
Journal of Web Engineering, Vol.2, No.3 (2004) 131-147
© Rinton Press

DYNAMIC SERVICE MATCHMAKING IN INTELLIGENT WEB

YUNCHENG JIANG, ZHONGZHI SHI , HAIJUN ZHANG, MINGKAI DONG

Key Laboratory of Intelligent Information Processing, Institute of Computing Technology

 The Chinese Academy of Sciences, Beijing 100080, China

jiangyc@ics.ict.ac.cn

Received May 12, 2003
Revised January 28, 2004

Intelligent Web functions essentially as an enormously autonomic entity, and it automatically regulates the
functions and cooperation of related Web sites and available application services. Agent is the core
component of the Intelligent Web. Intelligent Web not only can present the static information, but also can
present dynamic services. In this paper, we study the problems of service management in Intelligent Web
and analyze the insufficiencies of the service description language CDL, SDL and LARKS. Combining the
features of the Intelligent Web, Web Services, and Grid Services, we propose an agent service description
language SDLSIN which satisfies ten properties of agent service description. Based on SDLSIN, we
mainly study the service matchmaking problem of Intelligent Web, and propose three kinds of service
matchmaking algorithms which are adapted to open and dynamic Intelligent Web. At last, the development
of SDLSIN and three kinds of service matchmaking algorithms in Multi-AGent Environment MAGE
which we developed is introduced.

Key words: Intelligent Web, Agent Service Description, Dynamic Service Matchmaking
Communicated by: D Schwabe & Q Li

1 Introduction

Intelligent Web functions essentially as an enormously autonomic entity, and it automatically
regulates the functions and cooperation of related Web sites and available application services [1]. At
present, the Web only presents the static information, but the Intelligent Web not only presents these
static information, but also presents dynamic services. Agent is the core component of the Intelligent
Web. In Intelligent Web, there are a lot of key issues, such as semantic representation, agent, Web
mining, resource management, and service management, need to be resolved. In this paper we will
introduce the research work of service management in Intelligent Web. We will use agent technology
to realize all kinds of activities which are related to service management, therefore, in this paper we
will mainly study how to use agent to manage all kinds of services in Intelligent Web, especially
focusing on the agent dynamic service matchmaking in Intelligent Web.

There are many steps in the service management of Intelligent Web, mainly including agent
service description, agent service matchmaking, agent service invoke, agent service composition, agent
service cooperation, agent service validation, agent service control, and agent service trace and so on.
In this paper we will study the first two steps i.e., agent service description and agent service
matchmaking in Intelligent Web.

 132 Dynamic Service Matchmaking in Intelligent Web

The precondition of realizing service management of Intelligent Web is the realization of agent
service description (or capability description) and service matchmaking, but representing capability is
a difficult problem that has been one of the major concerns in the area of AI, software engineering, and
more recently, in the area of Semantic Web and Intelligent Web.

At present there has been many research work, K Sycara, et al[2] studied and developed the agent
capability description language LARKS which considered the trade-off between Quality of Service
(QoS) and efficiency of service, but it didn’t consider the inheritance mechanism of service description
and agent state language. More important it didn’t consider the negotiation mechanism of service. G J
Wickler[3] studied and developed the agent capability description language CDL which was a action
language, but it was a syntax based language and didn’t consider the negotiation mechanism of
services; on the other hand, CDL didn’t support the definition of data types. K Arisha, et al[4] also
presented a kind of agent service description language SDL which was a single HTML-like language.
This language used hierarchy mechanism and synonym dictionary to study the semantics of service
description. We think ontology technology is needed in agent service description. As to all of these
agent capability (or service) description languages, there exists corresponded service matchmaking
algorithm. In section 6, we will compare these agent capability (or service) description languages and
their matchmaking algorithms in detail.

Based on these reasons, we presented a kind of agent service description language SDLSIN(Agent
Service Description Language with Semantics and Inheritance and Supporting Negotiation)with
semantics and inheritance and supporting negotiation. This language not only considered semantic
service description of agent, but also considered the inheritance and negotiation mechanism of agent
service description, agent state language, and data types, therefore it overcome the insufficiencies of
LARKS, CDL, and SDL and improved them. Based on SDLSIN, we mainly studied different dynamic
service matchmaking algorithms and strategies using SDLSIN in Intelligent Web.

2 Agent Service Description

Agent service description (or capability description) is an important issue in agent and multi-agent
systems research field. As to this problem, G J Wickler[3] gave a summary and presented a kind of
agent capability description language CDL. Subsequently K Arisha, et al[4] also presented agent
service description language SDL , and K Sycara, et al[2] presented agent capability description
language LARKS. In the Introduction of this paper we analyzed their strongpoint and shortcoming
respectively.

Combining with the research work of G J Wickler[3], K Arisha[4], K Sycara[2] and J Gonzalez-
Castillo[5], we think that agent service description should satisfy the following several properties:

(1) High degree of expressiveness. Agent service description language not only can express
information and knowledge, but also can express services and the meaning of program code. Agent
service description should be in the abstract level, not be in implemented level. The agent must have
total freedom to compose the service description. Different agent will want to describe their services
with different degrees of complexity and completeness, and our language must be adaptable to these
needs.

(2) High degree of flexibility. Agent service description language may be used by different agents
(such as service provider, service requester); at the same time, it may hold inheritance mechanism,
agent concept language , and agent state language, etc. On the other hand, an agent service description

 Y-C Jiang, Z-Z Shi, H-J Zhang and M-K Dong 133

may be very descriptive in some points, but leave others less specified and open for negotiation.
Therefore, ability to express semi-structured data is required.

(3) Support for inferences. Agent should finish many service management problems
autonomously, including service matchmaking, service invoke, service composition, service
cooperation and service validation. An agent is able to process, especially to compare any pair of
statements automatically, therefore agent service description must possess reasoning capability. In
order to support for inferences, agent service description may utilize logic theory, such as description
logic and first order logic.

(4) Semantics based service description. Because Intelligent Web is a open, heterogeneous, and
dynamic environment, the terminology in each agent service description is often different, if we only
use syntax based service description (e.g. keywords based service description), we impossible resolve
the interoperation problem of Intelligent Web. Therefore we should use semantics based service
description i.e., we need use ontology technology in agent service description.

(5) Support for service negotiation mechanism, because agent is a autonomous entity, and it is
different from general Web services. In general Web services , service may be realized through simply
invoke the operation, but in Intelligent Web, it utilizes agent to realize service, and agent service
invoke, service composition and service cooperation need negotiation between agents.

(6) Support for datatypes. Attibutes such as quantities, prices, or dates will be part of the service
description. The best way to express and compare this information is by means of datatypes. As a
starting point, we will deal with datatypes such as integer, real, date, string etc.

(7) Adapt to multi-agent systems (MASs). Because Intelligent Web is the development of MASs
in Web, according to MASs’ characteristics and applications, agent service description should present
theory and realization foundation for cooperative solving, coalition formation, and agent coordination
of traditional MASs.

(8) Adapt to Web. Because Intelligent Web is the development of Web, the agent service
description must be compatible with Web technologies and the information must be in a format
appropriate for the Web.

(9) Consider the trade-off between Quality of Service (QoS) and efficiency of service. Because
there exists a contradiction between them, some agents regard QoS as the precondition, and some
agents regard efficiency of service as the precondition, but some agents need to consider the trade-off
between QoS and efficiency of service.

(10) Ease of use. Every description should not only be easy to read and understand, but also easy
to write by user. The language should support the use of domain or common ontologies for specifying
agents capabilities.

Remark: In this paper, we only study how to describe the agent capability in the Intelligent Web.
As to the service invoke and binding method of Intelligent Web, we may reference to the standard of
Web Services (e.g. SOAP and WSDL).

3 Agent Service Description Language SDLSIN

According to aforementioned ten properties of agent service description, and aiming at the
insufficiencies of CDL, SDL and LARKS, we presented a kind of agent service description language

 134 Dynamic Service Matchmaking in Intelligent Web

SDLSIN(Agent Service Description Language with Semantics and Inheritance and Supporting
Negotiation)with semantics and inheritance and supporting negotiation.

3.1 Component of SDLSIN

SDLSIN is a kind of framework language with slots, and its formal criterion is the following:
<asdl-descr>::=(ctype

 :service-name name
 :context context-name+
 :types (type-name = <modifier> type)+
 :isa name+
 :inputs (variable: <modifier> put-type-name)+
 :outputs (variable: <modifier> put-type-name)+
 :input-constraints (constraint)+
 :output-constrains (constraint)+
 :io-constrains (constraint)+
 :concept-description (ontology-name = ontology-body)+
 :state-language name
 :concept-language name
 :attributes (attributes-name : attributes-value)+
 :text-description name
)

ctype ::= capability | task
context-name ::= name<* ontology-name >
type-name ::= name
modifier ::=listof | setof
type ::= (name : name<* ontology-name >)+
put-type-name ::= (type-name | name<* ontology-name >)+
variable ::= name<* ontology-name >
ontology-body ::= (expression in concept-language)
attributes-name ::= name <* ontology-name >
attributes-value ::= name
name ::= String
ontology-name ::= name
constraint ::= (expression in state-language)

In this paper and SDLSIN version which we implemented in Java, the agent concept language is
description logic[6] (DL), and the agent state language is first order predicate logic (FOPL).

3.2 Meaning of Each Component

In the aforementioned formal criterion of SDLSIN, the meaning of each component is the
following:

ctype has two values, one is capability, and the other is task, where capability is the identifier
which service provider (SP) registers its capability to the middle agent. And task is the identifier which
service requester (SR) requests services from the middle agent.

Remark: In open, heterogeneous, and dynamic Intelligent Web, we distinguish three general
agent categories, service provider (SP), service requester (SR), and middle agent (MA). Service
providers provide some type of services. Requester agents need provider agents to perform some
services for them. Agents that help locate others are called middle agents, and they possess the

 Y-C Jiang, Z-Z Shi, H-J Zhang and M-K Dong 135

capability of service negotiation and service composition, etc. Agent may be a provider, as well as a
requester.

service-name denotes the name of service (i.e identifier). In Intelligent Web a service should have
unique service-name; at the same time a service-name unique identifies a service. Another purpose of
service-name is that it is used the value of attribute isa which realized the inheritance relationship
between service description.

context uses several keywords to description the main characteristics of service. It mainly used by
similarity service matchmaking (syntax based similarity service matchmaking and semantics based
similarity service matchmaking).

types denotes the definition of the data types used in the service description. We may define some
data types (such as Integer, Real, and String) in advance.

isa allows the name of a service from which this service will inherit the description. It is similar to
the OO’s inheritance.

inputs denote input variable declarations for the service.

outputs denote output variable declarations for the service i.e., the outcome of invoking service.

input-constraints denote the logical constraints on input variables that appear in the input
declaration.

output-constraints denote the logical constraints on output variables that appear in the output
declaration.

io-constrains parts define the constraints across input and output variables that must hold. Free
variables in these constraints can be from the expressions describing the inputs or outputs.

concept-description denotes the description of the meaning of words used in the service
description i.e., in concept-description, some terminologies may be defined in concept-language
formally. The description relies on concepts defined in a given local domain ontology.

state-language denotes the constraints language used by attributes input-constraints, output-
constraints, and io-constrains. It is often a logic language.

concept-language denotes the description language used by concept-description. It is often a
terminology knowledge representation language, such as Description Logic (DL).

attributes mainly support for service negotiation. Its values include cost, quality of service, style
of service, and performance of service etc.

text-description is mainly used to descript the service in natural language. Its value mainly is
viewed by users.

Except for attribute service-name, all of these attributes are optional. Agent may choose different
attributes according to different applications.

From the aforementioned description, it is known that the SDLSIN is a very flexible language, and
it is a kind of framework language with slots. Because Intelligent Web is in quick development, and
with the development of Intelligent Web, any necessary component may be added to the language in
the future, so this SDLSIN language is an open language, and not a complete language.

 136 Dynamic Service Matchmaking in Intelligent Web

3.3 Discussion

SDLSIN language satisfies the ten properties of agent service description language.

As to property (1), high degree of expressiveness, and property (2), high degree of flexibility, their
proof may be reference to the CDL[3] (in reference [3], the formal definitions of expressiveness and
flexibility are defined), because the SDLSIN is the extension of the CDL, and the CDL is expressive
and flexible, so the SDLSIN is also expressive and flexible (strictly speaking, SDLSIN is more
expressive and flexible than CDL). As to property (3), support for inferences, because the agent state
language and agent concept language of SDLSIN is logic language, such as description logic and first
order logic, so the property (3) is satisfied. As to property (4), semantics based service description,
because SDLSIN utilizes concept-description component to describe all terminological words, and
these terminological words definitions are the ontologies which used in agent service description, so
the property (4) is satisfied. SDLSIN utilizes attributes component to describe the negotiation
attributes of agent service description, such as service cost, quality of service QoS and service security,
etc. so the property (5), support for service negotiation mechanism , is satisfied. SDLSIN utilizes types
component to define data types which used in agent service description, so the property (6), support for
datatypes, is satisfied. Because SDLSIN is a kind of agent service description language, so the
property (7), adapt to multi-agent systems (MASs), is satisfied. Because the service description in
SDLSIN may be translated into the format in XML which be appropriate for the Web, so the property
(8), adapt to Web, is satisfied. Based on the SDLSIN, there exists three kinds of matchmaking
algorithms, approximate service matchmaking algorithm, precise service matchmaking algorithm, and
plug-in service matchmaking algorithm, if users want high service efficiency, approximate or plug-in
service matchmaking algorithms may be used, if users want high service quality, precise service
matchmaking algorithm may be used, so the property (9), consider the trade-off between Quality of
Service (QoS) and efficiency of service, is satisfied. Because the SDLSIN is a kind of framework
language with slots, so the property (8), ease of use, is satisfied.

4 Dynamic Service Matchmaking

4.1 Service Matchmaking Process

Middle Agent has many species[7] [8], such as matchmaker, broker, facilitator, and mediator. These
middle agents possess same main functions which help requester locate others agents that need by
them.

Service Matchmaking process of finding an appropriate provider for a requester through a middle
agent and has the following general form: (1) Provider agents advertise their capability to middle
agents; (2) Middle agents store these advertisements and form global terminology ontology; (3)
Requester asks the middle agent whether it knows of providers with desired capability; and (4) the
middle agent matches the request against the stored advertisements and returns the result, a subset of
the stored advertisements.

While this process at first glance seems very simple, it is complicated by the fact that Intelligent
Web is a open, heterogeneous, and dynamic system, the information, resources, and services in
Intelligent Web are usually incapable of understanding each other. Owing to these reasons, there are
main problems in agent service matchmaking of Intelligent Web:

(1) Agent service (or capability) description language.

 Y-C Jiang, Z-Z Shi, H-J Zhang and M-K Dong 137

(2) Agent service matchmaking interaction protocol and agent communication language. We will
study this problem in other papers.

(3) Agent service matchmaking algorithm. This algorithm decide which SP’s capability satisfies
the demand of SR, and it should possess high flexibility: not only support for syntax based service
matchmaking, but also support for semantics based service matchmaking; not only consider the quality
of service, but also consider the efficiency of service; not only provide precise service matchmaking
algorithm, but also provide similar service matchmaking algorithm.

4.2 Service Matchmaking Algorithm

4.2.1 Service Matchmaking Type

When can we say that the service M provided by SP agent can match the service N requested by a
SR agent? Before introduce this problem, we will at first introduce the service matchmaking type
simply.

(1) Approximate match. This algorithm only demands the M and N is similar, and this similarity
either is syntax based similarity, or semantic based similarity.

(2) Exact match. This algorithm demands M and N is semantic equality.

(3) Plug-in match. This algorithm lines in middle between approximate match and exact match,
and it demands M subsume N i.e., as to N, M can provide more service, and N can be “plugged in” M.

In fact, exact match is a kind of plug-in match, and plug-in match is a kind of approximate match.

4.2.2 Service Matchmaking Algorithm

4.2.2.1 Preliminaries

Definition 1(SDLSIN Description) a SDLSIN description S is a tuple S ＝

, where : A is

the agent of providing service S; SL is the state language of service description S; CL is the
concept language of service description S; SN is the name of service description S; CON =

 is the key characteristics set of service description S; TY is the

data type definition set of service description S; SUP is parent class type set

of service description S;

,, SS SLA<
S

S

S

},..., S
qty

,SCL

{ 1
Scon

,SSN

,...,con

>SSSS
IO

S
O

S
I

SSSSS TDATTCDSSSOISUPTYCON ,,,,,,,,,,
S

S

}S
p { 1

S ty=

}sup,...,{sup1
S
r

SS =
S

S

I SI1{= },..., S
is

I

=S ,1
SO }..., S

js
O

},..., S
Iks

S =S
O {S

},...,{ 1
S
IOm

S
IO

S
IO s

SS=

=S },...,{ 1
S
t

S cdcd
},...,1

S
n

S attatt

is the input parameters declaration set of service

description S; O { is the output parameters declaration set of service description S;

 { is the input constraints set of service description S; S is

output constraints set of service description S; S is input-output constraints set

of service description S; CD is the terminologies set used by service description

S; is the negotiation attributes set of service description S; TD is the
natural language description of service description S.

S
IS =

ATT

1
S
IS

{S =

, ..., }S
Ols

S

S

1
S
O

Remark: Definition 1 is the formalization of service description language SDLSIN. In this paper,
in order to simplify, we will simplify S as < ,,,,,,, SSSSSSS OISUPTYCONSNA

 138 Dynamic Service Matchmaking in Intelligent Web

>SS
IO

S
O

S
I CDSSS ,,,

< 11 ,, SS SNA

< ii SS SNA ,,
< kk SS SNA ,,

1S
SSL == ...1

SCL == ...1

kS SNSUP =

1S 2S

>< FR : =

 i.e., we assume agent state language is FOPL; agent concept language is DL.

As to negotiation attribute ATT and natural language description TD, service matchmaking algorithm
needn’t them.

R

:(: RR <∀
(: RR =<∀

1S k mS
kSi ≤≤ 11, mS

mSS AA =
φ=SSUP
(1

S Qσ=

IS OS

mS

Because there may exist attribute isa in SDLSIN service description i.e., a service may inherit
another (or some) service(or services), so if service description PS has isa attribute, we firstly need
instantiate PS, then to match service.

Definition 2(Service Instantiation Condition) Given services description S ,…, and ,

they are respectively:
1 iS kS

>111111111 ,,,,,,,, SS
IO

S
O

S
I

SSSSS CDSSSOISUPTYCON

 M
>iiiiiiiii SS

IO
S
O

S
I

SSSSS CDSSSOISUPTYCON ,,,,,,,,
kkkkkkkkk SS

IO
S
O

S
O

SSSSS CDSSSOISUPTYCON ,,,,,,,,

, if can be > kS
 instantiated by ,…, , then the following condition must be satisfied: iS
 (1) ; ki SS SLSL =
 (2) ; ki SS CLCL =

 (3) . iSS SNUU ...1

Definition 3(Attribute-Unifying Substitution) Given services description S and , assume

that and satisfy service instantiation condition, PS and are and ’s parameter
declaration (input parameter or output parameter), or data type’s value, or concept-description’s value,
or negotiation attribute’s value respectively. Assume ∀ , then the format of S is

, or <

1 2S
1S

∈S

2SPS

,1, =ii

1S 2S

2PS S

>F ; as to PS and , a substitution 1S 2SPS σ is attribute-unifying
substitution if and only if:

)()(): 212211 SSSSSS FFPSFRPSF σσ =⇒>∈<∧>∈ ;

or .)()() 212211 SSSSSS FFPSFRPSF σσ =⇒>∈=<∧>∈

Definition 4(Service Instantiation) Given services description S , …, S and , assume

, …, S and satisfy service instantiation condition,
1 k mS

iσ is the attribute-unifying substitution of

 and , then service S is the result of instantiated by , …, if and only if : mS
SN

1S kS
= (1) , , CL , ; mSS SLSL = mSS CL= mSS SN

 (2) ;

 (3) Q ,where Q represent CON, TY,

CD, I, O, , and respectively.

)()(...)() 1
1 mkm S

k
S

k
SS QQQ σσσ UUUU

IOS

Because parent class of child class may have parent class too, so we may use the thinking of
recursion to realize service instantiation. This instantiation algorithm is the following:

Service Instantiation Algorithm instantiate() mS
 Input: service

 Y-C Jiang, Z-Z Shi, H-J Zhang and M-K Dong 139

 Output: service S instantiated by mS
 Algorithm: (1) C , ; mSSUP= mSS ←

 (2) if φ=C return S;

 (3) ∀ , ; CSi ∈ }{ iSCC −←
 (4) instantiate(); ←iS iS
 (5) , , CL , ; mSS AA ← mSS SLSL ← mSS CL← mSS SNSN ←
 (6) ,φ←SSUP φσ ← ;

(7) , amend , ,

, ;

),,(σim SS CONCONamend
),,(σim SS OOamend amend

),,(σim SS TYTY
),,(σim SS CDCD

),,(σim SS IIamend

(8) ,TY , , O , ; iSS CONCON ← iSS TY← iSS II ← iSS O← iSS CDCD ←
(9) , , ;)()(iM S

I
S
I

S
I SSS σσ U←)()(iM S

O
S
O

S
O SSS σσ U←)()(iM S

IO
S
IO

S
IO SSS σσ U←

(10) Goto (2).

function),,(21 σSS PSPSamend
 for 22, SS PSFR >∈<
 if then 11, SS PSFR >∈<∃
 , ,),,(21 σσ SS FFunify← ><−← 111 , SSS FRPSPS

><+←)(, 211 SSS FRPSPS σ
else

 ><+← 211 , SSS FRPSPS

Notation: represents >< 2, SFR >< FR : or >=< FR , see Definition 3.

Definition 5(Type Subsumption) Given type and t , if t subsumes t (noted as t ⊑ t),
then it is reasoned by the following inference rule

1t 2 2 1 1 2
[2]:

(1) if t is type variable, then ⊑ ; 2 1t 2t
(2) if t (i.e. t , t represent same type), then ⊑ ; 21 t= 1 2 1t 2t
(3) if t and are the type defined by terminology ontology, , then ⊑ , where

interpreted in DL’s semantics;
1 2t 1t ⊆ 2t 1t 2t ⊆

(4) if t and are set, t , then t ⊑ t , where ⊆ interpreted in set theory; 1 2t 21 t⊆ 1 2

(5) ⊑ ; 1t 21 | tt
(6) ⊑ ; 2t 21 | tt
(7) if t ⊑ t , ⊑ , then (⊑ (; 1 2 1s 2s), 11 st), 22 st
(8) if t ⊑ t , ⊑ , then t ⊑ t ; 1 2 1s 2s 11 | s 22 | s
(9) if t ⊑ t , then ⊑ ; 1 2)(1tSetOf)(2tSetOf
(10) if t ⊑ t , then ⊑ . 1 2)(1tListOf)(2tListOf

 140 Dynamic Service Matchmaking in Intelligent Web

Definition 6 (Type Equality) Given type t and , if t subsumes (i.e. ⊑), and t

subsumes (i.e. t ⊑ t), then and t equality, noted as
1 2t

t
1

2t
2t 2t 1t 2

1t 1 2 1t 2 1 ≡ .

4.2.2.2 Approximate Service Matchmaking Algorithm

Approximate service matchmaking directly use the value of attribute context to finish it. Because
there are two kinds of approximate service matchmaking: syntax based similar matchmaking and
semantics based similar matchmaking, so there also are two kinds of approximate service
matchmaking algorithms.

Algorithm 1 SYntax-Based-Similarity-Matchmaking SYBSM(SPS,SRS)

Input: Service description SPS of service provider SP and service description SRS of service
requester SR

Output: Boolean value (true or false)

Algorithm: (1) if SPS contains attribute isa, then invoke function instantiate(SPS) to instantiate
SPS. Assume the result instantiating SPS is service description ISPS, its value of attribute context is:

; SPcon }*,...,*{ 11
SP
i

SP
i

SPSP OCOC=

(2) if SRS contains attribute isa, then invoke function instantiate(SRS) to instantiate SRS. Assume
the result instantiating SRS is service description ISRS, its value of attribute context is:

; SRcon }*,...,*{ 11
SR
j

SR
j

SRSR OCOC=

(3) if |},...,{},...,{|
|},...,{},...,{|

11

11
SR
j

SPSP
i

SP

SR
j

SPSP
i

SP

CCCC
CCCC

U

I ω> , then

return true; else return false, where threshold]1,0[∈ω given by users.

Example 1 Given two service descriptions S1 and S2, where S1={service-name s1; context plane,
ticket, book}, S2={service-name s2; context fly, ticket, book}, because S1.context={plane, ticket,
book}, S2.context={fly, ticket, book}, so S1.context ∩ S2.context={ticket, book}, S1.context ∪
S2.context ={plane, fly, ticket, book}, therefore |S1.context∩S2.context|∕|S1.context∪S2.context|=2
∕4=0.5. Assume ω=0.7, then service descriptions S1 and S2 don’t satisfy the syntax based
approximate service matchmaking.

Algorithm 2 SEmantics-Based-Similarity-Matchmaking) SEBSM(SPS,SRS)

Input and output are the same as algorithm 1;

Algorithm: (1) and (2) are the same as algorithm 1;

(3) Given{ ⊓{

, if

},...,1
SP
i

SP OO

∨⊇ SR
l

SP OO ())

IOjl =≤ }

},...,1
SR
j

SR OO

∃∧= SP
k

SR
l OO (

≡∃∧== SP
k

SR
l

SP
k OOOOO ,((|{

∨⊆∨≡ SR
l

SP
k

SR
l

SP
k

SR
l OOOOO,

∨SR
lO

⊇ kO

SP
kO

)),SP∨⊆ k
SR
l OO

ik ≤≤≤ 1,1 >|},...,{} 1
SR
j

SRSP
i OOU,...,{|

|
1
SP

I
OO

O| ω , then return true; else

return false, where threshold]1,0[∈ω given by users. ≡ , ⊆ and ⊇ interpreted in DL’s semantics

i.e., represents and equality(i.e. SP
k OSR

l OO ≡ l
SR SP

kO ISR
lO ≡

ISP
kO SR

l OO ⊆); represents SP
k

 Y-C Jiang, Z-Z Shi, H-J Zhang and M-K Dong 141

SP
kO

ISR
lO

 subsume (i.e.); represents subsumes (i.e.

).

SR
lO ISP

k
ISR

l OO ⊆ SP
k

SR
l OO ⊇ SR

lO SP
kO

ISP
kO⊇

⊆

SPI {= 1
SPiv

,..., SP
jSP

ov

S

}: SP
i

SP
i SPSP

itiv

S

,...,11
SP
IORS→

: 1
SPit

SP
jSP

ot

SP
IO {=

{ ov

}SP
IkSP

S1
SPot

SR

=SP
I

,...,{ 1
SP
O SS=

SP
IOmSP

RS→

I {= 1
SRiv

,..., SR
jSR

ov

}: SR
i

SR
i SRSR

itiv

SR
O

: 1
SRit

SR
jSR

ot

{ ov

}SR
IkSR

S1
SRot =SR

I

,...,{ 1
SR
Ol

SR
O SS

Example 2 Given two service descriptions S1 and S2, where S1={service-name s1; context
plane*Plane, ticket*Ticket, book*Book}, S2={service-name s2; context fly*Fly, ticket*Ticket,
book*Book }, where Plane, Ticket, Book and Fly are terminology definition in description logic, Plane
≡machineПcan.fly, Ticket≡ paperПfunction.seat, Book≡ advanced-buy, Fly≡machineПcan.fly.
Because S1.context.Ontology={Plane, Ticket, Book}, S2.context.Ontology= {Fly, Ticket, Book}, and
through description logic theory, it is known that Plane is equal to Fly, so S1.context.Ontology∩
S2.context.Ontology ={Plane, Ticket, Book}, S1.context.Ontology ∪ S2.context.Ontology={Plane,
Ticket, Book}, therefore |S1.context.Ontology ∩ S2.context.Ontology|/|S1.context.Ontology ∪

S2.context.Ontology|=3/3=1. Assume ω=0.7, then service descriptions S1 and S2 satisfy the semantics
based approximate service matchmaking.

Remark: (1) Deciding two concepts whether satisfy relation ≡ , or ⊇ need knowledge of
description logic DL.

(2) Deciding the relation between two concepts need the terminology ontology of the middle agent.

(3) The main difference between algorithm 1 and algorithm 2 is: Algorithm 1 only matches
services in syntax level, i.e. it utilizes the keywords in context component(see section 3.1) to match
services, but algorithm 2 uses ontology in context component(see section 3.1) to match services, i.e. it
matches services in semantic level.

4.2.2.3 Precise Service Matchmaking Algorithm

Precise service matchmaking algorithm demands two services is equality in semantics level, and it
uses the attribute value of inputs, outputs, input-constraints, output-constraints and io-constrains
to realize service matchmaking.

Algorithm 3 Precise Matchmaking PM(SPS,SRS)

Input and output are the same as algorithm 1;

Algorithm: (1) If SPS attribute isa, then invoke function instantiate (SPS) to instantiate SPS.
Assume the result instantiating SPS is service description ISPS, its attribute value of inputs is

,...,

}:

SP
IOLS

,the attribute value of outputs is

, the attribute value of input-constraints is S { , the

attribute value of output-constraints is , and the attribute value of io-

constrains is ;

SPO

,...,1
SP
IS

= :1
SP

}SP
Ol

SP
O SP

}SP
IOmSP

LS

(2) If SRS contains attribute isa, then invoke function instantiate(SRS) to instantiate SRS Assume
the result of instantiating SRS is service description ISRS, its attribute value of inputs is

,...,

}:

,...,11
SR
IOm

SR
IO

SR
IO SR

LSRSLS →

,the attribute value of outputs is O

, the attribute value of input-constraints is S { , the

attribute value of output-constraints is S , the attribute value of io-constrains

is ;

SR

,...,1
SR
IS

= :1
SR

}
SR

=

}SR
IOmSR

RS→SR
IO {=S

 142 Dynamic Service Matchmaking in Intelligent Web

(3) If , and , then goto(4), else return false; SRSP ii = SP
SR
g

SP
g igitit ≤≤≡ 1,

(4) If , and , then goto(5), else return false; SRSP jj = SP
SR
g

SP
g jgotot ≤≤≡ 1,

(5) If exists a substitution σ , and , then goto(6), else return false;)(SR
I

SP
I SS σ⇔

(6) If exists a substitution σ ,and S , then goto(7), else return false;)(SR
O

SP
O Sσ⇔

(7) If exists a substitution σ , and , then return true; else return false;)(SR
IO

SP
IO SS σ⇔

(8) End.

Example 3 Given two service descriptions S1 and S2, where S1={service-name s1; inputs
xs:ListOf Real; outputs ys: ListOf Real; output-constraints before(x,y,ys)←ge(x,y)}, S2= {service-
name s2; inputs xs:ListOf Real; outputs ys: ListOf Real; output-constraints before(x,y,ys)←ge(x,y)},
then service descriptions S1 and S2 satisfy the precise service matchmaking. (for this example, please
partially see [2]).

Remark: (1) Compare with algorithm 1 and algorithm 2, this algorithm utilizes the attribute value
of inputs, outputs, input-constraints, output-constraints and io-constrains to match services.

(2) This algorithm need terminology ontology, see step (3) and step (4), and the relation between
ontologies in inputs components or outputs components is equality relation; in addition, (5), (6) and
(7) need not terminology ontology.

(3) Step (5) decide whether the input constrains equality, step (6) decide whether the output
constrains equality, step (7) decide whether the input-output constrains equality. According to (2) and
(3), this algorithm requires aforementioned equality relation, so it realizes the precise matchmaking.

4.2.2.4 Plug-in Service Matchmaking Algorithm

Plug-in service algorithm lines in middle between approximate match and exact match, and it
demands service M provided by provider subsume service N provided by requester i.e., as to N, M can
provide more service, and N can be “plugged in” M. It uses the attribute value of inputs, outputs,
input-constraints, output-constraints and io-constrains to realize service matchmaking.

Algorithm 4 Plug-In Matchmaking PIM (SPS, SRS)

Input and output are the same as algorithm 1;

Algorithm: (1) and (2) are the same as algorithm 3;

(3) If , and ⊒ , then goto(4), else return false; SRSP ii = SP
git SP

SR
g igit ≤≤1,

(4) If , and ⊒ , then goto(5), else return false; SRSP jj = SP
got SP

SR
g jgot ≤≤1,

(5) If exists a substitution σ , and , then goto(6), else return false;)(SR
I

SP
I SS σ⇐

(6) If exists a substitution σ , and , then goto(7), else return false;)(SR
O

SP
O SS σ⇒

 Y-C Jiang, Z-Z Shi, H-J Zhang and M-K Dong 143

(7) If exists a substitution σ , satisfy ∀ →= SP
IOi

SP
IOi LSS ,SP

IOiRS ≤≤ i

(SR
IOjRSσ

1 ,

, and (, then return true,

else return false;

SPm

))

=∃ SR
IOjS SR

IOjLS

→ SR
SR
IOj ljRS ≤≤1,))(SR

IOjLSσ ∧ SP
IOiRS(SP

IOi ⇐LS ⇒

(8) End.

Example 4 Given two service descriptions S1 and S2, where S1={service-name s1; inputs
xs:ListOf Integer; outputs ys: ListOf Integer; input-constraints le(length(xs),100); output-constraints
before(x,y,ys)←ge(x,y), in(x,ys)←in(x,xs)}, S2={service-name s2; inputs xs:ListOf Real; outputs ys:
ListOf Real; output-constraints before(x,y,ys)←ge(x,y), in(x,ys)←in(x,xs)}, then service descriptions
S1 and S2 satisfy the plug-in service matchmaking, but they don’t satisfy the precise service
matchmaking. (for this example, please partially see [2]).

Remark: (1) This algorithm is same as algorithm 3, it also utilizes the attribute value of inputs,
outputs, input-constraints, output-constraints and io-constrains to match services.

(2) This algorithm needs terminology ontology, see step (3) and step (4); the difference between
algorithm 3 and this algorithm is: here is ⊑(subsumption relation), not ≡ (equality relation).

(3) Step (5) decide whether the input constrains satisfy imply relation, step (6) decide whether the
output constrains satisfy imply relation, step (7) decide whether the input-output constrains satisfy
imply relation. According to (2) and (3), this algorithm realizes the “plugged in” matchmaking.

In addition, all these service matchmaking algorithms are dynamic process, because Intelligent
Web is open and dynamic, the service provider in Intelligent Web may register service, modify service
and delete service anytime; at the same time, service requester may request its service and exit the
Web anytime, therefore middle agent should dynamic update their records and match service dynamic.

5 Development of Matchmaking

5.1 Multi-agent Environment MAGE

MAGE (Multi-AGent Environment)[9] is a multi-agent environment with a collection of tools
supporting the entire process of agent-oriented software engineering and programming. It is designed
to facilitate the rapid design and development of new multi-agent applications by abstracting into a
toolkit the common principles and components underlying many multi-agent systems. The idea was to
create a relatively general purpose and customizable toolkit that could be used by software users with
only basic competence in agent technology to analyze, design, implement and deploy multi-agent
systems. MAGE toolkit has the following features: (1) The toolkit utilize standardized technology and
standardized specification wherever feasible, for examples our MAGE is FIPA compliant, and agent
interaction is based on FIPA-ACL. (2) The toolkit provide agent developers with all the domain-
independent functionality such that they need only implement the domain-specific problem solving
abilities of the agents they want to define. (3) The toolkit provide friendly and easy-to-use human-
computer interface by the visual programming paradigm and the pick-and-choose principle. (4) The
toolkit support an open and flexible design so that it is easily to extend, thus users can easily add to the
library different kind of components.

5.2 Implement

In multi-agent environment MAGE, we have realized the service description language SDLSIN
and the four different service matchmaking algorithms in Java. We realized a DF (Directory Facilitator)

 144 Dynamic Service Matchmaking in Intelligent Web

agent and SBroker (Service Broker) agent in MAGE, where DF agent stores agent’s capability (service)
description and finishes service matchmaking, and SBroker agent finishes service invoke, service
negotiation, service composition, service cooperation and service control, etc. DF and SBroker make
up of the middle agent of our MAGE. Service providers register their service to DF agent in SDLSIN.
Service requester puts in its request to SBroker in SDLSIN, then SBroker act as this requester to finish
all service reasoning work (such as service matchmaking, service negotiation, service composition), at
last SBroker returns the answer to this requester. Because service reasoning needs DL reasoning and
FOPL reasoning, so we realized a DL reasoner (DLRM) and a FOPL reasoner (FOPLReasoner) in
Java at first.

In open, heterogeneous, and dynamic Intelligent Web, how to find the agent that it need as to
requester? It is a good idea that import middle agent. In MAGE services environment, we developed
DF and SBroker agents as middle agent. MAGE services environment architecture sees Figure 1, and
Figure 2 is the interface of our MAGE services environment.

Figure 1: MAGE services environment architecture

Directory Entity
Service
Broker

DF Agent

Agent name

address

Agent

service

 …

MAGE Agent Platform

Other agents:
PingAgent
E-Busines

FOPL
Reasoner

DLRM
Agent

Service
provider

Service
requester

Figure 2: MAGE services environment interface

In MAGE services environment, because DF agent has four different service matchmaking
algorithms, so service requester may select one based on its practical need (as to which algorithm is
adopted, it is decided by service requester). For example, if service requester only needs some
approximate services, it can select approximate service matchmaking algorithm. At present, MAGE

 Y-C Jiang, Z-Z Shi, H-J Zhang and M-K Dong 145

services environment is developed in Java, and it need not any database. DF agent stores service
description in memory. If there are many services in DF agent in practical application, we will use
database to store service description. In this MAGE services environment, we implement two
application systems, one is knowledge about SARS service system, and the other is integration
information about Beijing service system. In the first system, there are three kinds of agents, i.e. cut
word agent, find pattern agent, and find answer agent. There are seven kinds of agents, i.e. predict
weather agent, book ticket agent, find traffic agent, find shop agent, find food agent, find hotel agent
and find entertainment agent in the second system. Any service requester may put in service request in
natural language to SBroker agent, then SBroker agent will change this request into SDLSIN format,
and SBroker agent will search appropriate service provider and acquire the answer to service request.
At last SBroker agent send the answer to service requester.

In the aforementioned two application systems, the performance is satisfactory, and the algorithms
produce the expected results. Because there isn’t similar system now, we can’t compare our system
with others systems on performance and result. As to the different values of ω , when the value of ω
is smaller, more service providers can be found. At present, if there are many agents, which may
provide same service in MAGE services environment, the first agent will be selected. We will improve
this situation through service negotiation.

Discussion: In current implement, we design a description logic agent DLRM and a first order
predicate logic agent FOPLReasoner, and these two agents assist DF agent to finish service
matchmaking. With the development with MAGE, we may build description logic reasoning and first
order logic reasoning in DF agent. On the other hand, we may add several DF agents in MAGE in
order to improve the efficiency of service matchmaking.

6 Related Work

Agent service description and service matchmaking have been actively studied since the inception
of intelligent agent research. The earliest matchmaker was the ABSI facilitor[10], which was based on
the KQML specification and used the KIF as the content language. The matchmaking between the
advertisement and request expressed in KIF was the simple unification with equality predicate.

Kuokka and Harada[11] presented the SHADE and COINS systems for matchmaking. The
matchmaking algorithm of COINS used the TF-IDF and used free text as the content language. The
matchmaking algorithm used in SHADE was a Prolog-like unification. The content language of
SHADE consisted of two parts, one was a subset of FIF; the other was a structured logic representation
called MAX. They didn’t present the concept of service description language and didn’t consider the
matchmaking in semantics level.

R. J. Bayardo, et al[12] presented a service broker-based information system InfoSleuth. Its content
language supported by InfoSleuth was KIF and the deductive database language LDL++. The
matchmaking algorithm used was constraint matching, which was an intersection function between the
user query and the resource constraints. They also didn’t present the service description language and
its matchmaking algorithm was limited.

G J Wickler[3] studied and developed the agent capability description language CDL which was a
action language, but it was a syntax-based language and didn’t consider the negotiation mechanism of
service; on the other hand, CDL didn’t support the definition of data types. Logic-based reasoning over
description in CDL was based on the notion of subsumption. It couldn’t present the approximate
matchmaking.

 146 Dynamic Service Matchmaking in Intelligent Web

K Arisha, et al[4] also presented a kind of agent service description language SDL which was a
single HTML-like language. This language used hierarchy mechanism and synonym dictionary to
study the semantics of service description. The matchmaking algorithms were k-nearest neighbor
request and δ-nearest search using semantics instance, so it only can present approximate algorithm.

K Sycara, et al[2] studied and developed the agent capability description language LARKS. This
language considered the trade-off between Quality of Service (QoS) and efficiency of service, but it
didn’t consider the inheritance mechanism of service description and agent state language. More
important it didn’t consider the negotiation mechanism of service.

W3C also presented a kind of Web Services Description Language WSDL [13]. It is an XML
format for describing network service as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information. The operations and messages are described
abstractly, and then bound to a concrete network protocol and message format to define an endpoint.
But it is a syntax based description language.

Based on these reasons, we presented a kind of agent service description language SDLSIN with
semantics and inheritance and supporting negotiation. This language not only considered semantic
service description of agent, but also considered the inheritance and negotiation mechanism of agent
service description, agent state language, and data types, therefore it overcome the insufficiencies of
LARKS, CDL and SDL. Based on SDLSIN, we studied different dynamic service matchmaking
algorithms and strategies using SDLSIN in Intelligent Web.

7 Conclusions and Future Work

In this paper we studied the agent service description and matchmaking problems, and analyzed
the insufficiencies of the service description language CDL, SDL and LARKS. Combining with the
characteristics of Intelligent Web, Web Services and Grid Services, we presented a kind of agent
service description language SDLSIN with semantics and inheritance and supporting negotiation. This
language not only considered semantic service description of agent, but also considered the inheritance
and negotiation mechanism of agent service description, agent state language, and data types. Based on
SDLSIN, we studied different dynamic service matchmaking algorithms and strategies using SDLSIN
in Intelligent Web.

Future work includes: study how to add many middle agents to improve the service management
work and coordinate them; study how to develop a kind of lightweight service description language
adapting to pervasive computing; and study the theoretic model and its formal semantics of service
management in Intelligent Web.

Acknowledgements

This research is supported by High-Tech Program 863 (2001AA113121, 2003AA115220) and
National Natural Science Foundation of China (90104021).

The first version (some result) of this paper has been published by Acta Electronica Sinica(Jiang
Yuncheng, et al. Dynamic Service Matchmaking in Multi-Agent Systems, 2004(3): 457-461, in
Chinese).

References

 Y-C Jiang, Z-Z Shi, H-J Zhang and M-K Dong 147

1. Zhongzhi Shi, Mingkai Dong, Yuncheng Jiang et al. Intelligent Web, Computer Science, 30(9), pp.
1-4, 2003. (in Chineses).

2. Katia Sycara, Seth Widoff, Matthias Klusch and Jianguo Lu. LARKS: Dynamic Matchmaking
Among Heterogenous Software Agents in Cyberspace. Autonomous Agents and Multi-Agent Systems,
5(2), pp. 173-203,2002.

3. Gerhard Jurgen Wickler . Using Expressive and Flexible Action Representations to Reason about
Capabilities for Intelligent Agent Cooperation. Ph.D. thesis, University of Edinburgh, 1999.

4. Khaled Arisha, Sarit Kraus, Fatma Ozcan, Robert Ross, and V.S. Subrahmanian. IMPACT: The
Interactive Maryland Platform for Agents Collaborating Together. IEEE Intelligent Systems, MarApr
issue 14(2), pp. 64-72, 1999.

5. Javier Gonzalez-Castillo, David Trastour, Claudio Bartolini,Description Logics for Matchmaking
of Services,Workshop on Applications of Description Logics, Vienna, Austria ,September 18, 2001.

6. F. Baader, W. Nutt. Basic description logic. In F. Baader et al, editor, The Description Logic
Handbook: Theory, Implementation and Applications. Cambridge University Press, 2002.

7. M. Klusch and K. Sycara, Brokering and Matchmaking for Coordination of Agent Societies: A
Survey, in: A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf (Eds.), Coordination of Internet
Agents: Models, Technologies and Applications, Springer, 2001, Chapter 8.

8. H. C. Wong and K. Sycara, A Taxonomy of Middle Agents for the Internet, Proceedings of 4th
ICMAS, IEEE Computer Society Press, 2000, pp. 465-466.

9. http://www.intsci.ac.cn/en/research/mage.html.

10. N. Singh, A Common Lisp API and Facilitator for ABSI: Version 2.0.3, Technical Report Logic-
93-4, Logic Group, Computer Science Department, Stanford University, 1993.

11. D. Kuokka and L. Harrada, On using KQML for matchmaking, in Proc. 3rd Int. Conf. On
Information and Knowledge Management CIKM-95, AAAI/MIT Press, 1995, pp. 239-245.

12. R. J. Bayardo, W. Bohrer, R. Brice et al., InfoSleuth: Agent-Based Semantic Integration of
Information in Open and Dynamic Environments, in: M. N. Huhns and M. P. Singh (Eds.), Readings
in Agents, Morgan Kaufmann, CA, 1998, pp. 205-216.

13. http://www.w3.org/TR/wsdl12/. Web Services Description Language (WSDL) Version 1.2. W3C
Working Draft 9 July 2002.

http://www.intsci.ac.cn/en/research/mage.html
http://www.w3.org/TR/wsdl12/

