
Journal of Web Engineering, Vol. 3, No. 2 (2004) 124–152
c© Rinton Press

MODEL-DRIVEN WEB USAGE ANALYSIS
FOR THE EVALUATION OF WEB APPLICATION QUALITY

PIERO FRATERNALI, PIER LUCA LANZI, MARISTELLA MATERA, ANDREA MAURINO

Dipartimento di Elettronica e Informazione - Politecnico di Milano, Piazza L. da Vinci, 32
20133 - Milano - Italy

[fraterna,lanzi,matera,maurino]@elet.polimi.it

Received March, 2004
Revised October 31, 2004

So far, conceptual modeling of Web applications has been used primarily in the upper
part of the life cycle, as a driver for system analysis. Little attention has been put on
exploiting the conceptual specifications developed during analysis for application evalu-
ation, maintenance and evolution. This paper illustrates an approach for integrating the
use of conceptual models in the lower part of the application life cycle. The approach
is based on the adoption of conceptual logs, which are Web usage logs enriched with
meta-data deriving from the application conceptual specifications. In particular, the pa-
per illustrates how conceptual logs are generated and exploited in Web usage evaluation
and mining, so as to achieve a deeper and systematic quality evaluation of Web applica-
tions. A prototype tool supporting the generation of conceptual logs and the evaluation
activities is also presented.

Keywords: Web Usage Analysis, Web Usage Mining, Quality Evaluation, Conceptual
Modeling, WebML.

Communicated by: R Baeza-Yates

1 Introduction

Current Web applications are very complex and high sophisticated software products, whose
quality, as perceived by users, can heavily determine their success or failure. A number
of methods have been proposed for evaluating their usability [21]. Some of them focus on
analyzing the correctness and consistency of design specifications [19, 23]. Such techniques
certainly allow designers to improve the quality of the final product. However, they focus on
a static description of the application, and do not take into account dynamic usage aspects,
that can be only revealed by monitoring and analyzing the behavior of users interacting with
the application. On the other hand, a menagerie of products exists that permits Web masters
to analyze the Web server logs and extract information on application usage [21]. However,
these tools are unaware of the conceptual schema of the application (if its specification does
exist), and thus understanding the relationships between the tool’s output and the structure
of the application is a non-trivial task, especially if the application is large and complex.

The main contribution of this paper is a model-driven framework that integrates the
model-based design and development of Web applications with quality evaluation, based on
the static (i.e., compile-time) analysis of conceptual schemas and on the dynamic (i.e., run-

124

P. Fraternali, P.L. Lanzi, M. Matera and A. Maurino 125

time) collection of Web usage data that are automatically analyzed and contrasted with the
conceptual schema of the application.

In some previous papers [10, 18], we have shown how, given the conceptual schema of a
Web application, it is possible to automatically analyze it with respect to some attributes
for the quality of conceptual specifications, and anticipate at design time the identification
of weaknesses that reduce the usability of the final application. In this paper we concentrate
more on the analysis of usage data, dynamically collected during the Web application’s life.

The main novelty of our work with respect to previous approaches to Web usage analysis is
the integration of common Web logs with additional log data, related to hypertext components
the users interact with (from basic content units to pages and to areas clustering pages), and
the contents dynamically extracted from the application data source for populating such
components. The resulting log data are called conceptual logs, because the enrichment is
operated through the integration of concepts deriving from the application conceptual schema.
They are specified in XML, and are analyzed by an XSL-enabled tool, which is also fed with
the XML representation of the conceptual schema of the application. The tool is therefore
able to interpret the log conceptual enrichments, and provide feedbacks to the conceptual
designer by referencing explicitly conceptual schemas produced during model-driven design.

Our model-driven approach is therefore based on the adoption of conceptual models for
application design and development. So far, its experimentation has been conducted over Web
applications developed with WebML (Web Modeling Language) [7], a modeling language for
data-intensive Web applications, and its supporting CASE tool, WebRatio [8]. However, we
believe that the illustrated results are of general validity and apply to any application that
has been designed using a model-driven approach, provided that the conceptual schema is
available and the application runtime architecture permits the collection of customized log
data.

The paper is organized as follows: Section 2 introduces the motivation behind our work,
and illustrates some background concepts about the WebML model and its associated de-
velopment process. Section 3 introduces our evaluation framework, by shortly describing
the Design Schema Analysis, the original core of the framework, and then introducing the
Web Usage Analysis technique, able to elaborate rich log data for verifying design soundness
against user behavior, and the Web Usage Mining technique, able to extract interesting asso-
ciations and sequential patterns from the same rich logs. Section 4 illustrates the architecture
of the software tool supporting the automatic execution of the three evaluation techniques.
Section 5 shows the framework at work for the evaluation of webml.org, the official Web site
of the WebML team. Section 6 illustrates the main features of some relevant related works.
Finally, Section 7 draws our conclusions.

2 Rationale and background

Modern software development methodologies advocate an agile approach, whereby a small
team of designers works side by side with the application stakeholders to implement fast
prototypes and evolve them into an application that meets the user’s requirements [22, 11].
This process demands for pervasive evaluation, in an iterative process enabling the continuous
identification of modifications necessary to cope with changed or new requirements. Since the
boundary between the development phase and the operational life of applications is fuzzy,

126 Model-Driven Web Usage Analysis for the Evaluation of Web Application Quality

evaluation is required both at design time, through inspection methods that reason on the
application design, and after application deployment, when real usage data become available.

Iterative development methods have gained substantial benefits from the application of
conceptual modeling techniques, which let developers express application requirements and/or
design schemas at a high level, and automatically generate (part of) the application code [7,
20, 27]. However, the conceptual specification resulting from the initial design activities are
rarely used to support quality assessment, due to the lack of model-driven evaluation methods
and tools [23].

We have defined a model-based evaluation framework, able to support the analysis of Web
applications, both at design time and after the application is deployed. The framework is
model-based because it exploits the conceptual schemas produced in the design phase in two
complementary ways: i) at design time, when real usage data are not available, the application
conceptual schema is used for identifying design errors and inconsistency that potentially
reduce the usability of the final application [10, 18]; ii) after the application is deployed, the
conceptual schema is used for enriching Web usage logs with information referring to the
hypertext conceptual schema and to the contents extracted from the application data source
for computing hypertext pages. These reach logs are called conceptual logs; they are used for
precisely reconstructing user navigation and user access to information objects, as well as for
mining interesting associations among visited pages and contents.

Our evaluation framework has been defined in the context of a specific conceptual model,
WebML [7], and has been implemented by extending a commercial CASE tool [8, 29]. How-
ever, we claim that the overall approach is of general validity, and can be easily adapted to
other model-driven Web design methods and tools. As it will be shown along this paper,
the ingredients for its implementation are the availability of an XML representation of the
application conceptual schema, and the adoption of logging mechanisms for enriching Web
logs with information referring to the application conceptual schema.

In the rest of this section we will shortly introduce some basic concepts about the WebML
model, which are useful for the comprehension of our evaluation approach. The reader al-
ready familiar with WebML is demanded to Sections 3-5, where the evaluation framework,
some architectural issues, and excerpts of an evaluation session conducted over a real Web
application are presented.

2.1 WebML models

WebML (Web Modeling Language) is a conceptual model that provides a set of visual primi-
tives for specifying the design of the information content and the hypertexts of data-intensive
Web applications [7]. It is also complemented with a development methodology that, in line
with other model-based development methods [4, 20, 22, 27], consists of different phases,
centered around the definition and/or the refinement of the application conceptual design.
Thanks to the use of a CASE tool enabling the automatic code generation [8], the conceptual
design can be automatically transformed into a running prototype. This greatly facilitates
the evaluation activities since the early phases of development.

WebML consists of a Data Model and a Hypertext Model, for specifying respectively the
content structure of a Web application and the organization and presentation of contents in
one or more hypertexts.

P. Fraternali, P.L. Lanzi, M. Matera and A. Maurino 127

The WebML Data Model allows designers to express the organization of data, through well-
known notations (namely, the Entity-Relationship and UML class diagrams). For simplicity,
in this paper, we will refer to the Entity-Relationship (E/R) model, which mainly consists
of entities, defined as containers of data elements, and relationships, defined as semantic
connections between entities.

The WebML Hypertext Model allows describing how contents, whose organization is spec-
ified in the data model, are published through elementary units, called content units, whose
composition makes up pages. It also specifies how content units and pages are interconnected
by links to constitute site views, i.e., the front-end hypertexts.

The WebML Hypertext Model therefore includes:

• The composition model, concerning the definition of pages and their internal organiza-
tion in terms of content units. Content units offer alternative ways of arranging contents
dynamically extracted from entities and relationships of the data schema. The binding
between the hypertext and the data schema is represented by the source entity and the
selector of the content units: the former specifies the type of objects published by a
content unit, by referencing an entity of the E/R schema; the latter is a filter condition
over the instances of the source entity, which determines the actual objects published
by the unit. WebML offers six predefined units (data, multidata, index, multichoice
index, hierarchical index, and scroller). A further unit (called entry unit) rep-
resents entry forms for inputting data. The visual notation of WebML units is reported
in Appendix A, Table 1.

• The navigation model, describing links, between pages and content units, that supports
information location and hypertext browsing. Links are represented as oriented arcs,
and have the double role of enabling user navigation and transporting parameters needed
for unit computation.

• The operation model, consisting of a set of operation units specifying the creation,
updating and deletion of contents, and the interaction with external services. The
visual notation of the basic WebML operation units supporting content management is
reported in in Appendix A, Table 2.

Figure 1 shows the WebML Hypertext specification, and a possible rendition, for two
pages taken from the design of the WebML.org application (http://www.webml.org). As
better described in Section 5, this application is the official Web site of the WebML team
and research. It has been developed with the WebML method, and we have used it for
experimenting our evaluation framework.

The WebML People page contains the WebML People index unit, that is defined over the
entity Person, and shows the list of people belonging to the WebML team. The link departing
from the index unit, represented as an arrow, allows users to select one person from the list and
navigate to the page WebML Person. It transports the identifier of the selected person, which
is used by the data unit Person Details, placed in the WebML Person page, for showing
some attributes of the previously selected person. The WebML Person page also includes the
index unit Published Papers that shows a list of papers published by the selected person.
The definition of this unit is based over a selector condition, specified below the unit, that

128 Model-Driven Web Usage Analysis for the Evaluation of Web Application Quality

WebML PersonWebML People

WebML People

P. Fraternali

S. Ceri

M. Matera

A. Maurino

… … ...

Piero Fraternali

WebML Person

Full Professor

Co-author of the

WebML Book

fraterna@elet.polimi.it

WebML People WebML Person

Person
[Person.OID=P]

Person DetailsWebML People

Person

Published Papers

Paper
[Person2Paper(P)]

Published Papers

WebML: a model…

Tools and …

ConceptualLevel...

Modeling Data ...

P:Person.OID P:Person.OID

Fig. 1. Example of WebML specification (top) and a possible rendition (bottom).

01 <PAGE id="page11"name="WebML Person">
02 <CONTENTUNITS>
03 <DATAUNIT entity="Person" id="dau8" name="WebML Person">
04 <LINK name="ToPapers" newWindow="no" to="inu55" type="transport"/>
05 <DISPLAYATTRIBUTE attribute="Name"/>
06 <DISPLAYATTRIBUTE attribute="Bio"/>
07 <DISPLAYATTRIBUTE attribute="Email"/>
08 </DATAUNIT>
09 <INDEXUNIT id="inu55" entity="Paper" name="Published Papers">
10 <SORTATTRIBUTE attribute="Position" order="ascending"/>
11 <LINK name="See" newWindow="no" to="dau86"/>
12 <DISPLAYATTRIBUTE attribute="Title"/>
13 <SELECTOR>
14 <SELECTORCONDITION name="Person Papers"
15 attributes="OID"
16 predicate="in"
17 relationship="Person2Paper"/>
18 </SELECTOR>
19 </INDEXUNIT>
20 </CONTENTUNITS>
21 </PAGE>

Fig. 2. XML representation of page WebML Person, reported in Figure 1.

retrieves all the instance of the entity Paper associated to the selected person by means of
the relationship Person2Paper, defined in the data schema between the two entities Person

and Paper.
Besides having a visual representation, WebML primitives are also provided with an XML-

based textual representation, used to specify additional detailed properties, not conveniently
expressible in the graphic notation. WebML specifications can be therefore represented as
visual diagrams, as well as XML documents. As an example, Figure 2 reports the (simplified)
XML specification of the page WebML person, whose WebML visual schema is depicted in
Figure 1. For further details on WebML, the reader is referred to [7].

2.2 Implementation and deployment of WebML applications

The XML representation of WebML schemas enables the automatic code generation by means
of CASE tools. In particular, WebML is supported by the WebRatio CASE tool [8], which
translates the XML specifications into concrete implementations.

P. Fraternali, P.L. Lanzi, M. Matera and A. Maurino 129

WebRatio offers a visual environment for drawing the data and hypertext conceptual
schemas, and an interface to the data layer that assists designers to automatically mapping
the conceptual-level entities, attributes and relationships to physical data structures in the
data sources, where the actual data will be stored. The core of WebRatio is a code generator,
based on XML and XSL technologies, which is able to generate automatically the application
code to be deployed on the J2EE platform. More specifically, the code generator produces
the queries for data extraction from the application data sources, the code for managing
the application business logic, and the page templates for the automatic generation of the
application front-end.

The generated applications run in a framework implemented on top of an application
server. The runtime framework has a flexible, service-based architecture that allows the
customization of components. In particular, the logging service can be extended with user-
defined modules, so as to log the desired data. This service has been used for gathering the
conceptual data needed for the enrichment of the conceptual logs.

3 The evaluation framework

Our quality evaluation framework supports three types of analysis.

• Design Schema Analysis (DSA) verifies the correctness and consistency of design specifi-
cations [10, 18], to enhance the quality of the final application by looking for errors and
irregularities in the application design. This phase focuses only on a static description
of the application and does not take into account dynamic usage aspects. It is useful
for inspecting the application specification, with the aim of discovering some structural
problems that influence the usability of the final application. Typically, designers or
expert evaluators perform this activity by hand, without using any kind of automatic
tool. The automatic support can thus foster a more precise and systematic analysis.

• Web Usage Analysis (WUA) operates on log data dynamically collected at runtime, and
produces reports on content access and navigation sequences. This analysis exploits the
conceptual logs, that are “enriched” Web logs integrating the conventional data about
HTTP page requests with information about the elementary page units and link paths
accessed by the users, and the database objects used to populate pages. The aim of
Web usage analysis is twofold:

– On one hand they provide the designers with access statistics that can help iden-
tifying contents or hypertext pages and areas that are worth to be emphasized for
responding either to users’s needs (as it happens for the most requested data or
pages), or to the application communication goals (as it happens when some con-
tents or pages achieve few users’access, while the application stakeholder consider
them mission-critical).

– On the other hand the analysis of users navigation paths can help discover some
interaction problems due to usability lacks.

• Web Usage Mining (WUM) operates on the same enriched log data as WUA, and applies
mining techniques for discovering interesting (sometimes unexpected) associations be-

130 Model-Driven Web Usage Analysis for the Evaluation of Web Application Quality

tween accessed data. The aim is to identify possible amendments for accommodating
newly discovered user needs.

The three analyses are centered on the existence of an application schema, expressed by
means of a conceptual model, and exploit the schema knowledge in different manners. In
particular, DSA and WUA use a top-down, goal-directed paradigm, in which evaluators have
in mind precise analysis tasks, and use the application schema for formulating well targeted
queries. WUM instead follows a bottom-up, inductive approach. It applies over conceptual
logs for extracting “interesting” associations, which reflect user behaviors not foreseen by the
application designers and that can be the symptom of design lacks, not necessarily errors. In
order to specify mining queries, evaluators activate tasks for extracting associations among any
logged element. Conceptual schema is then used for better interpreting the mined associations.

In the following, we will describe in details the three analysis techniques. DSA and the
software module supporting the automatic analysis have been already described in [18, 10].
Therefore, their main features will be shortly recalled in Section 3.1. We will then concentrate
on WUA and WUM, which are the original contributions proposed by this paper.

3.1 Design Schema Analysis

DSA is centered on the identification within WebML conceptual schemas of configurations,
which we call schema analysis patterns, representing some potential sources of problems, with
respect to some attributes of a model for the quality of conceptual schemas [10]. The analysis
patterns consist of specific compositions of hypertext elements (pages, units, operation, links)
serving a typical application purpose. Examples could be the arrangement of pages, units, and
links for supporting the navigation between two relevant information objects, for accessing
an information object via one or more access paths, or for creating a new information item
through a content management operation.

Each quality attribute considered in our analysis is associated with:

(i) A set of analysis pattern descriptions, specifying the hypertext configurations to be
searched within the global application schema.

(ii) An analysis task for verifying some properties of the retrieved evaluation pattern in-
stances. It comprises:

• A metrics computation function, generating aggregated numerical values that quan-
tify the level of satisfaction of the considered quality attribute;

• A condition checking rule, which highlights potential problems.

An example of metrics computation function could be the variance with which alterna-
tive patterns implementing the same function (e.g., the deletion of an information item)
occur in the global application schema, whereas an example of condition checking rule
may be a rule that warns the designer when s/he uses too many different hypertext pat-
terns for solving the same problem, because this practice may contribute to increasing
the users’ disorientation.

Design schema analysis is automatically performed over the XML representation of WebML
schemas, by a software module called Design Schema Analyzer. For more details about this
module and its application to the analysis of complex applications, the reader is referred
to [18].

P. Fraternali, P.L. Lanzi, M. Matera and A. Maurino 131

3.2 Web Usage Analysis

WUA takes an orthogonal approach to quality evaluation. It starts from run-time collected
log data about the usage of the application and helps the designer evaluate if the application
conceptual schema accommodates the actual way in which users browse the hypertext. Any
discrepancy between the design schema and the actual usage experienced at runtime is a
potential candidate for correction.

The distinguishing feature of our WUA technique is the exploitation of the application
conceptual schema, which takes place in two ways:

• The raw log data are enriched with additional information, referring to the WebML
content units included within pages accessed by the users, and to the data objects used
for populating them. This enrichment generates the conceptual logs.

• The result of analyzing the user navigation behavior is displayed directly on top of the
graphical representation of the hypertext schema, thus facilitating the understanding of
quality assessment results.

WUA is supported by a software module, named Web Usage Analyzer, that elaborates the
conceptual logs, by computing some access statistics coded as XSL rules. As for the Design
Schema Analyser, the conceptual log computation is based on two sets of rules, one dictating
the elements to be retrieved in the log, the other specifying analysis tasks to be executed over
them.

The present version of the Log Analyzer supports two kinds of assessments, access analysis
and navigation analysis, which will be described in the sequel.

3.2.1 Access Analysis

For the majority of log analyzers, access analysis consists of computing statistics on user
accesses to pages. However, our model-based approach, which separates the structure schema
and the hypertext schema, supports two types of analysis:

• Data Access Analysis, which computes statistics on the access to database entities and
their instances, purposely ignoring the hypertext interface.

• Hypertext Access Analysis, which focuses on the usage of the hypertext pages, areas,
and site views.

Data Access Analysis can for example respond to such questions as “Which is the most/least
accessed entity?” or “Which is the most/least accessed instance of Entity X?”.

Hypertext Access Analysis extends the statistics normally offered by state-of-the-practice
log analysis tools. First, it enables the analysis of accesses to hypertext components at
different levels of granularity, covering not only page visits, but also accesses to site views,
i.e., entire hypertexts defined as application front-ends, areas within site views, i.e., cohesive
sets of pages publishing contents about some core objects of the application, and individual
content units within pages. Second, thanks to the cross-links among the log entries, the
elements of the data schema, and the elements of the hypertext schema provided in the
conceptual logs, Hypertext Access Analysis may take into account the actual data objects
used to fill-in the requested pages. Therefore, it can respond to such questions as “Which is
the most/least accessed page/area/site view displaying the content of Entity X?” or “Which

132 Model-Driven Web Usage Analysis for the Evaluation of Web Application Quality

is the most/least frequently used page for displaying a specific instance of Entity X?. These
results greatly help designers evaluate the effectiveness of the hypertext in delivering the core
content of the application.

An important aspect of the Web Usage Analyzer is that the evaluator can pose quality
evaluation queries involving the accessed information objects, without being aware of the
physical structure of the application’s URLs and, in particular, of the parameters that identify
the actual objects used at runtime to fill-in the page. Objects identifiers are managed by the
runtime logs and abstracted as XML elements in the conceptual logsa.

3.2.2 Navigation Analysis

Besides access analysis, also navigation analysis plays a central role in hypertext quality eval-
uation. While access analysis is relevant for understanding if published data are accessed
by users, and for identifying possible elements that need more emphasis in the application
interface, Navigation Analysis concentrates on verifying if the hypertext topology supports
content accessibility, or if conversely it presents some usability problems. In particular, it
allows reconstructing navigation paths adopted by users for reaching some core information
objects by means of access paths. This analysis is based on a WebML methodological as-
sumption that distinguishes among different roles that information concepts can play within
the Web application [9]. In particular, information concepts can be classified as:

• Core concepts, when they are the “central” objects, forming the main asset and ex-
pressing the mission of the Web application (e.g., the product sold in a B2C site, or the
personal message published in a community canter).

• Access concepts, when they support the location of core concepts.

• Interconnection concepts, when they interconnect core concepts; they are typically ex-
pressed by means of relationships, which the user can navigate to move the focus from
one core concept to another related one.

In order to perform well focused navigation analyses, evaluators can therefore select in the
hypertext schema units and pages publishing core information objects. Based on this input,
Navigation Analysis then reconstructs access paths, defined over access entities categorizing
the core entities, and interconnection paths, defined over relationships interconnecting the core
entities. The analysis of the reconstructed paths, and their comparison with the conceptual
schema then permit to highlight critical points, or also deviations with respect to paths
provided by the designer (for example, when users make frequent use of the browser’s back
button or neglect some navigation paths provided by the designer, or when users incur in
some loops).

3.3 Web Usage Mining

WUM operates on conceptual logs, and applies XML mining techniques for discovering inter-
esting (sometimes unexpected) associations among visited hypertext elements and among
accessed data.
aIn real Web sites, identifying the accessed objects may be difficult due to URL scrambling for security
reasons, or due to the heavy use of POST-based HTTP requests, as common, for example, in the Microsoft
.NET platform.

P. Fraternali, P.L. Lanzi, M. Matera and A. Maurino 133

The execution of mining statements over conceptual logs produces:

• XML association rules of the form X ⇒ Y , stating that when the log element X (called
the rule body) is found, it is likely that the log element Y (called the rule head) will be
also found. Depending on the adopted mining statement, the retrieved association can
be related to database entities or instances, hypertext components (areas, pages, content
units), or also hypertext components coupled with their populating data instances.

• XML sequential patterns, in which the rule body and head are also bounded to their
position in the log sequence, so as to indicate the existence of a temporal relation.

Appendix A reports an example of sequential pattern mined from the webml.org con-
ceptual logs. As can be observed, extracted patterns are enclosed within the root tag
<Sequences>. Each single pattern is then enclosed by the tag <SequenceRule>, while
the rule body and the rule head are respectively enclosed by the tags <Antecedent> and
<Consequent>. As it will be better explained in Section 4, with the aim of facilitating their
interpretation and supporting deeper analyses, extracted rules also include adjunctive prop-
erties and data that are not present in HTTP requests, but are retrieved from the application
conceptual schema.

Based on the extraction of such rules, so far we have focused on three specific mining
tasks:

• Finding areas or pages that are often visited together, through the mining of association
rules between areas or pages in the same user session.

• Finding data that are often accessed together, considering as transaction a user request,
implemented through the mining of association rules between data entities and instances
accessed within the same user session. It is worth noting that such associations are not
easily discovered in traditional logs that do not record data instances used to populate
dynamic Web pages, and generally require several post-processing efforts.

• Analyzing user navigation sequences for accessing core contents, by mining sequential
patterns related to sequences of pages and content units within the same user session.
The WebML characterization of information concepts and content units allows filter-
ing sequences, concentrating the analysis on relevant navigation paths leading to some
selected core concepts.

4 The framework architecture

Figure 3 illustrates the overall architecture of the WebML quality evaluation framework. It
is based on three layers: the Data Extraction layer, in charge of gathering and pre-processing
input data, the Analysis layer, which computes log data gathered though the data extraction
layer, and the Result Visualization layer, which visualizes the analysis results.

Among layers: the Analysis Tasks repository stores the analysis procedures, which can
be expressed both in XSL and XQuery; the Analysis Data Warehouse stores data needed
for analysis, represented in XML format; the Result Warehouse then stores the XML-based
representation of the results produced by the analysis, which is then used by the graphical
user interface for generating and visualizing the analysis reports.

134 Model-Driven Web Usage Analysis for the Evaluation of Web Application Quality

Result Visualization

Analysis

Model-based

Design Tool

Runtime

Engine

Application

Server

Web

application

schema

HTTP

requests

log

WebML

runtime log

Log

Conceptualizer

Analysis

Data

Warehouse

Analysis

Tasks

WUA WUMDSA

Result

Warehouse

GUI

External Data

Log

Synchronizer

Data Extraction

Database

instance

DB-to-XML

Converter

DBMS

Fig. 3. The evaluation framework architecture.

It is worth noting that the ubiquitous use of XML technologies improves the number
of strategies the evaluator can adopt in order to manipulate and query data. Also, the
quality evaluation framework results to be very flexible and extensible: new analysis tasks
can be easily specified and added to the framework. Therefore, each design team can define
its own quality criteria, code their measures in XSL or XQuery, two extensively used W3C
standards, and adding them within the the Analysis Tasks repository. Additionally, the use of
warehouses between layers enables adding new software modules in a given layer, for example
for performing new kinds of analysis, without affecting other components.

The rest of this section is devoted to describing the input data of the framework and the
pre-processing applied over them for gathering conceptual logs, and the modules composing
the three layers.

4.1 Input data processing

The input to the framework consists of:

• HTTP requests log generated by the application server in the ECLF format [30], also
including user session IDs, for univocally identifying page requests belonging to a same
user session. This feature greatly simplifies the pre-processing necessary for recon-
structing users’ sessions [13]; it also allows distinguishing among requests coming from

P. Fraternali, P.L. Lanzi, M. Matera and A. Maurino 135

different user agents, even when proxies filter them or when users turn off cookie support
on their browser. Figure 4 reports some lines, extracted from the application server log,
that represent the request of a page from the webml.org application (the same page
specified in Figure 2). For privacy reasons, the IP address of the requesting host has
been replaced with a sequence of Xs. The logs include the JSESSIONID field, whose value
(acbTwnzgkSz6) identifies the user session.

• The WebML runtime log, an XML log file storing events and data produced and con-
sumed by the application runtime for serving page requests. Runtime log data are
generated thanks to an extension of the WebML runtime environment that is based on
Log4J, an open source package distributed by the Apache Software Foundation [2].
They include all the events generated by the application runtime when serving a re-
quested page and populating its content units. An event can represent either the request
of a page, or the computation of an individual unit within the page. Since each page
request is managed by a specific thread, the events generated for a single page request
are characterized by the same thread number. In the log file each event is delimited by
the <event> tag that may also contain further sub-tags:

• The <message> tag, comprising the event parameters. In case of content units
population, it also includes the list of identifiers (OIDs) of the objects extracted
from the data source.

• The <NDC> tag, storing the identifier of the conceptual element (page or unit) to
which the event refers.

Figure 5 shows an extract of the runtime log generated for the same page request
illustrated in Figure 4. The recorded events are characterized by the same thread
(tcpConnection-80-17). The first event (lines 1-7) denotes the page request. The
other events (lines 8-14 and 15-21) denote the population of the units of the page. For
example, the second event (line 8-14) refers to the population of a data unit (dau84).
Its <message> tag (lines 10-12) includes the unit ID (dau84), the client IP address
and SessionID, and a value (17) representing the OID of the single database instance
extracted for populating the data unit. The third event (lines 15-21) refers to the
population of an index unit (inu9). Its <message> tag includes a list of values (line 18)
representing the OIDs of the three database objects extracted for populating the index
unit.

• The XML representation of the application conceptual schema, automatically generated
by the model-based design tool.

• The application data source, whose knowledge within the evaluation framework is
needed for interpreting the identifiers of data instances logged in the WebML runtime
log.

4.2 Data Extraction layer

The Data Extraction Layer is in charge of gathering the input data previously described, and
importing them into the Analysis Data Warehouse, after performing three main actions:

136 Model-Driven Web Usage Analysis for the Evaluation of Web Application Quality

01 XXX.XXX.XXX.XXX[29/Mar/2003:02:03:34 +0100]

02 "GET page11.do HTTP/1.1" 200 122018 http://webml.org
"Mozzilla/4.0"

03 (compatible;MSIE 6.0; Windows NT 5.0)" JSESSIONID=acbTwnzgkSz6}

Fig. 4. Extract from the application server log.

01 <log4j:event timestamp="Sat, 29 March 2003 - 02:03:34.959"
02 thread="tcpConnection-80-17">
03 <log4j:message>
04 Requested page service for id=page11
05 </log4j:message>
06 <log4j:NDC>page11</log4j:NDC>
07 </log4j:event>
08 <log4j:event timestamp="Sat, 29 March 2003 - 02:03:34.962"
09 thread="tcpConnection-80-17">
10 <log4j:message>
11 [dau8][XXX.XXX.XXX.XXX,acbTwnzgkSz6]4
12 </log4j:message>
13 <log4j:NDC>dau8</log4j:NDC>
14 </log4j:event>
15 <log4j:event timestamp="Sat, 29 March 2003 16 - 02:03:34.969"
16 thread="tcpConnection-80-17">
17 <log4j:message>
18 [inu55][XXX.XXX.XXX.XXX,acbTwnzgkSz6]15,24,10,11,16,9,14
19 </log4j:message>
20 <log4j:NDC>inu55</log4j:NDC>
21 </log4j:event>

Fig. 5. Extract from the runtime log.

• Synchronizing log data stored in the application server log and in the WebML runtime
log, thus obtaining the synch log. This action is performed by a software module called
Log Synchronizer.

• Enriching the synch log, by relating each logged request with the corresponding elements
specified in the conceptual schema. The aim is to make log files more readable and
easily analyzable, by means of the semantics deriving from the conceptual schema. This
action is performed by a software module called Log Conceptualizer, and generates the
conceptual logs.

• Generating an XML dump of the data source, through the use of a DB-to-XML con-
verter [28]. The aim is to gather a uniform format, based on XML, for all the data
needed for executing the evaluation tasks.

In the following, the Log Synchronizer and Log Conceptualizer modules are described in
more details.

4.2.1 Log Synchronizer

This module synchronizes the application server log and the WebML runtime log, and gen-
erates a unified XML representation of all the available log data. Not all the requests stored
in the application server log need to be considered for synchronization. Requests generated
by software agents (spiders, Web crawlers, search engines, etc.), or requests of image files
included within pages can be filtered out. Also, errors generated by incorrect user requests or
server exceptions, which are characterized by status code 400 or 500, can be excluded from
synchronization, but they are however stored in different files used for calculating statistics

P. Fraternali, P.L. Lanzi, M. Matera and A. Maurino 137

01 <Request Request_Id="3178">
02 <LocalTime>
03 <DD>29</DD> <Month>Mar</Month> <YY>2003</YY>
04 <hh>02</hh><mm>03</mm><ss>34</ss>
05 <Timestamp>+0100</Timestamp>
06 </LocalTime>
07 <User>
08 <IPaddress>XXX.XXX.XXX.XXX</IPaddress>
09 <jSessionID>acbTwnzgkSz6</jSessionID>
10 <Browser>MSIE</Browser>
11 <Version>6.0</Version>
12 <Platform>compatible</Platform>
13 <OS>Windows NT 5.0</OS>
14 <CountryName/>
15 </User>
16 <Page SchemaRef="page11">
17 <PageContent>
18 <Unit>
19 <UnitSpecs SchemaRef="dau8"/>
20 <Data_Oid>4</Data_Oid>
21 </Unit>
22 <Unit>
23 <UnitSpecs SchemaRef="inu55"/>
24 <Data_Oid>15</Data_Oid>
25 <Data_Oid>24</Data_Oid>
26 <Data_Oid>10</Data_Oid>
27 <Data_Oid>11</Data_Oid>
28 <Data_Oid>16</Data_Oid>
29 <Data_Oid> 9</Data_Oid>
30 <Data_Oid>14</Data_Oid>
31 </Unit>
32 </PageContent>
33 </Page>
34 </Request>

Fig. 6. Extract from the synch log.

about application faults. As reported in Figure 6, each request in the application server log
is extended with the corresponding events and data coded in the runtime log, namely:

• The identifiers of the units composing the page are delimited by the <UnitSpecs> tag.

• The OIDs of the database objects extracted for populating units are delimited by the
<Data Oid> tag.

Finally, requests are sorted by user session. The result is the synch log XML file. A fragment
of such a file, deriving from the synchronization of the two logs shown in Figure 4 and Figure 5,
is reported in Figure 6.

It is worth noting that the attribute SchemaRef, defined for pages and units nodes, rep-
resents values that univocally identify pages and units within the application conceptual
schema. Therefore it provides a reference for retrieving additional properties, not traced by
the logging mechanism, but represented in the conceptual schema, and to integrate them in
the conceptual log.

4.2.2 Log Conceptualizer

The Log Conceptualizer is in charge of generating the final conceptual log, which merges the
synch log with relevant structural properties specified in the XML-based conceptual schema of
the application, such as names of pages, of areas enclosing pages, of page units and their source
entities, etc. Figure 8 shows an extract of the conceptual log generated for the webml.org

138 Model-Driven Web Usage Analysis for the Evaluation of Web Application Quality

application. The binding between log data and the conceptual schema elements is obtained
through the SchemaRef attribute that characterizes pages and units in the synch log.

One relevant enrichment operated by the Log Conceptualizer is the link reconstruction,
which identifies WebML links selected by users to move among pages. For each request, the
HTTP server registers the referrer page only, that is the page from which the link is started,
but it cannot identify which link, among the ones departing from the referrer page, is followed
by the user. Such information is thus retrieved by means of a link reconstruction algorithm
that, given the request for a page:

• Identifies the referrer page from which the request originates.

• Analyzes the schema of the referrer page and the parameters appended to the HTTP
request.

• Retrieves the WebML link departing from the referrer page that transports the request
parameters, and adds its identifier within the conceptual log, delimited by the tag
EntryLink (see Figure 8 for an example).

Such a log enrichment enables the precise reconstruction of user navigation paths, including
the identification of the use of the browser back button, an interesting navigation behavior
that can reveal some usability problems [26].

Back identification is based on the comparison, for each requested page, between the
referrer page and the previously requested page. The common situation found in log files is in
fact that, given a request, its referrer page corresponds to the previously logged page request.
When the user uses the back button, the HTTP page request of the target page does not
appear in the log. This is because actually the page is not requested to the HTTP server,
since it is maintained in the browser cache. Therefore, an indicator of the back use can be, for
a given request, the mismatch between its referrer page and the previously requested page.

Figure 7(a) shows such a situation where a user, starting from Page A, visits Page B
(arrow 1), then, by means of the back browser button, comes back again to Page A (arrow 2),
and finally sees Page C (arrow 3). The ECLF log file (Figure 7(b)) will register the request
of Page B from Page A, and of Page C from Page A, but it will not log the request of Page A
from Page B, because it does not require an explicit HTTP request. We call this navigation
pattern shadow request, because it is hidden to the server - and does not appear in the log.
Once identified, shadow requests are registered into the synch log by adding, for the page
requested after the back navigation, a Referrer element with SchemaRef="Shadow", and an
EntryLink element with SchemaRef="Back".

The conceptual log reported in Figure 8 shows an example of shadow request identification.
According to such a log, a user accesses the WebML Paper page (lines 01-13), after s/he has
visited the Category Papers page (line 03). Navigation from page41 to page92 occurs by
means of link38 (line 04). Then, s/he uses the browser back button to come back to the
Category Papers page (lines 14-27); after that, s/he navigates again link38 and accesses
the WebML Paper page (lines 28-41), to see another paper (Data Oid equals 4 in line 36).

4.3 Analysis layer

The Analysis layer represents the core of our architecture: it computes evaluation results
from data stored in the Analysis Data Warehouse. The layer is composed of three software

P. Fraternali, P.L. Lanzi, M. Matera and A. Maurino 139

[h]

Page A

Page C

Page B

(1)

(2)

(3)

X.X.X.X - - "GET /PAGE B" "/PAGE A"

X.X.X.X - - "GET /PAGE C" "/PAGE A"

(a) (b)

Fig. 7. Example of use of back browser button (a) and the corresponding (simplified) ECFL file.

components that implement the three types of analysis described in Section 3:

• The DSA module analyzes the XML representation of hypertext conceptual schemas,
by means of two sets of XSL rules, stored in the Analysis Tasks repository:

– Analysis Pattern Description rules, representing the XSL specification of analysis
patterns to be retrieved and analysed within the schema.

– Analysis Task rules, representing the XSL specification of the analysis procedures
to be performed over analysis patterns retrieved with the previous rules.

For more details about the DSA component, the reader is referred to [18].

• The WUA module elaborates the conceptual logs using two kinds of rules stored in the
Analysis Tasks repository:

– Usage Pattern Description rules, representing the log elements to be retrieved and
analyzed. A usage pattern can be a data element (an entity or an entity instance),
a hypertext component (a page or an area) and the data instances used for their
computation, or a core unit for which one wants to reconstruct the access and
interconnection paths navigated by users.

– Statistics Computation rules, representing procedures for computing analysis over
the retrieved usage patterns.

• The WUM module also elaborates conceptual logs, by executing some mining tasks stored
in the Analysis Tasks repository. It is implemented on top of XMINE, a tool developed
for mining interesting relations from native XML documents [5]. The interoperability
between this module and those generating the conceptual logs is guaranteed by the
extensive use of XML technologies. The mining tasks that WUM is able to execute are ex-
pressed through a set of XMINE statements that resemble many similarities with XQuery
statements. The execution of these XMINE statements over the conceptual logs produces
rules, in form of XML association rules or XML sequential patterns. This output is then
filtered by means of XQuery statements, to select most interesting results.

140 Model-Driven Web Usage Analysis for the Evaluation of Web Application Quality

CategoryPapers
01 <Request Request_Id="162">
02 <Page SchemaRef="page92" Name="WebML paper" Area="Research">
03 <ReferrerPage SchemaRef="page41" Name="Category Papers" Area="Research"/>
04 <EntryLink SchemaRef="link38"/>
05 ...
06 <PageContent>
07 <Unit>
08 <UnitSpecs SchemaRef="dau39" Name="Paper" SourceEntity="Paper"/>
09 <Data_Oid>3</Data_Oid>
10 </Unit>
11 </PageContent>
12 </Page>
13 </Request>
14 <Request RequestId="163">
15 <Page SchemaRef="page41" Name="Papers Category" Area="Research">
16 <ReferrerPage SchemaRef="Shadow">
17 <EntryLink SchemaRef="Back"/>
18 ...
19 <PageContent>
20 </Unit>
21 <UnitSpecs SchemaRef="dau47" Name="Category" SourceEntity="PaperCategory"/>
22 <Data_Oid>15</Data_Oid>
23 </Unit>
24 </PageContent>
25 </Page>
26 ...
27 </Request>
28 <Request RequestId="164">
29 <Page SchemaRef="page92" Name="WebML paper" Area="Research">
30 <ReferrerPage SchemaRef="page41" Name="Category Papers" Area="Research"/>
31 <EntryLink SchemaRef="link38"/>
32 ...
33 <PageContent>
34 <Unit>
35 <UnitSpecs SchemaRef="dau39" Name="Paper" SourceEntity="Paper"/>
36 <Data_Oid>4</Data_Oid>
37 </Unit>
38 </PageContent>
39 </Page>
40 ...
41 </Request>

Fig. 8. Fragment of conceptual log.

4.4 Result Visualization layer

The last layer of our software architecture allows evaluators to invoke the analysis tasks stored
in the Analysis Tasks repository, and shows the results, through a graphical user interface
developed in JAVA. Some visualization examples will be shown in the following section.

5 Case study

In order to prove the effectiveness of our framework, we have applied it to the webml.org appli-
cation (http://webml.org), the official reference site about Web modeling and the WebML
language. It publishes a rich set of resources, including excerpts of the WebML book, or-
ganized by chapters, downloadable materials, papers written by WebML researchers and by
other research groups, tutorials and exercises useful for WebML teachers and students. The
site has been designed with WebML and deployed with WebRatio on a J2EE platform. It
consists of two site views:

• A content management site view, for gathering, storing and updating contents dynami-
cally published in the public Web site. It is organized along eight different areas, whose

P. Fraternali, P.L. Lanzi, M. Matera and A. Maurino 141

Fig. 9. Consistency analysis computation in the Design Schema Analyzer.

pages allow invoking content management operations, such as creating, modifying and
deleting database objects. The access to such a site view is restricted to registered users
only.

• A public site view, accessible from any unregistered user interested in retrieving contents
about Web Modeling, the WebML language, and its related initiatives. The public
site view consists of seven different areas (Overview, Book, News, People, Teaching,
Research, Industry, and Community).

The data schema of webml.org is centered on a few core entities (Book, Paper, Material,
Exercise), which are interconnected among them and associated with a few additional access
entities (e.g., MaterialType, PaperCategory, and so on) serving the purpose of categorizing
the site’s content.

The hypertext schema is quite complex and permits the users to reach the same piece of
content (e.g., an exercise on hypertext modeling) in different ways. The application has been
published online on 28/03/2003 and has an average of 60 unique visitors per day.

5.1 Design Schema Analysis

Figure 9 reports the result visualization for the consistency analysis of delete operations
applied over the conceptual schema of webml.org. Delete operations are used for specifying
the deletion of some information objects. The analysis procedure identifies all the Delete

operations specified within the schema, and verifies if they are designed coherently. The bar
chart shows that:

142 Model-Driven Web Usage Analysis for the Evaluation of Web Application Quality

• In the 87% of cases the deletion is activated by selecting the object to delete from a list
of candidate objects, described by few key attributes (Index To Delete configuration).

• In the 8% of times the deletion is activated by selecting the object from a list where
each object is fully described by means of all its attributes (MultiData To Delete con-
figuration).

• Only in the 5% of cases the deletion is performed by first displaying the list of candidate
objects, then the details of one single object selected from the list, and then activating
the operation (Data To Delete configuration).

The distribution of occurrences of the last two configurations highlights a lack of consis-
tency. A corrective action could therefore consist of adopting the same design solution every
time a delete operation occurs in the hypertext. It is worth noting that in some cases incon-
sistencies are caused by conscious design choices, needed for responding to specific application
constraints. However, in the situation above described, as also confirmed by the application
designers, the inconsistency was not an explicit choice, but a mistake that needed to be fixed.

5.2 Access Analysis

Figure 10 shows a data access analysis graph, generated by the Web Usage Analyzer from
log data relative to a period of 15 days in March 2003. The graph shows that the most
accessed entity is the one that represents the WebML book chapters, which gets 23% of the
user’s requests. By clicking on an entity, it is then possible to drill down to the distribution
of accesses across the entity instances. In the specific case, Chapter TOC (Table Of Content)
results the most accessed one.

Access Analysis permits to obtain further results. For example, Figure 11 ranks all the
hypertext pages that have been used to access the TOC chapter, sorted by the number of
users’ accesses. Book Home page, contained in the Book section of the site, is the most used,
featuring 42% of the total accesses to TOC. The second most used page, with 15% of accesses,
is Selected Page; inside the Book section, it displays sample pages, in PDF format, extracted
by a given chapter.

Based on the previous results, designers have been suggested to accommodate the user
preferences, facilitating the access to the most requested data. They might enrich the key
pages of the site, for example the Home Page, with navigation shortcuts to the most requested
pages publishing the book TOC (Book Home or Selected Page), for letting users access such
contents in one click [24].

5.3 Navigation Analysis

We have applied Navigation Analysis for analyzing access paths followed by users to reach the
content unit PaperDetails. The aim was to verify the accessibility level by users for the core
entity Paper. In fact, the unit PaperDetails publishes data about a WebML paper within
the Research section of the public Web site.

Figure 12 shows two access paths, as defined by designers in the application conceptual
schema, both leading to the content unit PaperDatails:

1. A path exploiting the access entity PaperCategory. It comprises the index unit named
PaperCategories (in page WebML papers), presenting the list of the available cate-
gories, the data unit Category (in page CategoryPapers), representing data about one

P. Fraternali, P.L. Lanzi, M. Matera and A. Maurino 143

Most accessed entities:

Chapter: 30% Paper: 3%

WebML Concept: 16% News: 3%

Excercise: 13% Person: 3%

Material: 11% PaperCategory 1%

MaterialType: 8%

Part: 8%

Solution: 4%

Month: March 2003

PaperCategory

a)

Fig. 10. A report for the “Most accessed entity” analysis task.

selected category, and the index unit Papers, which presents the list of papers in the
selected category.

2. A second path, still exploiting the access entity PaperCategory. It is composed of
a hierarchical index unit (PapersByCategory) placed in page WebML Papers, which
publishes the list of papers hierarchically organized with respect to paper categories,
and allows users to select one paper and navigate to the paper data directly, bypassing
page CategoryPapers.

Figure 13 illustrates the reconstruction of access paths, as resulting from the webml.org
conceptual logs. As can be noted, the user navigation is represented directly over the hypertext
conceptual schema, thus facilitating the comparison. The analysis highlights that in the
majority of cases, users access the PaperDetails unit by following one of the two defined
access paths (39% of times for path 1 and 32% of times for path 2). However, navigation
analysis has also highlighted that in the 29% of times, after reaching the PaperDetails data
unit, users resort to the back button of the browser to go back to the Category Papers page,
select a new paper from the Papers index unit, and access a new paper instance. The use of
back button is highlighted in the schema by means of dotted lines. It is discovered through
the algorithm already described in Section 4.2.2.

The results of this analysis highlights that:

• Several users, after accessing a given paper, are interested in accessing other papers in
the same category.

144 Model-Driven Web Usage Analysis for the Evaluation of Web Application Quality

Most accessed page for TOC instance: BooK Home

b)

Fig. 11. Accesses distribution of the most accessed instance along the different pages publishing
its data.

• in order to select a new paper, users are asked to perform some navigation steps that
are not supported by an explicit link, and for this reason adopt the back button.

Therefore, the duplication of the index of papers in the WebML Paper WebML Paper page
can provide users with a mechanism for moving among papers of a given category; it also
reduces the number of navigation [24].

5.4 Web Usage Mining

One of the analysis tasks applied over WebML conceptual logs has consisted of mining navi-
gation sequences leading to core contents.

The sequential pattern reported in Appendix A represents an interesting result. It in-
dicates that there exists a temporal relation between (i) the access to the page Overview
(lines 4-26), introducing general concepts about WebML, and (ii) the access to page WebML

Material (lines 29-44), publishing a tutorial on WebMLb. The support of the pattern is 0.04
(line 2); it indicates that in the 4% of the navigation sequences, users who access the Overview
page also access the WebML tutorial in one of the following navigation steps. Most important,
the pattern confidence is 0.12 (line 2), showing that, if users access the Overview page, there

bThe identification of the content for page WebML Material is possible thanks to the log enrichment through
OIDs of the data objects populating the accessed pages. The value 11 for the element DataInstance (line 35)
of the unit Material Details (line 34), having Material as source entity (line 34), in the XML dump of the
data source corresponds to a PDF file of the WebML tutorial.

P. Fraternali, P.L. Lanzi, M. Matera and A. Maurino 145

WebML Paper

Paper

PaperDetails PaperAuthors

Author

[Paper_2_Author]

WebML Papers

PapersByCategory

PaperCategory

NEST Paper

PaperCategory_2_Paper

PaperCategories

PaperCategory

CategoryPapers

PaperCategory

Category Papers

Paper

PaperCategory_2_Paper

1

2

1

1

Fig. 12. Portion of the webml.org schema, representing the two access paths for reaching papers.

is an estimated probability of 12% that an access to the tutorial page will be also found in
the next page requests.

From the conceptual schema it results that between the two pages Overview and WebML

Material there is no direct navigation path; therefore, the retrieved relation between the two
pages highlights an unexpected user behavior, not supported by the hypertext interface, and
therefore difficult to identify though the simple analysis of navigation paths, as performed by
the WUA module. This finding suggests two possible ways of reconstructing page Overview for
accommodating this discovered user need: (i) the page could include a link to the instance
of WebML Material page publishing the WebML tutorial; (ii) from the page, it should be
possible to directly download the WebML tutorial.

6 Related work

Web application quality has been so far pursued mostly by proposing best practices and design
principles [24], or by means of structured model-based development methods [4, 20, 27].

Some tools have been developed for the automatic analysis of Web page design [21]. How-
ever, they mostly operate over the HTML coding of pages, with the aim of discovering pre-
sentation problems, while they neglect structural and navigation problems. The evaluation
method illustrated in [23] addresses such issues, by prescribing a design inspection technique.
However, it does not offer automatic support. Our DSA module can be therefore considered
one of the first initiatives for the automatic analysis of conceptual schemas.

Several methods and tools have been proposed for the automatic analysis of Web logs.
They have two emerging goals: (i) calculating statistics about site activities, and (ii) mining
data about user profiles to support personalization. The majority of the public and share-
ware tools (see for example [1, 3, 6]) are traffic analyzers. As also described in [15], their
functionality is limited to producing:

146 Model-Driven Web Usage Analysis for the Evaluation of Web Application Quality

Total Access: 350

Identified access paths:

PapersByCategory Paper Details: 109 path(s) found

Papers Categories Category Papers Paper Details: 138 Path(s) found

Paper Details Papers Paper Details: 103 Path(s) not found

**WARNING

 Link: Paper Details Papers not found

 Users probably use browser back button

Fig. 13. Visualization of results for the analysis of access paths over the core unit PaperDetails.

• Reports about site traffic, such as total number of visits, average number of hits, average
view time, etc.

• Diagnostic statistics, such as server errors and pages not found.
• Referrer statistics, such as search engines accessing the application.
• User statistics, such as top geographical regions.
• Client statistics, such as user’s Web browsers and operating systems.

Only few of them (for example [3]) also track user sessions and present specific statistics
about individual users’ accesses.

In addition to calculating traffic statistics, our WUA module is able to compute advanced
statistics, related to database entities and instances, and to hypertext components of any
granularity. In the majority of other approaches such kinds of analysis are not supported
and, if provided (see for example [17]), they require extra-efforts for the inclusion of some
scripts buried in the page code that are able to generate ad hoc log data. In our approach,
the production of conceptual logs does not require any additional activity during the appli-
cation development. Thanks to the model-based approach, at runtime the application engine
instantiates elements of the conceptual schema. Therefore, it is also able to “naturally” log

P. Fraternali, P.L. Lanzi, M. Matera and A. Maurino 147

execution data that reflect the defined conceptual schema. Also, the logged data have minimal
size and their calculation does not impact sensibly the overall runtime performance.

Thanks to the intensive use of the application conceptual schema, our framework also
introduces a number of advantages with respect to Web usage mining. Several data mining
projects have demonstrated the usefulness of a representation of the structure and content
organization of a Web application [14, 15, 25]. As affirmed in [12], “the description of the
application structure is considered a critical input to the pre-processing algorithms that can be
used as filter before and after pattern discovery algorithms, and can provide information about
expected user behaviors”. However, Web usage mining approaches often require additional,
sometimes complex, computations for reconstructing the application schema [12, 16].

As shown by this paper, the conceptual logs, which characterizes our approach, can be
easily tailored on specific mining algorithms used in Web Usage Mining, with the great ad-
vantage of eliminating the typical Web Usage Mining preprocessing phase completely. In fact,
according to our approach: (i) Data cleaning is mainly encapsulated by the Log Synchronizer
module; (ii) the identification of user sessions is done by the WebML runtime; (iii) post-
mining retrieval of content and structure information is unnecessary since this information is
available from the WebML conceptual schema, and is also integrated into the final conceptual
logs.

7 Conclusions

The ever-increasing spread of the Web asks for new methods for improving the quality of Web
applications. Most current Web applications are centered on large sets of data and require very
complex hypertext structures that very often are difficult to understand by users and do not
meet their requirements. Quality enforcement has been so far pursued mostly by addressing
the application analysis and design with the help of structured development methods, possibly
based on conceptual models of Web applications. However, although conceptual modelling
does improve the final quality of the application by fostering regularity and the definition and
reuse of effective design patterns, a gap exists between the model-driven analysis and design
phases and the application maintenance and evolution phases, where most of the quality
evaluation activities and of the corrective actions are performed thanks to the implicit or
explicit feedback of “real” users. In particular, the conceptual schemas developed in the
“upper” part of the application life cycle are not used in the post-delivery phases.

This paper has proposed a framework for quality evaluation based on the integration of the
design-time conceptual schemas of the application and the usage data collected at runtime.
The original features of the proposed technique and tool can be summarized as follows:

• Web usage data are expressed in the same vocabulary as the conceptual models (e.g.,
they refer to entities, relationships, content units, pages, areas, and so on). This elimi-
nates the impendence mismatch between log data and design documents, which occurs
when conventional, low-level log analysis tools are used, and even permits to display
Web usage statistics directly on the conceptual design diagrams.

• Thanks to the ubiquitous use of XML and XSL, the quality evaluation framework is
very flexible and extensible: new evaluation queries and measures can be easily specified
by means of XSL rules and added to the rule repositories. In this way, each design team
can define its own quality criteria, and code their measures within WQA by simply

148 Model-Driven Web Usage Analysis for the Evaluation of Web Application Quality

writing XSL code, an extensively used W3C standard.
• The proposed framework is easily implementable and adapts well to any Web conceptual

model. The pre-requisites for its implementation is the capability of logging a few data
on the objects and object types involved in the computation of page contents. The
required data have minimal size and their calculation does not impact sensibly the
overall runtime performance.

Our future work will concentrate on applying the proposed evaluation framework to larger
Web applications, so as to further validate our method and tools, and on the incremental en-
richment of the quality metrics and statistics based on Web usage data. In its current version,
the framework concentrates on the evaluation of two quality factors, namely design correct-
ness and usability of the final application. However, thanks to its flexibility, the framework
architecture and the supported analyses can be easily extended, to cover the evaluation of
other quality factors, such as performance, availability and security.

We are also working on the definition of a user interface for allowing designer to define
new quality evaluation queries and reports, without the need of manual XSL programming.

Bibliography

1. Analog. Analog 5.32: Introduction., 2003. http://www.analog.cx/docs/Readme.html.
2. Apache. HTTP Server Project, 2003. http://httpd.apache.org/docs.
3. AWSD. WebLog, 2003. http://awsd.com/scripts/wevlog/index.shtml.
4. L. Baresi, F. Garzotto, and P. Paolini. Extending UML for Modeling Web Applications. In Proc.

of HICSS’01, Maui (USA), January 2001. IEEE Press, January 2001.
5. D. Braga, A. Campi, S. Ceri, M. Klemettinen, and P. Lanzi. A Tool for Extracting XML Asso-

ciation Rules. In Proceedings of ICTAI’02, 4-6 November, Crystal City, USA. IEEE Computer
Society, 2002.

6. CapeCom. WebLogs, 2003. http://www.cape.com.
7. S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera. Designing Data-

Intensive Web Applications. Morgan Kauffmann, 2002.
8. S. Ceri, P. Fraternali, A. Bongio, S. Butti, R. Acerbis, M. Tagliasacchi, G. Toffetti, C. Conserva,

R. Elli, F. Ciapessoni, and C. Greppi. Architectural Issues and Solutions in the Development of
Data-Intensive Web Applications. In Proceedings of CIDR 2003, January 2003, Asilomar, CA,
USA, 2003.

9. S. Ceri, P. Fraternali, and M. Matera. Conceptual Modeling of Data-Intensive Web Applications.
IEEE Internet Computing, 6th(4):20–30, July-August 2002.

10. S. Comai, M. Matera, and A. Maurino. A Model and an XSL Framework for Analyzing the Quality
of WebML Conceptual Schemas. In Proceeding of the ER’02-IWCMQ’02 Workshop, Tampere,
Finland, October 2002, volume 2784 of LNCS, pages 339–350. Springer Verlag, 2002.

11. J. Conallen. Building Web Applications with UML. Object Technology Series. Addison Wesley,
2002.

12. R. Cooley. The Use of Web Structures and Content to Identify Subjectively Interesting Web Usage
Patterns. ACM TOIT, 3(2), May 2003.

13. R. Cooley, B. Mobasher, and J. Srivastava. Data Preparation for Mining World Wide Web Brows-
ing Patterns. Knowledge and Information Systems, 1(1):5–32, January 1999.

14. R. Cooley, P. Tan, and J. Srivastava. Discovery of Interesting Usage Patterns from Web Data.
LNCS/Lecture notes in Artificial Intelligence. Springer Verlag, 2000.

15. M. Eirinaki and M. Vazirgiannis. Web Mining for Web Personalization. ACM TOIT, 3(1), Febru-
ary 2003.

P. Fraternali, P.L. Lanzi, M. Matera and A. Maurino 149

16. F. Facca and P. Lanzi. Recent Developments in Web Usage Mining Research. In Proceedings Of
DaWaK 2003, Prague, Czech Republic, September 2003, LNCS. Springer Verlag, 2003.

17. FireClick, 2003. http://www.fireclick.com.
18. P. Fraternali, M. Matera, and A. Maurino. WQA: an XSL Framework for Analyzing the Quality of

Web Applications. In Proceedings of IWWOST’02 - ECOOP’02 Workshop, Malaga, Spain, June
2002, 2002.

19. M. Genero, J. Nelson, and G. Poels, editors. Proceedings of IWCMQ’02 - ER’02 International
Workshop on Conceptual Modeling Quality, Tampere, Finland, October 2002, LNCS. Springer
Verlag, 2002.

20. J. Gomez, C. Cachero, and O. Pastor. Conceptual Modeling of Device-Independent Web Appli-
cations. IEEE MultiMedia, 8(2), March-April 2001.

21. M. Ivory and M. Hearst. The State of the Art in Automating Usability Evalaution. ACM Com-
puting Surveys, 33(4):470–516, December 2001.

22. P. Kruchten. Rational Unfied Process. An introduction. Addison Wesley, 2nd edition, 2000.
23. M. Matera, M. Costabile, F. Garzotto, and P. Paolini. SUE Inspection: an Effective Method for

Systematic Usability Evaluation of Hypermedia. IEEE Trans. on SMC, 32(1), January 2002.
24. J. Nielsen. Web Usability. New Riders, 2000.
25. P. Pirolli, J. Pitkow, and R. Rao. Silk from a Sow’s Ear: Extracting Usable Structures from the

Web. In Proceedings of Confernece on Human Factors in Computing Systems CHI’96, April 1996.
ACM Press, April 1996.

26. J. Pitkow. In Search of Reliable Usage Data on the WWW. In Proc. of 6th International Confer-
ence on World Wide Web, pages 451–463, May 1997.

27. G. Rossi, D. Schwabe, L. Esmeraldo, and F. Lyardet. Engineering Web Applications for Reuse.
IEEE Multimedia, 8(1):20–31, January 2001.

28. V. Turau. DB2XML, 2003. http://www.informatik.fh-wiesbaden.de/ turau/DB2XML/.
29. WebRatio. Site Development Studio, 2003. http://www.webratio.com.
30. W3C. Extended Common Log File format, 2003. http://www.w3.org/TR/WD-logfile.html.

150 Model-Driven Web Usage Analysis for the Evaluation of Web Application Quality

Appendix A. WebML content and operation units

Table 1. Basic WebML content units.

Unit name Visual Notation Description

Data unit

Entity

[Selector]

Data unit

It displays a set of attributes for a single entity
instance.

Multidata unit

Multidata unit

Entity

[Selector]

It displays a set of instances for a given entity.

Index unit

Index unit

Entity

[Selector]

It displays a list of properties, also called descrip-
tive keys, of a given set of entity instances, and
enables the selection of one single instance.

Hierarchical Index unit

HierarchicalIndex

Entity1

[Selector1]

NEST Entity2

[Selector2]

A variant of the index unit, which displays list
of properties of instances selected from multiple
entities, nested in a multi-level tree.

Multichoice Index unit

Multichoice Index

Entity

[Selector]

A variant of the index unit, in which each element
of the list is associated with a checkbox, allowing
the user to select multiple instances.

Scroller unit

Scroller unit

Entity

[Selector]

It represents a scrolling mechanism, based on a
block factor, for the elements in a set of instances.

Entry unit

Entry unit

It displays a form for collecting input values into
fields.

P. Fraternali, P.L. Lanzi, M. Matera and A. Maurino 151

Table 2. Basic WebML operation units.

Unit name Visual Notation Description

Create unit

Create

Entity
[Attribute Values]

It creates a new entity instance.

Modify unit

Modify

Entity
[Selector]

It modifies attributes of an entiry instance.

Delete unit

Delete

Entity
[Selector]

It deletes one or more entity instances.

Connect unit

Connect

Relationship

It creates a relationship instance.

Disconnect unit

Disconnect

Relationship

It drops a relationship instance.

Appendix B. Example of Sequential Patterns

01 <Sequences>
02 <SequenceRule support="0.037096774193548385" confidence="0.11734693877551021"/>
03 <AntecedentSequence>
04 <ItemSet>
05 <Item>
06 <Page SchemaRef="page03" Name="Overview" Area="Overview">
07 <PageContent>
08 <Unit>
09 <UnitSpecs SchemaRef="dau23" Name="TheWebML Model" SourceEntity="WebMLConcept"/>
10 <Data_OID>1</Data_OID>
11 </Unit>
12 <Unit>
13 <UnitSpecs SchemaRef="dau25" Name="The Idea" SourceEntity="TextChunk"/>
14 <Data_OID>15</Data_OID>
15 </Unit>
16 <Unit>
17 <UnitSpecs SchemaRef="inu26" Name="WebML Models" SourceEntity="WebMLConcept"/>
18 <Data_OID>2</Data_OID>
19 <Data_OID>4</Data_OID>
20 <Data_OID>5</Data_OID>
21 <Data_OID>8</Data_OID>
22 </Unit>
23 </PageContent>
24 </Page>
25 </Item>
26 </ItemSet>
27 </AntecedentSequence>
28 <ConsequentSequence>
29 <ItemSet>
30 <Item>
31 <Page SchemaRef="page18" Name="WebML Material" Area="Teaching">
32 <PageContent>
33 <Unit>

152 Model-Driven Web Usage Analysis for the Evaluation of Web Application Quality

34 <UnitSpecs SchemaRef="dau38" Name="Material Details" SourceEntity="Material"/>
35 <Data_OID>11</Data_OID>
36 </Unit>
37 <Unit>
38 <UnitSpecs SchemaRef="dau40" Name="Material Type" SourceEntity="MaterialType"/>
39 <Data_OID>5</Data_OID>
40 </Unit>
41 </PageContent>
42 </Page>
43 </Item>
44 </ItemSet>
45 </ConsequentSequence>
46 </SequenceRule>
47
48 </Sequences>

