be 
imported into UML tools through the DAML language. Of course, this tool has constraints similar to 
approaches we have already discussed (e.g. Falkovych et al) since it has no ability to define advanced 



 

 

138      Bridging MDA and OWL Ontologies

 

class and property relations (e.g. inverseOf, equivalentProperty, equivalentClass, etc.). On the other 
hand, this is the first UML tool extension that enables ontology sharing between ontology language 
(i.e. DAML) and a UML tool in both directions. 

Xpetal (http://www.langdale.com.au/styler/xpetal) is another tool implemented in Java that 
transforms Rational Rose models from the mdl format to RDF and RDFS. This tool has limitations 
similar to those that we have already mentioned while discussing Cranefield’s software (XSLTs), since 
it uses only standard UML and does not provide a convenient solution for representing properties, their 
relations, advanced class restrictions, etc. Actually, this tool is even more limited than the Cranefield’s 
one, since it is oriented to Rational Rose, in contrast to the Cranefield’s XSLT that is applicable to 
every UML XMI document and independent of UML tools. 

Our opinion is that all these approaches we have explored above are useful, but none of them gives 
a full solution that contains:  

• a formal description of the new MDA-based ontology language; 

• a related UML profile and necessary transformations between these two languages, as well as 
transformations to contemporary Semantic Web languages (i.e. OWL) [46].  

We believe that full usage of MDA provides us with considerable benefits when defining 
metamodeling architecture and enables us to develop new languages (i.e. ontology language). 
Actually, there is a RFP at OMG that should enclose all these requirements, but it is still in its initial 
stage (http://ontology.omg.org). 

7    Discussion 

Note that the model-sharing principle illustrated in this paper is closely related to a well-proven, 
general knowledge-sharing mechanism that has already been used in other approaches. For example, 
Generic Frame Protocol (GFP) was proposed and developed by SRI International and Stanford 
University long before the concepts of XML and XSLT were established, in order to provide a generic 
model for frame representation and, in fact, generic interface to different frame representation systems 
(FRS) [32]. Essentially, GFP provided generic knowledge-base functions for representing and 
manipulating knowledge in FRS, and a translation layer between these functions and existing FRS-
specific functional interfaces. The role analogous to that of XSLT in our case was given to a set of 
translators provided by FRS developers – these translators ensured translation between FRS-specific 
representation languages and the language of the GFP. GFP has later evolved into the Open 
Knowledge Base Connectivity (OKBC) standard application-programming interface (implemented in 
several different languages) for accessing knowledge bases stored in different knowledge 
representation systems [43]. 

Another feature can be introduced in this approach, since we have a formal metamodeling 
specification for ontology development, defined by MOF. That means MDA-based repositories can be 
used for storing metamodels and models. If we use present MDA-based repositories we can produce 
Java Metadata Interface (JMI) [18] compliant code, and thus obtain a possibility to incorporate a 
programming logic into Java applications. The JMI Specification defines the Java programming 
interface for manipulating MOF-based models and metamodels. JMI also enables generation of 
programming interfaces based on such models. This feature can be used for both ODM- and OUP-
compliant models, since they are both defined using MOF (OUP is also defined using MOF because it 
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is a UML extension). Accordingly, we have implemented a solution for ontology development that 
uses the MDR – a NetBeans’ repository – and can produce JMI. 

One very important remark is that the implemented XSLT (see Section 5), in fact, is not part of 
OMG’s RFP for Ontology definition metamodel [46]. This document presumes transformations 
between ODM and OUP, as well as transformations between ODM and OWL (see Figure 13). This 
means, if one wants to transform an OUP-defined ontology into OWL, that ontology should firstly be 
transformed into ODM, and subsequently from ODM to OWL. Of course, it is also possible to 
implement all using XSLT because all ontology representations use XML: ODM uses XMI format – 
MOF-defined metamodel, OUP uses the UML XMI format, and OWL has an XML-based 
representation. Our transformation from OUP to OWL is a practical extension of present UML tools 
that gives them capability to be used for full development of ontology described by a real Semantic 
Web language. It is a kind of a bridge between ontological and software engineering, since current 
MDA-compliant implementations are in very immature stage. Development of these ODM↔OUP and 
ODM↔OWL transformations is currently our primary activity. 

ODM 

OUP OWL 

transformations transformations

XSLT  
Figure 13 Relations between the implemented solution and recommended transformations in OMG’s RFP 

Transformations from OUP to ODM, and from ODM to OWL offer the following advantages: 

 When one wants to support a new ontology language (e.g. DAML+OIL) using the ODM-based 
principle, only a pair of transformations should be implemented: from a new language to the 
ODM, and from the ODM to a new language. In the case we want to support transformations 
between N different languages (like OUP and OWL), then it is necessary to implement 2N 
transformations. However, if we implement transformations between each pair of ontology 
languages without ODM (e.g. OWL and DAML+OIL) then we need N2 transformations. 

 Since we should transform all ontologies through ODM, we can validate an ontology against the 
ontology metamodel (i.e. ODM). This way, we can prevent transformation of an invalid ontology 
or issue a warning when an ontology is inconsistent. This feature is very important for OUP 
models since existing UML tools are unable to check UML models that are based on a UML 
Profile. 

 Finally, we can say that the transformation mechanism for MDA-based ontologies is driven by the 
ideas from [8] in which the author proposes metamodel-based model transformations. In the case 
of MDA-based ontology languages we have different metamodels (i.e. OWL, OUP metamodel). 
However, the ODM serves as an integration point that decreases the number of needed 
transformations. Also, we can prove usefulness of having a central metamodel (in this case, ODM) 
for some area. 
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8    Conclusions 

In this paper we showed a formal approach to bringing closer MDA-based ontology languages and the 
W3C OWL recommendation using the idea of technological spaces. Firstly, we gave a set of 
definitions regarding the MDA concept: metamodeling, the layered metamodeling architecture, UML 
Profiles, and the XMI format. Then we identified epistemological relations between MDA-defined 
ontology metamodels and OWL. Accordingly, we deduced the equivalences between their layers as 
follows: MDA M2 layer (metamodel) is equivalent to OWL O2 layer (meta-ontology), whereas M1 
layer corresponds to both O1 and O0 layers. Finally, we showed that their mutual mappings could be 
done through the XML technological space. Having followed these results we implemented a 
transformation, which converts an ontology UML Profile into OWL, using XSLT. 

We believe that results given in this paper can be useful to the researchers from the Semantic Web 
community who are trying to benefit from ontology development with MDA standards. Especially, 
this is important for the future software tools supporting these efforts. We hope that this work can be 
useful as a practical contribution to the OMG efforts in finding a suitable MDA-based technique for 
the Semantic Web ontologies, which will bring ontology development process closer to software 
engineers. 

In the future, we will finish our current work aimed at providing support for transformations 
between the Ontology UML Profile (i.e. the UML XMI format) and the Ontology Definition 
Metamodel (i.e. the ODM specific XMI format), as well as between OWL and Ontology Definition 
Metamodel. In this way, we will have an entire metamodeling platform compliant with the OMG’s 
ontology initiative. On the other hand, we face many research challenges such as: exploring 
possibilities for developing a graphical tool that will be able to construct transformations for bridging 
different technological spaces (a tool should be implemented to work in XML and MDA technological 
spaces); and analyzing usefulness of a new language for transforming actual ontology languages (e.g. 
OWL) which will have a similar role for ontology languages as XSLT has for XML. 
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