
Journal of Web Engineering, Vol. 4, No. 1 (2005) 003–020
c© Rinton Press

A COMPARISON OF TWO APPROACHES FOR

AUTOMATIC CONSTRUCTION OF WEB APPLICATIONS

MITSUHISA TAGUCHI, KORNKAMOL JAMROENDARARASAME

KAZUHIRO ASAMI, and TAKEHIRO TOKUDA

Department of Computer Science, Tokyo Institute of Technology

Meguro, Tokyo 152-8552, Japan

{mtaguchi, konkamol, asami, tokuda}@tt.cs.titech.ac.jp

Received September 29, 2004
Revised November 8, 2004

To support development of consistent and secure Web applications, we have designed a
number of Web application generators. These generators can be roughly classified into

two types of approaches: an annotationapproach and a diagram approach. In this paper,
we try to make clear the roles of these generators, and compare the two approaches

in terms of target applications, development processes and target users. While both
approaches are sufficiently powerful and flexible enough to efficiently construct typical

Web applications, the most appropriate generator should be chosen according to the
characteristics of the application and the development process.

Keywords : Web applications, code generation, annotations, diagrams

1 Introduction

Today, Web applications such as database query systems and transaction systems are widely

used especially on the Internet. The development of such applications, however, is costly and

requires considerable experience on the part of developers because of the complexity of imple-

menting features such as security checks and session management. To support development

of consistent and secure Web applications, we have designed a number of Web application

generators [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Web application generators generate executable

code necessary to execute a Web application. They encapsulate the complexity unique to

Web applications and allow developers to concentrate on the business logic of the application.

These generators can be roughly classified into two types of approaches. The first is an an-

notation approach, which concentrates on input data and embedded values on each Web page

[1, 2]. Developers first compose Web page templates and associate annotations with them.

From the annotated Web page templates, the generator generates an implementation. The

second is a diagram approach, which concentrates on dataflow relationships in the application

[3, 4, 5, 6, 7, 8, 9, 10, 11]. Developers first compose diagrams that describe overall dataflow

relationships among Web components such as Web page templates, server side programs and

databases. After developers select appropriate program templates and components, a gener-

ator then can generate an implementation, together with prototypes of Web page templates,

from the diagrams.

3

4 A Comparison of Two Approaches for Automatic Construction of Web Applications

Each approach makes certain assumptions and identifies specific roles in development

processes. Thus the most appropriate generator should be chosen according to the charac-

teristics of the application and the development process. In this paper, we try to make clear

the roles of these generators, and compare the two approaches in terms of target applications,

development processes and target users.

The organization of the rest of this paper is as follows. In section 2 and section 3 respec-

tively, we describe an annotation approach and a diagram approach, and give examples of

our generator systems based on each approach. In section 4, we compare the two approaches

in terms of target applications, development processes and target users. Finally, we discuss

future work and provide concluding remarks in section 5.

2 An Annotation Approach

2.1 Basic Idea of Annotation Approach

From the viewpoint of user interfaces, we can consider general Web applications as transitions

between Web pages just like ordinary Web sites that have no server side programs. In most

Web applications, the greater part of each Web page template is static, and the other parts

are dynamic where actual values are embedded by server side programs. Based on this idea,

we present an annotation approach to automatic construction of Web applications. In this

approach, we define the behavior of Web applications by associating annotations with dynamic

parts of Web page templates. More precisely, the following steps are generally taken in the

generation method.

1. We compose Web page templates for intended Web applications. We can use Web

page composers and authoring tools to visually compose Web page templates. Dynamic

parts of the templates, where actual values are embedded at run time, are represented

by special characters to distinguish the parts from static parts.

2. We associate annotations with dynamic parts of Web page templates. Annotations are

declaration of data processing that is done on the server side. The tasks are mainly

related to dataflow relationships among Web components as follows.

• Input data checking such as checking the types and the length of input values, and

constraints among them.

• Session management such as checking the beginning and the end of the session.

• Handling of data storage such as the access to database management systems.

• Communications with external programs such as invocation of Web services.

3. From Web page templates with annotations, a Web application generator automatically

generates source code of server side programs. The generator also generates additional

code for session management and the standard level of security by analyzing transitions

and parameters between Web page templates.

An example of a related but substantially different annotation approach is Zolar [12]. Zo-

lar concentrates on manipulations of relational databases. We can use declarative annotations

for raising SQL queries and showing the results, which are represented by extended tags. It

M. Taguchi, K. Jamroendararasame, K. Asami and T. Tokuda 5

Web page composer

Annotation editor

D-Web system

(1) Developers create HTML page templates

(2) Developers annotate HTML page templates
(3) Annotation editor converts annotated HTML
 page templates to D-Web source files

(4) D-Web generates Web applications from the
 source files

HTML page templates

D-Web source files

Web applications

Fig. 1. The architecture of the A-Web system

encapsulates the complexity of database handling. Other examples of a related but substan-

tially different annotation approach are server side scripts such as ASP [13] and JSP [14]. In

server side scripts, we can use procedural annotations represented by fragments of programs

whose source code is written in procedural programming languages such as Java.

2.2 A Generator: A-Web System

Based on the annotation approach, we designed and implemented a prototype generator called

A-Web system [1, 2]. While the current prototype can generate only CGI-based applications,

we may be able to generate Web applications based on other architectures by replacing part

of the generator, because the annotation approach itself is independent of the specific archi-

tecture.

The architecture of A-Web system is shown in Fig. 1. A-Web system consists of two parts:

an annotation editor and a Web application generator called D-Web system.

Web page templates

Web page templates should be prepared as input of A-Web system. We can use general

visual composers and authoring tools to compose Web page templates because A-Web system

requires ordinary XHTML documents. Dynamic parts of the templates should be represented

by special characters ${scope.valiable}. Variable is a name of the variable to distinguish it

from other variables in the application and should be unique in each scope. Because the

special characters are ordinary strings, not extension of HTML tags, general tools can deal

with these templates.

Fig. 2 shows an example of Web page templates in a simple member registration system.

This application first requires a user to input an id and a password that the user chooses, a

name, an e-mail address, a telephone number and an address on a Web page ’Registration’.

If the id is already registered or the input data don’t satisfy given conditions, a page ’Error’

is generated. Otherwise, a page ’Confirmation’ is generated. After the confirmation, the

registration becomes definite.

An annotation editor

An annotation editor is a part of A-Web system, which is a special editor to annotate Web

page templates and convert them to D-Web source documents. The editor analyzes Web page

6 A Comparison of Two Approaches for Automatic Construction of Web Applications

Fig. 2. An example of Web page templates

templates, points out where we can associate annotations and allows us to visually annotate

the templates. In the current prototype, we introduce five types of annotations: input check,

constraint, session, SQL and SOAP.

• An input check annotation defines conditions for accepting users’ input. If the type

of the input is a string, we can define the pattern and the length of acceptable characters.

In the case of a number, we can define a range of acceptable numbers. If necessary, we

can define new types such as a type ’E-mail’ using regular expression and add them into

the editor. This annotation can be associated with each field of an input form.

• A constraint annotation defines relations that must be satisfied among input data.

The relations are described as logical formulas. This annotation can be associated with

each input form.

• A session annotation defines the behavior of the session for each Web page template.

When a user accesses a Web page with a session annotation ’begin’, the server side

program starts a new session. In the case of ’check’, the program checks whether the

session is valid or not. In the case of ’end’, the program terminates the session. This

annotation can be associated with each Web page template.

• A SQL annotation describes SQL statements to access database management systems.

We can deal with database transactions when more than one statement is used. This

annotation can be associated with each Web page template and each table to show the

results of the queries.

M. Taguchi, K. Jamroendararasame, K. Asami and T. Tokuda 7

Fig. 3. The annotation editor of A-Web system

• A SOAP annotation describes statements to invoke external Web services using

SOAP protocol. This annotation can be associated with each Web page template.

Fig. 3 shows the annotation editor of A-Web system. It analyzes Web page templates

and automatically adds hyperlinks to special annotation pages. Fig. 3 shows a Web page

’Registration’, a session annotation page and an input annotation page.

From annotated Web page templates, the annotation editor generates D-Web source code,

which has a set of extended tags as follows.

• <input> has extended attributes, which correspond to an input check annotation.

• <constraint> is a child element of <form>, which corresponds to a constraint anno-
tation.

• <session> is a child element of <head>, which corresponds to a session annotation.

• <sql> is a child element of <head>, which corresponds to a SQL annotation.

• <service> is a child element of <head>, which corresponds to a SOAP annotation.

Fig. 4 shows an example of D-Web source code, which is generated from a Web page template

’Registration’ and its annotations.

D-Web system

D-Web system is a part of A-Web system, which gets D-Web source documents as input and

generates source code of Web applications. To keep the consistency of generated applications,

D-Web system analyzes all variables in all Web page templates and transitions between the

templates, and then automatically generates code to correctly pass the values to Web pages

where they are used. At the beginning of the analysis, D-Web system constructs diagrams

called template transition diagrams, which describe the transitions between Web page tem-

plates. Fig. 5 shows an example of template transition diagrams. The system finds that

8 A Comparison of Two Approaches for Automatic Construction of Web Applications

<html>

<head>

<title>Registration</title>

<session type="begin" error="Error.html"/>

</head>

<body>

<h1>Registration</h1>

<form action="Confirmation.html" method="Post">

id:<input type="text" name="id" length="[4,10]"/>

password:<input type="text" name="password" length="[6,10]"/>

name:<input type="text" name="name"/>

email:<input type="text" name="email" regex="^[^@]+@[^.]+\..+$"/>

tel:<input type="text" name="tel" regex="^[0-9]+$"/>

address:<input type="text" name="address"/>

<input type="submit" value="submit"/>

<input type="reset" value="reset"/>

</form>

</body>

</html>

Fig. 4. An example of D-Web source code

the input values of ’id’ and ’password’ should be passed to a page ’Confirmation’ and a page

’Success’.

All generated programs take steps at run time as follows.

1. After receiving input data, the program checks whether the user comes from a correct

Web page according to the template transition diagrams.

2. The program checks whether user’s session id is valid according to the session annotation.

3. The program checks whether input data are correct according to the input check anno-

tations and the constraint annotation.

4. The program executes the business logic according to the SQL annotations and the

SOAP annotation.

5. The program finally generates a dynamic Web page.

If at least one error occurs during the above process, the user’s request is redirected to an

error page.

3 A Diagram Approach

3.1 Basic Idea of a Diagram Approach

From the viewpoint of dataflow relationships among Web components such as Web pages

and programs, we can consider Web applications as applications based on pipes and filters

architecture. A filter corresponds to a program and a pipe corresponds to a Web page. Based

on this idea, we present a diagram approach to automatic construction of Web applications.

In this approach, we first compose diagrams describing overall behavior of the application,

M. Taguchi, K. Jamroendararasame, K. Asami and T. Tokuda 9

Fig. 5. An example of template transition diagrams

and then select appropriate program templates and components to generate executable ap-

plications. More precisely, the following steps are generally taken in the generation method.

1. We compose directed graphs whose nodes represent Web components such as Web page

templates, server side programs and databases, and whose edges represent dataflow

relationships among the components.

2. A Web application generator has predefined program templates and components that

are independent of specific application domains, for example, for purposes of database

manipulations and sending electronic mail. Referring specifications of these programs,

we define correspondence between nodes in diagrams and predefined programs, and then

specify parameters of the programs.

3. From the diagrams and a set of values of parameters, a generator automatically generates

an implementation, together with prototypes of Web page templates. The generator also

generates additional code for session management and the standard level of security by

analyzing the diagrams.

An example of a related but quite different diagram approach is WebRatio [15]. WebRatio

uses WebML as a modeling language of Web applications [16]. We first compose a structural

model, which expresses data contents in the Web site. Using the structural model and prede-

fined content units, we compose site views, which express the structure of Web page templates

and the navigation. We can generate executable Web applications from these diagrams.

10 A Comparison of Two Approaches for Automatic Construction of Web Applications

WEB TRANSITION DIAGRAM EDITOR

WEB-BASED TRANSACTION SYSTEM GENERATOR

Web transition
diagram

Templates

 Web pages

 Web pages Processing programs Database

WEB PAGE COMPOSER

A script for
database tables creation

 Web-Based Transaction System

 T-Web system

Fig. 6. The architecture of the T-Web system

3.2 A Generator: T-Web System

Based on the diagram approach, we designed and implemented a prototype generator called

T-Web system, which generates Web applications from directed graphs called Web transition

diagrams [3, 4, 5, 6, 7, 8, 9, 10]. While we have prototypes to generate CGI-based applications,

JSP/Servlet-based applications and ASP-based applications respectively, we may be able to

generate applications based on other architectures by replacing part of the generator, because

the diagram approach itself is independent of the specific architecture of Web applications.

In this section, we explain the basic architecture of T-Web system using the generator

for JSP/Servlet-based applications. The architecture of T-Web system is shown in Fig. 6.

T-Web system consists of two parts: a Web transition diagram editor and a Web application

generator.

Web transition diagrams

We first describe overall behavior of the intended application using directed graphs called

Web transition diagrams. Basically, Web transition diagrams consist of four types of nodes

and two types of links as follows.

• A fixed Web page node is a static Web page, which is accessible by a certain URL.

Its notation is a rectangle with its name, whose line is thick. It may have a number of

page elements such as hyperlinks and input fields inside the rectangle.

• An output Web page node is a dynamic Web page, which is generated by a server

side program. Its notation is a rectangle with its name, whose line is thin. Like a fixed

Web page node, it may have a number of page elements.

• A processing node is a server side program, which is activated by users’ requests. Its

notation is an oval with its name.

• A database node is a relational database table in a database server. Its notation is

a cylinder with its name. The schema of the table is represented by a list of column

names {col1, col2, ..., coln}.

M. Taguchi, K. Jamroendararasame, K. Asami and T. Tokuda 11

NODES LINKS

name

titletitle

name

Page transition link

Data-flow link

Fixed Web page node Output Web page node

Processing node Database node

Element type Representing symbol

a hyper link name

a text input (text) name

a text input (password) name ∗∗∗∗∗∗∗∗

a textarea name

checkboxes name choice1

choice2

radio buttons name cq choice1
c choice2

a button Submit

a visible parameter <id>

a hidden parameter (id)

database information <<columns>>

Fig. 7. The notation of Web transition diagrams

• A page transition link is a hyperlink relationship between Web pages. Its notation

is a directed line.

• A dataflow link is a dataflow relationship among Web components such as Web

pages, programs and database tables. Its notation is a directed line with a blocked

line. The link may have a data set to be passed represented by a list of variable names

<var1, var2, ..., varn>, and a condition of the transition represented by [condition].

The notation of nodes, links and page elements is shown in Fig. 7. Each generator may have

extension of Web transition diagrams according to the target architecture. The extended

diagrams have other kinds of data storage nodes such as temporal server memory, client’s

cookies, mail servers and Web services. Fig. 8 shows an example of Web transition diagrams

describing a simple member registration system, which is the same application as given in

section 2.

A Web transition diagram editor

A Web transition diagram editor is a part of T-Web system, which is a special editor to support

composition of consistent Web transition diagrams. The editor allows us to do all operations

visually. The following steps are generally taken to compose Web transition diagrams.

12 A Comparison of Two Approaches for Automatic Construction of Web Applications

Fig. 8. An example of Web transition diagrams

Fig. 9. The Web transition diagram editor of T-Web system

1. We draw Web transition diagrams by selecting a node from a list, placing it on the

drawing field and arranging nodes.

2. We specify details of each node using a special window called a property window. On the

property window for processing nodes, we select the most appropriate program template

from a list. To keep the consistency of Web transition diagrams, a number of parameters

can be also specified by selecting an appropriate value from a list.

Fig. 9 shows the Web transition diagram editor of T-Web system.

A Web application generator

A Web application generator is a part of T-Web system, which gets descriptions of Web

transition diagrams and a set of values of parameters as input, and generates source code of

server side programs and prototypes of Web page templates. The prototype system shown in

Fig. 6 generates JSP documents written in HTML and servlet source code written in Java.

M. Taguchi, K. Jamroendararasame, K. Asami and T. Tokuda 13

/*package PACKAGE;*/

import java.sql.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class /*CLASSNAME*/ extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

String myHttpsURL = "/*HTTPSBASEURI*/"+"/*PROGRAMURI*/"

+"/*PACKAGE.*/"+"/*CLASSNAME*/";

String dbName = "/*DBNAME*/";

String tbName = "/*TABLE*/";

String[] dbColNames = {/*"FIELDNAME"*/};

/**String PARAMETER = "";**/

Connection con = TWeb.doConnect(dbName);

String[] concolNames = {/*"EXISTPARAM"*/};

String[] concolValues = {/*"’"+INPUTPARAM+"’"*/};

if (!checkExist(con,tbName,concolNames,concolValues)) {

gotoPage("/*/JSPDIRECTORY/*//*NGPAGE.jsp*/",request,response);

} else {

--- omission ----

gotoPage("/*/JSPDIRECTORY/*//*OKPAGE.jsp*/",request,response);

}

con.close();

}

}

Fig. 10. An example of program templates

The generator has general-purpose program templates that are independent of specific

application domains. The current prototype has 16 program templates for database ma-

nipulations and sending electronic mail. Fig. 10 shows an example of program templates

in T-Web system. The program templates have parameters represented by words between

special characters ’/*’ and ’*/’. Special characters ’/**’ and ’**/’ mean a repetition part.

As the generator rewrites the parameters to the corresponding values, the program template

becomes a complete server side program. In the case of the application shown in Fig. 8, we

should apply a template that looks into a database table to a processing node ’check’, and a

template that inserts input values into a database table to a processing node ’registry’.

Each generator generates source code of server side programs and prototypes of Web

page templates according to its generation rule. Fig. 11 shows the generation rules of our

prototype generators. To generate applications based on server program type architectures

such as CGI, fixed Web page nodes correspond to static Web page templates, and other nodes

correspond to server programs. In the case of server page type architectures such as ASP, a

part of output Web page nodes, processing nodes and database nodes correspond to dynamic

Web page templates with the business logic. In the case of combination of the above two

14 A Comparison of Two Approaches for Automatic Construction of Web Applications

Server program type Server page type Combination type

Fixed Web page Static pages Static pages Static pages

Dynamic pages
Output Web page Dynamic pages

Processing
Dynamic pages

Database

Server programs
with the business logic Server programs

Fig. 11. Examples of generation rules

architectures such as JSP/Servlet, output Web page nodes correspond to dynamic Web page

templates, and processing nodes and database nodes correspond to server programs.

All generated programs take steps at run time as follows.

1. After receiving input data, the program checks whether user’s session id is valid.

2. The program checks whether input data are correct according to the specifications of

Web page nodes in diagrams.

3. The program executes the business logic according to the specifications of the processing

node and checks whether output data are correct according to the specifications of

database nodes or other storage nodes in diagrams.

4. The program finally generates a dynamic Web page.

If at least one error occurs during the above process, the user’s request is redirected to an

error page.

4 Comparison of Two Approaches

We compare the annotation approach and the diagram approach in terms of target appli-

cations, development processes and target users. We discuss target applications by dividing

into three viewpoints: application domains, flexibility and scalability. In addition to ”de-

velopment” processes, we also discuss ”maintenance” of generated applications. We discuss

them according to the following criteria.

1. Backgrounds show why the viewpoint is important to select an appropriate generator.

2. Characteristics show the advantage and the disadvantage of the two approaches and

compare them.

3. Examples show our practical experience and other points to notice.

4.1 Application Domains

Backgrounds Web applications can be generally classified into two types according to their

functions: data-intensive Web applications and control-intensive Web applications [17].

Data-intensive Web applications have side effect computations such as operations to

update databases, while control-intensive Web applications concentrate on execution of

the complex business logic. The above difference of the target applications has a great

influence on developers to select an appropriate generator.

M. Taguchi, K. Jamroendararasame, K. Asami and T. Tokuda 15

Characteristics The annotation approach is more appropriate to data-intensive Web ap-

plications than control-intensive ones, because we describe the control-flows using an-

notations, which are dispersed among Web page templates. In the diagram approach,

it depends on the abstraction level of the diagrams. While detailed diagrams are ap-

plicable to both data-intensive and control-intensive applications, highly abstracted di-

agrams should be specialized for either data-intensive or control-intensive ones. Of

course, highly abstracted diagrams are more helpful to encapsulate the complexity of

implementing features of Web applications.

In general, the annotation approach is easy to deal with Web page templates whose

page layouts are flexible, because we can use general Web page composers and author-

ing tools to compose Web page templates before the generation. The diagram approach

may not be good at dealing with such templates, especially having clickable maps and

multiple frames, because it is hard work to associate data-flows with the above compo-

nents. On the other hand, the diagram approach doesn’t care the ratio of static parts

and dynamic parts of Web page templates, while the annotation approach is not good

at dealing with templates whose ratio of dynamic parts is high.

Examples Both A-Web system and T-Web system concentrate on data-intensive Web ap-

plications. The generators aim to encapsulate the complexity of implementing features

such as security checks and session management, which are greater problems in data-

centric Web applications than in control-centric ones. Most of our generators can deal

with applications having functions as follows: database manipulations, invocation of ex-

ternal programs and sending/receiving electronic mail. We are successful in developing

typical data-intensive Web applications using A-Web system and T-Web system respec-

tively: shopping cart systems, guestbook systems, glossary systems, schedule organizing

systems, member registration systems and reservation systems. On the other hand, our

generators are not good at dealing with complex page transitions that depend on the

results of the processing.

4.2 Flexibility

Backgrounds When we need new business logic to generate an intended Web application, it

is a big problem how to add new program templates and components into the generator.

It is also important what types of architectures the generator can deal with, because we

often have constraints on the execution environment of the application.

Characteristics In the annotation approach, we can use new programs by setting new pro-

grams and adding new annotations to invoke them into the generator. In the diagram

approach, we can use new program templates and components by adding new pro-

grams, together with documents that describe programs’ specifications, into the gen-

erator. While both annotations and predefined programs are enough to encapsulate

invocation of external programs, the diagram approach seems to be more flexible than

the annotation approach, because we can select appropriate program templates and

components in the later period of the generation process. When we want to generate

Web applications based on other architectures, we can also replace part of the generator

in both approaches.

16 A Comparison of Two Approaches for Automatic Construction of Web Applications

Examples Using A-Web system and T-Web system respectively, typical data-intensive Web

applications can be generated without new annotations and programs. When we con-

struct complex Web sites such as shopping sites, however, we possibly need new business

logic. In that case, it requires programming skills to implement new program templates

and components. In particular, it is costly to test the implementation because the pro-

grams should be general-purpose ones and they have a number of parameters. We have

implemented generators and confirmed that our approaches can deal with applications

based on CGI, ASP and JSP/servlet architectures. When we extend a generator so that

it can deal with new architecture, it may require high programming skills.

4.3 Scalability

Backgrounds The scale of an intended application is also an important problem as well as

the complexity of the business logic.

Characteristics In the annotation approach, we can basically concentrate on transitions

between two Web pages because a generator automatically generates code to correctly

pass values to the pages where the values are used. Thus, even if the scale of an intended

Web application becomes larger, the generation task doesn’t become so complicated.

In diagram approach, however, the larger the scale of an intended Web application

becomes, the more complicated the management of diagrams becomes. While we can

make diagrams nested, it is still a big problem how to manage the specifications of

components that are used in more than one diagram. To solve the problem, development

tools have to fully support composition of large scale diagrams.

Examples Generators based on diagram approach can easily deal with no more than 15

Web page templates for each session. Although 15 Web page templates are enough to

construct typical Web applications, a complex shopping site may require more than 15

templates. In that case, site diagrams are convenient to look over the structure of the

Web site and static relationships between Web page templates.

4.4 Development Processes

Backgrounds Web applications are characterized by three major design dimensions: struc-

ture, navigation and presentation [17]. We discuss effective development processes in

each approach by taking notice of the order of these three design activities.

Characteristics In the annotation approach, we generally take the following development

process.

1. We first define requirement specifications and analyze them.

2. We decide what Web pages are needed in the application and design data structure

(as a structure model) that the application deals with. From the above chosen pages

and the structure model, we design Web page templates (as a presentation model)

and implement them. We also design dataflow relationships among the application

(as a navigation model) based on the above models.

3. From the implementation of Web page templates and the navigation model, a

generator generates server side programs.

M. Taguchi, K. Jamroendararasame, K. Asami and T. Tokuda 17

In the diagram approach, we generally take the following development process.

1. We first define requirement specifications and analyze them.

2. We decide what Web pages are needed, design data structure (as a structure model)

and design dataflow relationships among the application (as a navigation model).

From the above models, we compose diagrams describing overall behavior of the

application.

3. From the diagrams, a generator generates server side programs and prototypes of

Web page templates. After that, we design Web pages (as a presentation model)

and revise generated templates.

If we have to revise the appearance of Web pages after the generation, we should use

XSLT and CSS to compose Web page templates in both approaches.

Examples The annotation approach has the advantage of composing prototypes of Web page

templates early in the development process and reusing them for the final product. We

can take an iterative and incremental process to compose Web page templates. On the

other hand, it is hard to implement the navigation before the composition of Web page

templates. The diagram approach has the advantage of designing and implementing

the structure and the navigation iteratively and incrementally. On the other hand, it is

hard to implement Web page templates before the generation.

4.5 Maintenance

Backgrounds Most development tools tend to focus on the development of the first ver-

sion of the application. However, it is also an important problem how to update the

implementation.

Characteristics When we modify the data structure in the annotation approach, we edit

related annotations and re-generate server side programs. In the diagram approach, we

edit the diagrams, specify related parameters, and re-generate server side programs and

Web page templates. The annotation approach is advantageous to the small modifica-

tion, because we can concentrate on Web page templates that should be revised. On the

other hand, the diagram approach is advantageous to the extensive modification that

ranges over a good number of Web page templates.

When we modify the navigation or the business logic in the annotation approach,

we revise hyperlink relationships between Web page templates, edit related annotations

and re-generate server side programs. In the diagram approach, we edit the diagrams

and related parameters, and re-generate server side programs and Web page templates.

The diagram approach is advantageous to the modification of the navigation, because

diagrams are helpful to understand the whole navigation of the application.

When we modify the presentation in the annotation approach, we edit annotations

related to the appearance of Web pages and re-generate server side programs. In the

diagram approach, we specify parameters related to the appearance of Web pages and

re-generate server side programs and Web page templates. The annotation approach is

advantageous to the modification of the presentation, because we can concentrate on

18 A Comparison of Two Approaches for Automatic Construction of Web Applications

Web page templates to be revised. When we update only the Web page layouts, we

have only to revise stylesheets such as XSL and CSS files in both approaches.

Examples Although A-Web system and T-Web system check the consistency of revised Web

page templates and diagrams respectively before the generation, they don’t fully support

the maintenance yet. According to our small experiment, it becomes easier to modify

the navigation in diagram approach by using XForm and XLink .

4.6 Target Users

Backgrounds The minimum knowledge a generator requires is also a great problem to use

it.

Characteristics Of course both approaches don’t require programming skills to use gener-

ators. In the annotation approach, we possibly need the basic knowledge of markup

languages to edit the documents of Web page templates. In addition, generators re-

quire the knowledge of data types because a number of annotations are related to data

types. On the other hand, we don’t have to know the architecture of Web applications

because the behavior of the application is defined by dataflow relationships between

Web pages. The diagram approach doesn’t require the knowledge of markup languages

to use generators. When we re-generate server side programs after the revision of Web

page templates, however, we have to take notice of components that are related to the

appearance of Web pages. On the other hand, we have to know the basic architecture

of Web applications and the concept of session management because we first compose

diagrams describing overall behavior of the application. In addition, generators require

a skill in selecting and using general-purpose programs.

The annotation approach is particularly effective for non-programmers who have

the basic knowledge of data types. The diagram approach is particularly effective for

inexperienced developers who have the basic knowledge of Web applications.

Examples A-Web system doesn’t require the knowledge of HTML at all, because the anno-

tation editor points out where and what types of annotations we can use and allows us

to visually annotate Web page templates. We may use regular expression and SOAP

protocol to construct advanced Web applications. T-Web system requires the basic

knowledge of static/dynamic Web pages and data storage is necessary. Although we

have to select appropriate program templates and components from pre-defined ones, it

doesn’t take so much time before we get used to them.

5 Conclusion and Future Work

To support development of consistent and secure Web applications, we have designed and

implemented a number of Web application generators. In this paper, we classified these

generators into two types of approaches, made clear the roles of the generators and compared

the two approaches in terms of target applications, development processes and target users.

The annotation approach is particularly effective for non-programmers who know data types to

construct Web sites whose Web page layouts are flexible. The diagram approach is particularly

effective for inexperienced developers who know the basic architecture of Web applications

M. Taguchi, K. Jamroendararasame, K. Asami and T. Tokuda 19

An annotation approach A diagram approach

Application domains

Appropriate to data-intensive

Web applications.

Easy to deal with flexible Web

page layouts.

Appropriate to both data-

intensive/control-intensive Web

applications.

Difficult to deal with flexible

Web page layouts.

Flexibility

We can set new programs and

add new annotations into the

generator.

We can add new programs and

documents of their specifications

into the generator.

Scalability
Applicable to large scale appli-

cations.

Disadvantageous to large scale

applications.

Development Processes

Appropriate to iterative and in-

cremental composition of Web

page templates.

Disadvantageous to rapid proto-

typing of the whole application.

Appropriate to rapid develop-

ment of executable applications.

Disadvantageous to early com-

position of Web page templates.

Maintenance

Advantageous to the small mod-

ification of the data structure,

and the modification of the pre-

sentation

Advantageous to the extensive

modification of the data struc-

ture, and the modification of the

navigation.

Target Users

We need the knowledge of

markup languages and data

types.

We don’t need the knowledge of

the Web architecture.

We need the knowledge of the

Web architecture and the con-

cept of session management.

We don’t need the knowledge of

markup languages.

Fig. 12. A summary of the two approaches

to rapidly develop executable applications. Using our prototype systems, we confirmed that

both approaches are sufficiently powerful and flexible to construct typical data-intensive Web

applications.

Most popular development methods and generator systems such as UML-based methods

[18, 19] tend to be highly flexible and deal with any kinds of complex applications. On the

other hand, we concentrate on the easiness and the rapidness so that both non-programmers

and programmers can efficiently construct typical Web applications. As our future work, we

may try another approach based on the combination of the two approaches. This approach

may allow us to implement programs and Web page templates concurrently, and thus make

the development process more flexible and efficient.

References

1. K. Asami and T. Tokuda. Generation of Web Applications from HTML Page Templates with
Annotations. Proceedings of the IASTED International Conference APPLIED INFORMATICS,
pp.295-300, 2002.

2. K. Asami and T. Tokuda. Generation of Web Applications from Annotation-Based Definitions.
Proc. of Engineering Information Systems in the Internet Context, pp.69-79, 2002.

20 A Comparison of Two Approaches for Automatic Construction of Web Applications

3. T. Matsuzaki, T. Suzuki and T. Tokuda. A Pipe/Filter Architecture Based Software Generator
PF-Web for Constructing Web Applications. Computer Software of Japan Society for Software

Science and Technology Vol.19 No.4, pp.266-282, 2002.
4. K. Jamroendararasame, T. Suzuki and T. Tokuda. A Generator of Web-based Transaction Systems

Using Web Transition Diagrams. Proc. 17th Japan Society for Software Science and Technology,
2000.

5. K. Jamroendararasame, T. Matsuzaki, T. Suzuki and T. Tokuda. Generation of Secure Web
Applications from Web Transition Diagrams. Proc. of the IASTED International Symposia Applied

Informatics, pp.496-501, 2001.
6. K. Jamroendararasame, T. Matsuzaki, T. Suzuki and T. Tokuda. Two Generators of Secure Web-

Based Transacion Systems. Proc. of the 11th European-Japanese Conference on Information Mod-

elling and Knowledge Bases, pp.348-362, 2001.
7. K. Jamroendararasame, T. Suzuki and T. Tokuda. JSP/Servlet-Based Web Application Generator.

18th Conference Proceedings Japan Society for Software Science and Technology, 2C–1, 2001.
8. K. Jamroendararasame, T. Suzuki and T. Tokuda. A Visual Approach to Development of Web

Services Providers/Requestors. Proc. of the 2003 IEEE Symposium on Visual and Multimedia

Software Engineering, pp.251-253, 2003.
9. M. Taguchi, T. Susuki and T. Tokuda. Generation of Server Page Type Web Applications from

Diagrams. Proc. of the 12th Conference on Information Modelling and Knowledge Bases, pp.117-
130, 2002.

10. M. Taguchi, T. Suzuki and T. Tokuda. A Visual Approach for Generating Server Page Type
Web Applications Based on Template Method. Proc. of the 2003 IEEE Symposium on Visual and

Multimedia Software Engineering, pp.248-250, 2003.
11. T. Tokuda, T. Suzuki, K. Jamroendararasame and S.Hayakawa. A family of Web diagrams ap-

proach to the design, construction and evaluation of Web applications. Proc. 12th European-

Japanese Conference on Information Modelling and Knowledge Bases, pp.293-306, 2002.
12. International System Research Inc. Zolar: Connection tool for WWW server and database.

http://www.isr.co.jp/products/zolar/
13. A. Homer, D. Sussman, B. Francis et al. Professional Active Server Pages 3.0. Wrox Press, 1999.
14. M. Hall. Core Servlets and JavaServer Pages. Prentice Hall PTR, 2000.
15. Web Models Inc. WebRatio Site Development Studio. http://www.webratio.com/
16. S. Ceri, P. Fraternali and A. Bongio. Web Modeling Language (WebML): a Modeling Language

for Designing Web Sites. Proc. of the 9th World Wide Web Conference, 2000.
17. Piero Fraternali. Tools and Approaches for Developing Data-Intensive Web Applications: A Survey.

ACM Computing Surveys Vol.31 No.3, pp.227-263, 1999.
18. J. Conallen. Modeling Web Application Architectures with UML. Communications of the ACM

Vol.42 No.10, pp.63-70, 1999.
19. R. Hennicker and N. Koch. A UML-based Methodology for Hypermedia Design. Proc. of UML

2000 Conference, pp.410-424, 2000.

