Journal of Web Engineering, Vol. 2, No. 3 (2004) 148-175
© Rinton Press

A WEB SERVICES BASED ARCHITECTURE FOR DIGITAL TIME STAMPING

A. Cilardo, A. Mazzeo, L. Romano? G. P. Saggese
Dipartimento di Informatica e Sistemistica, Universita’ degli Studi di Napoli Federico II, Via Claudio 21
Naples 80125, Italy

{acilardo, mazzeo, lrom, saggese } @unina.it.

G. Cattaneo

Finmatica SpA, Via Amato, 15
Salerno 84131 , Italy
g.cattaneo@finmatica.com

Received September 3, 2003
Revised Octomber 27, 2003

This paper describes the results of a research activity conducted cooperatively by an
academic and an industrial party. It presents a practical solution for and an experience
in the implementation of time stamping services and their exposition to the Internet. We
present the main state-of-the-art algorithms for time stamping applications, thoroughly
discuss pros and cons of each technique, and highlight the crucial issues raised by their
practical implementation. Then we present an architecture which provides both rela-
tive temporal authentication, based on a linear linking scheme, and absolute temporal
authentication, based on publishing mechanisms as well as on a trusted time source.
In order to guarantee ubiquity and interoperability, the actual implementation of the
proposed architecture relies on the emerging Web services technology for exposing time
stamping functions to the Internet. Experimental tests have demonstrated the effective-
ness of the proposed solution.

Keywords: Time Stamping, Cryptography, Web Services, Multi-Tier Architectures
Communicated by: M Gaedke, P Fraternali & G Rossi

1 Rationale and Contribution

Software systems have functional requirements (i.e., what services the system has to pro-
vide), and non functional requirements (i.e., the quality the system must guarantee in the
delivery of such services). Typical functional requirements are business-specific services, and
typical non functional requirements are security and performance.

Security has become a key requirement for the vast majority of current applications. As
systems are being opened to the Internet, commercial traders, financial institutions, service
providers, and consumers are exposed to a variety of potential damages, which are often
referred to as electronic risks. These may include direct financial loss resulting from fraud,
theft of valuable confidential information, loss of business opportunity through disruption

°Luigi Romano, Dipartimento di Informatica e Sistemistica, University of Naples, Via Claudio, 21 80125
Napoli - Italy. e-mail: lrom@unina.it Tel: +39.081.7683834 Fax: +39.081.7683816.

148

A. Cilardo, A. Mazzeo, L. Romano, G. P. Saggese, and G. Cattaneo 149

of service, unauthorized use of resources, loss of customer confidence or respect, and costs
resulting from uncertainty. In order to mitigate risks and promulgate the deployment of
information systems in open networked environments, applications must guarantee security
features such as authentication, authorization, confidentiality, integrity, and non-repudiation.
A particularly challenging issue is how to guarantee that long lived electronic documents can
be verified over the years. To achieve this goal, it is crucial that reliable digital time stamping
features be made available.

During the last years, especially in the context of legal regulation of digital signature
techniques, the organizational and legal aspects of time stamping itself have become the
subject of world-wide attention, both in academia and in the industry. Time stamping is a
set of techniques enabling one to ascertain whether an electronic document was created or
signed at a certain time. Without time stamping we neither can trust signed documents when
the cryptographic primitives used for signing have become unreliable nor we can solve the
cases when the signer himself repudiates the signing, claiming that he* has accidentally lost
his signature key. Unfortunately, unlike physical objects, digital documents do not comprise
the seal of time. Thus, the association of an electronic document uniquely with a certain
moment of time is very complicated, if not impossible at all.

In the literature, time stamping schemes are classified into three distinct types [14]: simple,
linking, and distributed schemes.

In the simple scheme, a time stamp is generated by a trusted third party (the Time
Stamping Authority, TSA) in such a way that it does not involve data included in other
time stamps. The main weakness of this scheme is that the TSA has to be unconditionally
trusted: if the TSA fraudulently alters the time parameter of a certain time stamp, nobody
can detect the alteration. Also, if a leakage of the signature key of the TSA has occurred,
fake time stamps can be forged at will. Some ten years ago the only known time stamping
methods were based on the use of linear schemes. Thus, applications which needed digital
time stamping had no choice but resorting to TSAs, which they had to trust unconditionally.
In 1991 the seminal publication [11] of Haber and Stornetta showed that the trust to the
TSA can be greatly reduced by using the linking schemes or alternatively the distributed
schemes. Several papers were published during the last years, which further improved the
original schemes [3, 2, 12, 4].

The basic idea behind the linking scheme is to generate a time stamp which involves data
included in other time stamps. A chain of time stamps is constructed, typically by using
a one-way hash function. If an issuer is willing to deliberately alter or forge a certain time
stamp, he has to alter all the related time stamps. For this reason it is more difficult for an
issuer to manipulate a time stamp in the linking scheme than in the simple scheme.

Finally, in the distributed scheme multiple issuers independently generate a time stamp
according to the simple scheme, each using his own key and time source. The set of issuers
designated to sign the time stamp is chosen randomly, in such a way that the submitter cannot
determine them a priori. If the number of signing issuers is less than a specific predetermined
number, they cannot produce a correct time stamp. This scheme relies on the difficulty for

2Throughout this paper he and she will be used interchangeably.

150 A Web Services Based System For Digital Time Stamping

the submitter to collude with a large enough number of issuers so to be able to complete
the stamping process. However, the need for a large number of independent issuers (who
could possibly be the users of the service themselves) makes the distributed scheme rather
unpractical in most practical situations.

In conclusion, at the time of this writing, the algorithms used to provide time stamping
services in real-world scenarios rely on linking schemes.

This paper presents a web-based architecture for implementing and exposing to the In-
ternet time stamping services. The design, the implementation, and the validation of the
architecture are the outcome of a years long research activity conducted cooperatively by an
academic and an industrial party. Preliminary results of such an activity have already been
described in [6, 7, 8].

The architecture uses a round-based linear linking scheme. Time stamping requests falling
in a given time window are gathered in a tree-like structure and compressed into a single data
item to be signed and linked with the results coming from the previous time windows. This
technique improves performance and dramatically reduces the quantity of data to be signed
and linked, as compared to the plain linear linking scheme which shows prohibitive trust and
broadcast requirements. The width of the time window represents the time resolution by which
relative temporal order between two distinct stamps can be established. For the structure of
rounds we chose a tree-like scheme since it allows for an easy and efficient implementation.
Intermediate results of the time stamping process are to be periodically spread via a variety
of media so that the trustworthiness of the issuer is no longer needed for verifying correctness
of stamps issued in the past. The architecture relies on a multi-tier structure. The back-
end server is in charge of the bulk of the algorithmic issues. The middle-tier is in charge of
leveraging services provided by the back-end, in order to satisfy interoperability requirements
which arise from the heterogeneity of the service requestors. To implement the middle-tier, we
resorted to the emerging Web services technology. Web services are a promising technology
allowing for a flexible interaction between applications over the Web. Web services are to be
thought of as self-contained, modular applications that can be described, published, located,
and invoked over the Web. Through wrappering the underlying plumbing, services insulate
the application programmer from the lower layers of the programming stack. This allows
services to enable virtual enterprises to link their heterogeneous systems and to participate
in single, administrative domain situations, where other communications mechanisms can
provide a richer level of functionality.

The work presented in this paper makes three important contributions.

First, it provides a comprehensive overview of the main state-of-the-art algorithms for time
stamping applications and thoroughly discusses pros and cons of each technique. Algorithms
are analyzed in terms of security and efficiency, with respect to the actual implementation of
both the issuing and the verification processes.

Second, it presents a practical solution for and an experience in the implementation of
time stamping services and their exposition to the Internet. This makes a valuable resource
for practitioners. That is especially true of a fields — such as computer security — where for
most commercial product vendors do not provide details about implementation, performance,

A. Cilardo, A. Mazzeo, L. Romano, G. P. Saggese, and G. Cattaneo 151

and development and deployment costs. In particular, we address the integration problems
which arise when a potentially large community of users, usually relying on heterogeneous
technologies, are willing to access a remote third-party time stamping service.

Third, it provides valuable evidence from the field regarding best practices for wide scale
deployment of time stamping services using Commercial Off-The-Shelf (COTS) software prod-
ucts.

The rest of the paper is organized as follows. Section 2 provides an overview of the Web
services architecture. Section 3 contains a thorough analysis of the schemes used to provide
time stamping services. Section 4 describes the architecture of the proposed system. Sec-
tion 5 details the actual implementation of the architecture and system operation. Section 6
shows results of experimental tests and a case-study application. Section 7 presents some
considerations on the design experience and lesson learned. Section 8 gives some examples of
existing implementations of time stamping services. Section 9 concludes the paper with some
final remarks.

2 The Web Services Framework

A Web service [16] is an interface that describes a collection of operations that are network-
accessible through standardized eXtensible Mark-up Language (XML) messaging. A Web ser-
vice is described using a standard, formal XML notion, called its service description, which
covers all the details necessary to interact with the service, including message formats (that
detail the operations), transport protocols, and location. The interface hides the implemen-
tation details of the service, allowing it to be used independently of the hardware or software
platform on which it is implemented and also independently of the programming language in
which it is written. This allows and encourages Web services-based applications to be loosely
coupled, component-oriented, cross-technology implementations. Web services fulfil a specific
task or a set of tasks. They can be used alone or with other Web services to carry out a
complex aggregation or a business transaction.

The Web services architecture is based upon the interactions between three roles: service
provider, service registry, and service requestor. The interactions involve the publish, find
and bind operations. Together, these roles and operations act upon the Web services arti-
facts: the Web service software module and its description. In a typical scenario, a service
provider hosts a network-accessible software module (an implementation of a Web service).
The service provider defines a service description for the Web service and publishes it to a
service requestor or service registry. The service requestor uses a find operation to retrieve
the service description locally or from the service registry and uses the service description to
bind with the service provider and invoke or interact with the Web service implementation.
Service provider and service requestor roles are logical constructs and a service can exhibit
characteristics of both. Figure 1 illustrates these operations, the components providing them,
and their interactions.

The Web services architecture consists of several layers. To perform the three operations
of publish, find and bind in an interoperable manner, there must be a Web services stack that
embraces standards at each level.

152 A Web Services Based System For Digital Time Stamping

Service
Requestor

Fig. 1. The Service Oriented Architecture for Web services.

The foundation of the Web services stack is the network. Web services must be network-
accessible to be invoked by a service requestor. Web services that are publicly available on the
Internet use commonly deployed network protocols. Because of its ubiquity, the Hypertext
Transfer Protocol (HTTP) is the de facto standard network protocol for Internet-available
Web services. Other Internet protocols can be supported, including the Simple Mail Transfer
Protocol (SMTP) and the File Transfer Protocol (FTP).

The next layer, XML-based messaging, represents the use of XML as the basis for the
messaging protocol. The Simple Object Access Protocol (SOAP) is the chosen XML messaging
protocol for many reasons:

e It is the standardized enveloping mechanism for communicating document-centric mes-
sages and remote procedure calls using XML.

o It is simple, since it is basically an HTTP POST with an XML envelope as payload.

o It is preferred over simple HTTP POST of XML because it defines a standard mechanism
to incorporate orthogonal extensions to the message using SOAP headers and a standard
encoding of operation or function.

o SOAP messages support the publish, find and bind operations of the Web services
architecture.

The interoperable base stack — illustrated in Figure 2 — provides for interoperability and
enables Web services to leverage the existing Internet infrastructure. This creates a low cost
of entry to a ubiquitous environment. Flexibility is not compromised by the interoperabil-
ity requirement, because additional support can be provided for alternative and value-add
protocols and technologies.

The service description layer is actually a stack of description documents. First, the Web
Service Definition Language (WSDL) is the de facto standard for XML-based service descrip-
tion. This is the minimum standard service description necessary to support interoperable
Web services. WSDL defines the interface and mechanics of service interaction. Additional

A. Cilardo, A. Mazzeo, L. Romano, G. P. Saggese, and G. Cattaneo 153

WSDL [service Description
SOAP | yML-based Massaging
HTTP Network

Fig. 2. Interoperable base Web services stack.

description is necessary to specify the business context, qualities of service, and service-to-
service relationships. The WSDL document can be complemented by other service description
documents to describe these higher level aspects of the Web service. For example, business
context is described using the Universal Description, Discovery and Integration (UDDI) data
structures in addition to the WSDL document. Service composition and flow are described
in a Web Services Flow Language (WSFL) document.

Because a Web service is defined as being network-accessible via SOAP and represented
by a service description, the first three layers of this stack are required to provide or use any
Web service. The simplest stack would consist of HT'TP for the network layer, the SOAP
protocol for the XML messaging layer and WSDL for the service description layer. This is
the interoperable base stack that all inter-enterprise, or public, Web services should support.
Web services, especially intra-enterprise, or private, Web services, can support other network
protocols and distributed computing technologies.

Two additional layers, namely service publication and service discovery, can be imple-
mented on top of the interoperable basic stack. Any action that makes a WSDL document
available to a service requestor, at any stage of the service requestors lifecycle, qualifies as
service publication. The simplest, most static example at this layer is the service provider
sending a WSDL document directly to a service requestor. This is called direct publication.
E-mail is one vehicle for direct publication. Direct publication is useful for statically bound
applications. Alternatively, the service provider can publish the WSDL document describing
the service to a host local WSDL registry, private UDDI registry or the UDDI operator node.

Because a Web service cannot be discovered if it has not been published, service discovery
depends upon service publication. The variety of discovery mechanisms at this layer parallels
the set of publication mechanisms. Any mechanism that allows the service requestor to
gain access to the service description and make it available to the application at runtime
qualifies as service discovery. The simplest, most static example of discovery is static discovery
wherein the service requestor retrieves a WSDL document from a local file. This is usually the
WSDL document obtained through a direct publish or the results of a previous find operation.
Alternatively, the service can be discovered at design time or runtime using a local WSDL
registry, a private UDDI registry or the UDDI operator node.

Because a Web services implementation is a software module, it is natural to produce
Web services by composing Web services. A composition of Web services could play one of
several roles. Intra-enterprise Web services might collaborate to present a single Web service

154 A Web Services Based System For Digital Time Stamping

interface to the public, or the Web services from different enterprises might collaborate to
perform machine-to-machine, business-to-business transactions. Alternatively, a workflow
manager might call each Web service as it participates in a business process. The topmost
layer, service flow, describes how service-to-service communications, collaborations, and flows
are performed. WSFL is used to describe these interactions.

For a Web services application to meet the stringent demands of todays e-businesses,
enterprise-class infrastructure must be supplied, including security, management and quality
of service. These vertical requirements must be addressed at each layer of the stack. The
solutions at each layer can be independent of each other. More of these vertical requirements
will emerge as the Web services paradigm is adopted and evolved.

The bottom layers of the stack, representing the base Web services stack, are relatively
mature and more standardized than the layers higher in the stack. The maturation and
adoption of Web services will drive the development and standardization of the higher levels
of the stack and the vertical requirements.

3 Time Stamping Schemes

The main security objective of time stamping is temporal authentication, i.e. the ability to
prove that a certain document has been created at a certain moment of time. As a definition
applicable in legal situations, a time stamping system can be thought of as a set of supervisors,
a time stamping server, and a triple {S; V; A) of protocols [4]. The stamping protocol S allows
each participant to submit a message. The verification protocol V is used by a supervisor
having some time stamps to verify the absolute submission time of individual stamps or the
relative temporal order of all stamps. The audit protocol A is used by a supervisor to verify
whether the time stamping server carries out his duties. Additionally, nobody should be
able to produce fake time stamps without being caught. A time stamping system should be
able to handle time stamps which are anonymous and do not reveal any information about
the content of the stamped data. The time stamping system is not required to identify the
initiators of time stamping requests.

3.1 Simple Scheme

As we explained in the introductory section, the simple time stamping scheme relies only on a
trustworthy third party (the Time Stamping Authority, TSA) which is in charge of certifying
the time by signing the stamp. Thus, the stamping protocol S consists of a simple digital
signature of the requestor’s message associated with the submission time. More precisely, a
time stamp is issued as follows.

1. The client sends a document z (or a hash value of it) to the TSA;

2. The TSA appends the current time ¢ and the TSA identifier /D to the submitted
document, and signs the composite document (ID, ¢, z);

3. The TSA returns the two values t and s = sigrsa(ID,t,z) to the client.

The verification protocol V checks the integrity of the digital signature, and establishes
relative temporal order between two stamps by comparing their absolute time. The audit pro-
tocol A can only reveal an improper behaviour of the TSA by submitting trial time stamping

A. Cilardo, A. Mazzeo, L. Romano, G. P. Saggese, and G. Cattaneo 155

requests and checking the correctness of the certified time values. However, this obvious
technique is unable to check a generic time stamp previously issued and correctly signed; one
should consider such a stamp as a trustworthy proof even if nobody verified its correctness at
issuance time.

As we have already pointed out, this time stamping system is rather weak since it relies on
an unconditionally trusted third party, which is wholly liable for the issued stamps. Moreover,
in the event that the secrecy of the issuer’s signature key is compromised, there is no way to
distinguish a genuine stamp from a forged one.

3.2 Linking Schemes

Linking schemes have been introduced to overcome these drawbacks. Basically, they are based
on the following principle:

Although the creation of a digital data item is an observable event in the physical world,
the moment of its creation cannot be ascertained by observing the data itself; however,
it is possible to check the relative temporal order of the created data items (i.e., prove
the relative temporal authentication, RTA) using one-way dependencies defining the
arrow of time.

All the proposed time stamping linking schemes realize one-way dependencies by means
of the so-called collision free one-way hash functions. These include families of functions
h:{0,1}* = {0,1} compressing bit-strings of arbitrary length to bit-strings of a fixed length
I, with the following properties:

e The functions h are easy to compute, and it is easy to pick a member of the family at
random.

e It is computationally infeasible, given one of these functions h, to find a pair of distinct
strings @, ' satisfying h(z) = h(z’). Such a pair is called a collision for h.

Hash functions have a number of good properties well suited for all kinds of time stamping
schemes. One can hash the document = to be time stamped, and submit only the hash value
y = h(z) to the time stamping authority. For the purpose of authentication, stamping y is
equivalent to stamping z. Resorting to hash functions solves a privacy issue, since the content
of the document to be time stamped need not to be revealed. The originator of the document
computes the hash value himself, and sends it to the time stamping service. The plain
document is only needed for verifying the time stamp. This is very useful for many reasons
(such as protecting something that one might want to patent). Furthermore, only a small,
fixed-length message is to be submitted to the time stamping authority, greatly reducing the
bandwidth problems which would arise if the whole document x were to be processed. With a
secure signature scheme available, when the time stamping authority receives the hash value,
it builds the time stamp token, then signs this response and sends it to the client. By checking
the signature, the client is assured that the time stamping authority actually did process the
request and that the hash value was correctly received. Depending on the design goal for an
implementation of time stamping, there may be a single hash function used by everybody, or
different hash functions for different users.

156 A Web Services Based System For Digital Time Stamping

In the time stamping linking scheme, hash functions are mainly used to produce time
dependencies between issued time stamps, based on the following consideration: if A is a
collision-free one-way hash function, and the values h(z) and = are known to a supervisor P
at a moment ¢, then someone (possibly P himself) used z to compute h(x) at a moment prior
to f.

The general stamping protocol S followed by a TSA in the linking scheme can be summa-
rized as follows:

1. Clients send documents (or hash values) to the TSA;

2. The TSA combines requests from individual clients which arrive within a given time
window, along with certain values related to stamps issued in the past;

3. The TSA signs a composite document which is a function of a number of issued stamps;

4. The TSA returns the time stamps to the clients.

Obviously, with such a scheme it is hard to produce fake time stamps because forging a
single stamp means forging all verifiable dependencies.

Moreover, the need for a trusted TSA can be greatly reduced with the linking schemes
by periodically publishing the values used to create the dependencies. Actually, if one can
demonstrate the dependency of a stamp on some widely accepted data (for example, a hash
value weekly published on a printed newspaper), the TSA is no longer involved in the verifica-
tion process. The verification protocol V' can thus follow the dependency path from the stamp
in question to the closest published piece of data. In addition, the dependencies can be used
to establish the relative temporal order between two stamps. The audit protocol A consists in
checking the integrity of the linking scheme, based on the published values. The audit can be
accomplished at any time and allows the verifier to demonstrate not only whether, but also
when the linking process was altered and thus to distinguish genuine stamps from unreliable
ones (with a certain time resolution depending on the publishing rate).

3.3 Distributed Scheme

In [11] an alternative approach is proposed based on distributed trust. This scheme needs not
use a centralized time stamping server at all. It is assumed that there is a secure signature
scheme so that each user can sign messages, and that a standard secure pseudorandom gen-
erator G is available to all users. A pseudorandom generator is an algorithm that stretches
short input seeds to output sequences that are indistinguishable by any feasible algorithm
from random sequences; in particular, they are unpredictable.

The stamping protocol S followed by a user in the distributes scheme is as follows:

1. Given the hash value y of the document to be time stamped, the pseudorandom gener-
ator is used to derive a k-tuple of client identification numbers:

G(y) = (IDy,IDs,...,IDy).

Each of the clients corresponding to ID;,IDs,...,ID; receives the time stamping re-
quest along with ¢y and the submitting identifier 7D.

A. Cilardo, A. Mazzeo, L. Romano, G. P. Saggese, and G. Cattaneo 157

2. Each of the clients designated by means of G(y) signs the message (¢, I D, y) including the
time ¢, and returns the signed message s;. The time stamp consists of [(y, I D), (s1,. .., sk)].

As in the simple scheme, the verification protocol V' checks the integrity of the digital
signature of all responses, while the audit protocol A can detect breaches in the system by
submitting trial time stamping requests and checking the correctness and the consistency of
all returned time values. As pointed out above, this technique is unable to check a generic
time stamp previously issued and correctly signed.

The strength of this scheme is that the submitter should be able to collude with all
selected clients ID;...IDy. The properties of the pseudorandom generator G ensure it
is computationally impossible to find a document y which produces some predetermined
ID, ... ID;. To obtain a fake stamp, the submitter should collude with k random chosen
clients. k could be set so that the probability of such a collusion is kept under a certain level.

The distributed scheme has a number of drawbacks. First, the set of possible clients
should be established a priori, and the pseudorandom generator should determine only existing
clients. Even if this condition is assured, availability of random chosen clients could easily
determine a weakness in the system. Moreover, the bandwidth required for a single time
stamp issuance would be k times larger than that for the simple scheme. Further problems
are related to the synchronization of many distinct time sources and to the legal definition
of liability for the certified time. In fact, the distributed scheme, proposed along with the
linking scheme in 1991, has not been studied afterwards.

3.4 Evolution of Linking Schemes

The most widely known linking schemes are the Haber and Stornetta’s ones. The first scheme
proposed by Haber and Stornetta is referred to as linear linking scheme [11]. In order to
diminish the need for trust, the time stamping authority links all time stamps together into
a chain using the collision-free hash function h. In this case the time stamp for the nth
submitted document y,, is s = sigrss(n,tn, I Dy, Yn, Ly), where ¢, is the current time, ID,,
is the identifier of the submitter and L,, is the linking information defined by the recursive
equation

L, = (tnflv Ianla Yn—1, h(Lnfl))

There are several complications with the practical implementation of this scheme. First,
the number of steps needed to verify the one-way relationship between two time stamps is
linear with respect to the number of time stamps between them. Hence, a single verification
may be as costly as it was to create the whole chain. It has been shown that this solution has
impractical trust and broadcast requirements. Haber and Stornetta proposed a modification
where every time stamp is linked with k& > 1 time stamps directly preceding it. This variation
decreases the requirements for broadcast by increasing the space needed to store individual
time stamps.

In reference [12] Haber and Stornetta proposed a tree-like scheme, based on Merkle’s
authentication trees [18, 19], in which the time stamping procedure is divided into rounds.
Every participant P; who wants to time stamp at least one document in this round, submits to
the time stamping authority a hash y, ; which is a hash of all the documents he wants to time

158 A Web Services Based System For Digital Time Stamping

stamp in this round. The global stamp R, for the whole round r is a cumulative hash of the
time stamp R, for round 7 — 1 and of all the documents submitted to the TSA during the
round r. After the end of the rth round a binary tree T is built. The leaves of T} are labeled
by different y, ;. Each inner node k of T, is recursively labeled by Ay := h(hgy,, hyr), where
kL and kR are correspondingly the left and the right child nodes of k (see Figure 3), and h is
a collision-free hash function. The TSA has to store only the time stamps R, for rounds. All
the remaining information, required to verify whether a certain document was time stamped
during a fixed round, is included into the individual time stamp of the document.

Fig. 3. An example of time stamp for round r by the Haber and Stornetta scheme.

The tree-like scheme is feasible but provides the relative temporal authentication (RTA)
for the documents issued during the same round only if we unconditionally trust the TSA to
maintain the order of time stamps in 7,.. Therelore, this method either increases the need for
trust or otherwise limits the maximum temporal duration of rounds to the insignificant units
of time.

In the linear linking scheme, the challenger of a time stamp is satisfied by following the
linked chain from the document in question to a time stamp certificate that the challenger
considers trustworthy. If a trustworthy certificate occurs about every N documents then
the verification process may require as many as N steps. By using the tree-like scheme,
an exponential increase in the publicity obtained for each time stamping event is achieved,
reducing the storage and the computation required in order to validate a given certificate, as
the cost from this operation is reduced from N to log N.

In reference [4] Buldas et al. proposed a practical linking scheme which allows the intra-
round stamps to be kept ordered, regardless of the trustworthiness of the time stamping
service provider. Basically, this scheme permits, given any two submitted hash values y; and
yo2, building a hash chain leading from y; to y; or viceversa, even if both requests fall in
the same round. Moreover, the scheme has a logarithmic upper bound to the length of the
shortest verifying chain between any two time stamps. Mathematically speaking, a binary
linking scheme can be defined as a directed countable graph which is connected, contains no
cycles and where all the vertices have two outgoing edges. A general process for constructing
an infinite family T} of such graphs is as follows (See Figure 4):

e T, consists of a single vertex which is labeled with number 1. This vertex is both the

A. Cilardo, A. Mazzeo, L. Romano, G. P. Saggese, and G. Cattaneo 159

source and the sink of the graph T7;

o Let T} be already constructed and its sink be labeled by 2* —1. The graph T} consists
of two copies of Ty, where the sink of the second copy is linked to the source of the first
copy, and an additional vertex labeled by 2¥*1 — 1 which is linked to the source of the
second copy. Labels of the second copy are increased by 2% 4+ 1. The sink of T}, is
equal to the sink of the first copy, the source of T 1 is equal to the vertex labeled by
2k+1 _ 1. Thereafter, link all the vertices of the second copy which have less than two
outgoing links, to the sources of the first copy. Note that there is now a double link
from the sink of the second copy to the source of the first copy.

' 2k+1_1

Tk+1 ‘ 2k+1_2

Fig. 4. Demonstration of the construction of a binary linking scheme.

The sequence (T}) defines a binary linking scheme with the vertices labeled by numbers
which contains each scheme T} as its initial segment. After the construction of this binary
linking scheme, links from the sources of any such initial segment to a special vertex labeled
by 0 must be added (See Figure 5).

31
» o
15 30l
< o= *
7 14;'1
<t
3 6 10 13
o

0 1 2 4 5 8 9 M1 12 16 17 19 20 23 24 26 27

Fig. 5. Binary Linking Scheme.

As Figure 5 shows, given any two nodes labeled with ¢ and j, with ¢ < j, it is always
possible to connect ¢ to j with a one-way hash chain starting from j. A major drawback
of the Buldas’ approach is related to the algorithms for traversing the scheme, which are all
rather irregular and complex.

4 System Architecture

160 A Web Services Based System For Digital Time Stamping

Our objective was designing an architecture for providing time stamping services with
emphasis on ubiquity and interoperability. Ubiquity is a key requirement due to the ever
increasing number of “on the go” users. Interoperability is also a crucial requirement since
the delivery of time stamping services involves a potentially large community of users, who
typically rely on heterogeneous technologies. In order to achieve these goals, we adopted
a multi-tier architecture, whose characteristics are described in the following. This facili-
tated a development approach exploiting clean separation of responsibilities, and made the
proposed solution flexible, since the architecture relies on modular components consisting of
re-configurable software modules. The innermost tier of the architecture, i.e. the back-end,
implements a complex infrastructure which is in charge of the construction of rounds and
time stamp chains, of the verification process, and of the publication. Implementation details
and schemes are hidden to the external world. The middle-tier of the architecture addresses
issues related to the heterogeneity of users and guarantees ubiquity and interoperability (as
an example, it makes system services available to applications running on devices with limited
computing power).

The overall organization of the system is depicted in Figure 6.

Requestor «

Middle-Tier |: Back-End

Requestor *

Fig. 6. Overall system architecture.

As shown in the figure, the clients, the middle-tier components, and the back-end servers
are located in the first, second, and third tier of a multi-tier architecture, respectively.

The rest of this section is organized as follows: Subsection 4.1 thoroughly explains the
back-end structure; Subsection 4.2 provides details on the middle-tier.

4.1 The Back-End

The back-end provides time stamping functions, thus satisfying the application functional
requirements. The overall structure of the back-end server is depicted in Figure 7.
Basically, the functions the back-end time stamping system provides are the following:

e time stamp creation, i.e. creating a time stamp in response to a time stamp request;
e time stamp verification, i.e. verifying the validity of an existing time stamp;

¢ time stamp publication, i.e. making global hash values widely available for auditing and
independent verification purposes.

As far as the time stamping scheme is concerned, we chose the linear linking scheme divided
into rounds since it provides the best compromise in terms of security and performance. In
fact, as it was pointed out in section 3, the actual implementation of the simple linear linking

A. Cilardo, A. Mazzeo, L. Romano, G. P. Saggese, and G. Cattaneo 161

)
A Cryptographic -
e Y > Publisher
......... P Englne
GPS Time r'y A
Source
\ 4
Tree Builder v
4 Verifier
7'y
message time verification | verification
digest stamp request response
\ 4 h 4

Middle-Tier | proy

Fig. 7. The organization of the back-end.

scheme shows impractical requirements, mainly for the number of steps involved in verifying
the one-way relationship between time stamps. The structure of the single round of the time
stamping process is basically a tree in our implementation. The tree-like structure does not
provide relative temporal order between stamps falling in the same round, while allowing for
an easy and efficient implementation. As discussed in section 3, binary linking schemes are
hard to build and to traverse, and they thus lead to a complex and inefficient implementation.
So, we prelerred to use a simple round structure, which is far more efficient.

In the following we briefly describe each of the back-end components.

The Prozy component is in charge of receiving the messages delivered by the middle-tier
in a common format which does not depend on the particular implementation of the time
stamping servers. The proxy builds messages to be exchanged with the underlying back-end
server in a suitable format.

The Tree Builder component accepts a sequence of input time stamping requests and
forms one output time stamping request to be submitted to the time stamping server for the
linking process. The purpose of building tree structures is improving the system performance
by reducing the server load as the number of requests sent directly to the server is decreased.
This aggregation process is considerably less resource-consuming than linking and signing the
time stamps. It allows to reduce the workload (since this does not scale any more with the
number of time stamping requests) of the time stamping server, at the price of a moderate
increase in the size of individual time stamps. The potential loss of precision due to the
introduction of rounds can be made negligible by setting the length of the round to the time
resolution needed by the target applications. Note that the Tree Builder component does
not introduce any security risks. Hence, it is not necessary to authenticate it separately.
The Tree Builder basically uses the Haber and Stornetta’s tree-like scheme based on Merkle’s
authentication trees [18, 19]. Each tree corresponds to a round of the time stamping process
and includes time stamping requests falling in a time window whose length T, is taken as

162 A Web Services Based System For Digital Time Stamping

a system parameter. Basically, Merkle’s authentication tree is a method of providing short
proofs (logarithmic in the number of inputs) that a bitstring = belongs to the set of bitstrings
{z1,Z2,...,2n}. During a round a binary tree is constructed as follows (see Figure 8): The
leaves are labeled with message digests extracted from the time stamping requests obtained
during the round, every non-leaf is labeled with a message digest computed using a hash
function h over a concatenation of the labels of its children.

d=h1234=h(h12’h34)

h12=h(X1,X2) h34=h(x3’x4)

X, X, X, X4
Fig. 8. Merkle’s authentication tree.

Hence, the label of the root of the tree depends on all the leaves, i.e. aggregated bitstrings.
For every leaf it is possible to prove this dependence by exhibiting some more vertices of the
tree; the minimal collection of such extra nodes is called an authentication path.

Figure 9 shows an example of a Merkle’s authentication tree where in order to prove that
the root value d is dependent on the input z; it is enough to add vertices xo and hgy and
compute his = h{x1,z2) and d = hiazs = h(hia, T34).

d

X, X,

Fig. 9. Authentication path for bitstring ;.

The Cryptographic Engine performs two distinct actions:

o It freezes the time stamping request sequence by linking the consecutive rounds based
on a linear scheme. The direct dependencies are created by computing message digests
using hash functions. This process is shown in Figure 10, where di3, dy4, di5, and dig
are the elements of the linear chain.

o It adds the time value to the time stamp to be formed. The absolute time is to be thought
of as an additional piece of information provided by the system. It allows users to gain
fine-grain information on the time period comprised between two published root values.
In others word, it provides fine-grain absolute temporal authentication, in addition to
the fine-grain relative temporal authentication provided by the linking scheme and the
coarse-grain absolute temporal authentication provided by the mechanism of root value

A. Cilardo, A. Mazzeo, L. Romano, G. P. Saggese, and G. Cattaneo 163

publication. Obviously, this additional feature relies on the security of the system private
key. However, erroneous or fraudulent behaviors would be immediately detected and
proved by means of the linking process.

d,,: Closest Published
4? Hash Value

\

vd15 d15

Time Stamping Database

X, % % X
Fig. 10. Linking of round hash values and a complete hash chain.

Issued time stamps are also signed by the server assuring their authenticity and instant
verifiability.

The Publisher component is used to make message digests daily available by some public
and auditable media. Publishing is one of the central means ensuring the auditability of
the service and retaining the long-term proof value of the time stamps, regardless of the
trustworthiness of the time stamping service provider.

The Verifier component allows any external verifier to check the validity of an existing
time stamp. An instant verification on time stamps is always possible without interacting
with the time stamping server by simply checking the digital signature it provided with the
stamp. However, as we explained above, this method requires an unconditionally trusted
time stamping server and critically relies on the security of the provider’s private key. On the
other hand, the Verifier component provides the verifier with all the pieces of data needed
to reconstruct a hash chain from the time stamp in question to the closest published hash
value, so that the time stamping provider is not required to be trusted and the verification
process is as trustworthy as the publishing media are. Figure 10 shows an example of an
authentication path needed for such a verification process: the message to verify is xy, while
the chain leading to the closest published value consists of z1, h12, h1234, d1a, di5.

4.2 The Middle-Tier

The middle-tier is in charge of leveraging services provided by the back-end server, in order
to satisfy interoperability requirements which arise from the heterogeneity of the clients.
Interactions between the middle-tier and the back-end take place via the Gateway (at the
middle-tier side) and the Proxy (at the back-end side).
The middle-tier also decouples service implementation (i.e., the back-end) from its inter-
face. Furthermore, the middle-tier is responsible for anonymity of requestors. Actually, an

164 A Web Services Based System For Digital Time Stamping

important property of a time stamping service is that it should never associate clients to time
stamp requests. The structure of the middle-tier is shown in Figure 11.

«—»| Transport Listener | Gatewa +— Back-End
«—»| Transport Listener | L y
4——»] Transport Listener | D iSp atcher

SOAP Engine

Fig. 11. The organization of the middle-tier.

On the client side the system appears as a Web service provider. The use of the Web
services technology provided the following benefits:

e Promoted interoperability - The use of XML-based interfaces and protocols minimized
the requirements for shared understanding between the service provider and a service
requestor (which could be limited to collaboration and negotiation).

e Enabled just-in-time integration - Collaborations in Web services could be bound dy-
namically at runtime. Dynamic service discovery and invocation (publish, find, bind)
and message-oriented collaboration yielded applications with looser coupling.

o Reduced complexity and improved flexibility and extensibility - These advantages were
achieved via encapsulation. All components were seen as services. What was important
was the type of behavior a service provided, not how it was implemented.

All these characteristics enabled heterogeneous client applications to easily interface with
the time stamping server, and exploit its functions.

The service requestor can access the middle-tier via any transport protocol available over
the Internet, provided that a protocol listener for the specific protocol has been implemented
(in particular, we provided an HTTP listener and an FTP listener, which are two of the
transports recommended in RFC3161 [1]). Requests and responses are exchanged through
SOAP messages. The entry point for requestors’ messages consists thus of a SOAP engine (see
Figure 11) which coordinates the SOAP message flow through the subsequent components.
The engine is also responsible for ensuring that the SOAP semantics are followed. Clients are
not aware of the implementation details of the service provided by the back-end components.
All they know is which services are available and what their interface is like.

The Dispatcher component is responsible for acting as a bridge between the SOAP proces-
sor and the functional components. It identifies the Java objects to which to delegate the
execution of individual activities, and invokes the appropriate methods on such objects.

The Gateway component is in charge of data conversion from XML and SOAP data
structures to Abstract Syntax Notation One (ASN.1) data structure (and viceversa). ASN.1
data structures are compliant with indications contained in [1].

All layers of the presented multi-tier architecture work in a pipelined fashion to achieve
high throughput.

A. Cilardo, A. Mazzeo, L. Romano, G. P. Saggese, and G. Cattaneo 165

5 Implementation Details

Figure 12 shows the sequence diagram for the time stamp issuance process.

Tree Linking and Time Stamping
Building Time Adding Database

Middle. Tier /
Back-End Proxy|

hash | .
H translate

hashValue I—p »
hash dispatchRequest

Requestor 1

Requestor n

Time
Window

L

Qtranslaae

L=

hashValue

buildTree

previ oot

Time : linkRequest

Error : :) linkHashvalues
. storeRoot
aan E : >s|gnToken

+_ codedToken

'
:) translate
timeStampingToken

codedToken

' '
i ! u { exiractHashChain
H :) translate '
. timeStampingToken H

— " verifyToken

extractHashChain

Fig. 12. The sequence diagram for the time stamp issuance process.

Clients who are willing to obtain a stamp for their documents have to produce the hash
value of the document locally. The adopted hash function for our system is obtained as a
concatenation of two well-known hash functions, i.e. SHA1 [20] and RIPEMD160 [10], that
is:

h(z) = SHA1(z) & RIPEMD160(z)

We chose a compound hash function in order to strengthen the security of our time stamp-
ing server. Actually, in the event that one of the two hash functions is broken, the system will
not be compromised and old time stamps will remain valid as long as the other hash function
is secure.

The Middle-Tier gathers clients’ requests and dispatches them to the Back-end through
the Back-End proxy, in order for the submitted hash values to be put into the tree-like scheme
corresponding to the current time window. Once the tree is built, the root value is linked to
the previous one, according to the linear linking scheme. The current time is also attached to
the root value and the resulting message is signed with the private key of the system. This
step relies on a trusted time source, namely three GPS time sources synchronized by means of
a triangulation process and a network oriented protocol. The time source outputs universal
coordinated time (UTC) with some error depending on its properties.

166 A Web Services Based System For Digital Time Stamping

The requestors receive immediately the root value for the relevant time window tree, along
with the hash chain covering the path between their hash value and the root value. Once
the next publication will have taken place, they will get the full hash chain leading to the
published root value.

Note that the certified time refers to the time window controlled by the tree building
component. Submitted hash values are associated with the time window they fall in, regardless
of the time of their submission. It takes some time to complete the tree building, to link the
root value to the previous one, and to sign the resulting value along with the absolute time
value. This time interval is referred to as time error in Figure 12. Obviously, the time error
deteriorates the time resolution of the stamp issued. In our implementation, the error is
guaranteed to be less than 1 second. The maximum value for the error is included in the time
stamp together with the time value, and takes into account both the intrinsic time source
error and round resolution error.

The width of a time window T, plus the time error (1 second at most), corresponds to
the granularity of the time stamping token, as far as the absolute temporal authentication is
concerned. The relative temporal authentication is provided as long as the two documents fall
in two distinct rounds. Thus, the minimum temporal distance between two documents has to
be greater than T, seconds in order for their temporal order to be established. In section 6
we detail the procedure followed to establish the optimal value for T, and the depth of the
tree.

As far as protocols are concerned, to date there exists no consolidated standard describ-
ing all messages to be exchanged with a time stamping server based on a linking scheme.
RFC3161 [1], the most widely accepted protocol for time stamping operations, refers to
trusted time stamping authority schemes. Thus, it defines a simple protocol, which includes
only request/response messages, while it does not provide any indications as to verification
requests.

Figures 13 and 14 show a simplified representation of the RFC3161 structures for the time
stamping request and response, respectively.

Messagelmprint ::= SEQUENCE {
hashAlgorithm Algorithmldentifier,

TimeStampReq ::= SEQUENCE { hashedMessage OCTET STRING }
version INTEGER {v1(1) },

messagelmprint Messagelmprint,

reqPolicy TSAPolicyld OPTIONAL,

nonce INTEGER OPTIONAL,

certReq BOOLEAN DEFAULT FALSE,
extensions [0] IMPLICIT Extensions OPTIONAL

Fig. 13. A representation of the RFC3161 structure for the time stamping request.

The request structure is rather simple and contains only the document digest and a large
random integer (called nonce) that will be put into the response by the time stamping server
in order to allow the requestor to verify the timeliness of the response.

The response structure is much more complicated. It is based on a structure including the
time stamp token and some information for the request status. The token is a general struc-
ture defined by the Cryptographic Message Syntax (CMS) (RFC2630 [13]), here specifically
used for representing signed data and including digital certificates. According to RFC3161,

A. Cilardo, A. Mazzeo, L. Romano, G. P. Saggese, and G. Cattaneo 167

TimeStampResp ::= SEQUEI\iC_IE_{_________,_...—-———v PKIStatuslnfo ::= SEQUENCE {

o status PKIStatusinfo, status PKIStatus,

- timeStampToken TimeStampToken OPTIONAL } statusString PKIFreeText OPTIONAL,

8 faillnfo PKIFailurelnfo OPTIONAL }

©

Contentlnfo ::= SEQUENCE {
contentType ContentType, - := id-signedData
content [0] EXPLICIT ANY DEFINED BY contentType }
SignedData ::= SEQUENCE { Signerinfo ::= SEQUENCE {

2 version CMSVersion, version CMSVersion,

g digestAlgorithms DigestAlgorithmidentifiers, sid Signerldentifier, ’ o

O encapContentinfo EncapsulatedContentinfo, digestAlgorithm DigestAlgorithmIdentifier,

4 certificates [0] IMPLICIT CertificateSet OPTIONAL, signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
crls [1] IMPLICIT CertificateRevocationLists OPTIONAL, signatureAlgorithm SignatureAlgorithmldentifier,
signerinfos SET OF Signerinfo } signature SignatureValue,

unsignedAttrs [1] IMPLICIT UnsignedAttributes OPTIONAL }
EncapsulatedContentinfo ::= SEQUENCE {
eContentType ContentType, -- :=id-ct-TSTInfo
eContent [0] EXPLICIT OCTET STRING OPTIONAL }
TSTinfo ::= SEQUENCE {
version INTEGER {vi(1}},
policy TSAPolicyld,

pr messagelmprint Messagelmprint,

5 serialNumber INTEGER,

O genTime GeneralizedTime,

R accuracy Accuracy OPTIONAL,

ordering BOOLEAN DEFAULT FALSE,
nonce INTEGER OPTIONAL,
tsa [0] GeneralName OPTIONAL,

extensions [1] IMPLICIT Extensions OPTIONAL }

Fig. 14. A simplified representation of the RFC3161 structure for the time stamping response.

this signed data structure must encapsulate a time stamping structure that includes request
specific data, such as the serial number, the time, the submitted digest, the nonce, etc. Note
that this structure has a field aimed at containing extensions to the time stamping token.

For the time stamp issuance process, we followed the RFC3161 rules. In particular, we
exploit the extension field within the token structure for returning the hash chain values
linking the token to the relevant round root value. For the verification process, an ad hoc
RF(C3161-like protocol was employed.

Figure 15 shows the WSDL description of the SOAP messages involved in time the stamp
issuance process, whose execution is shown in Section 6.

6 System Deployment and Experimental Tests

A prototype system has been built to actually make available the time stamping functions
over the Internet and conduct some case-study experiments.

The system Back-End code runs on a IBM Server X-370 with four Pentium Xeon 900
MHz processors, and Linux kernel 2.4.12. The code is written in C++4 language and is
based on Crypto++ [9] library for cryptographic functions and on Snacc-based [27] efficient
C++ routines and data structures to support Basic Encoding Rules (BER) for encoding and
decoding of ASN.1 data structures. We used Java 2 Platform, Standard Edition (J2SE) [15]
to provide connection to the service via Secure Sockets Layer (SSL) [26].

The Middle-Tier, relying on the XML, SOAP, WSDL and UDDI open standards, over an

168 A Web Services Based System For Digital Time Stamping

<?uml version="1.0" encoding="UTF-8" 7>
- <wsdl:definitions targetNamespace="http://143.225.229.250:9080/T8S/wsdl/TS-service.wsdl" xmins="http://schemas.xmlsoap.org/wsdl/"
rimins: apachesoap="http://sml.apache.org/xml-soap” smins:impl="http://143.225.229.250:9080/TSS/wsdl/TS-service wsdl"
zmins:intf="http://143.225.229_250:9080/TSS /wsdl/TS-service.wsdl" xmins: soapenc="http:/ /schemas.xmlsoap.org/soap/encoding/"
zmins: ths1="http:/ /services" zmins:thsz="http:/ /PckProjectService" »mins:wsdl="http://schemas.kmlsoap.org/wsdl/"
rmins: wedlsoap="http:/ /schemas.xmlsoap.org/wsdl/soap/" xmins:xsd="http:/ /www.w3.0rg/2001/XMLSchema">
- <wsdlitypes>
- <schema targetMamespace="http://services" xmins="http://www.v3.0rg/2001/XML8chema">
<itnport namespace="http://schemas.xmlsoap.org/soap/encoding/" />
- <complexType name="TSSResponse’>
- <sequences
<element name="poolRef" type="xsd:int" />
<element name="timeToCheckBack" type="xsd:int" />
</sequence
</complexType>
<element name="T8SResponse” nillable="true" type="tns1:TSSRespanse" />
</schema>
</wsdl: typess>
<wsdlimessage name="requestAdvancedMmarkForHashAXRequest">
<wsdlimessage name="requestAdvancedMarkForHashRequest">
<wsdl:message name="getSimpleMarkaXResponse">
<wsdlimessage name="requestAdvancedMarkForStringResponse">
<wsdlimessage name="requestAdvancedMarkForHashAXResponse'>
<wsdlimessage name="requestAdvancedMmarkForstringRequest":>
<wsdlimessage name="retriveMarkResponse">
<wsdl:message name="getSimpleMarkForHashRequest">
<wsdlimessage name="getSimpleMarkForStringResponse">
<wsdl:part name="getSimpleMarkForStringReturn® type="xsd:base64Binary’ />
</wsdl:message:>
<wsdlimessage name="getSimpleMarkForHashResponse">
<wsdl:message name="retriveMarkRequest">
<wsdlimessage name="getSimpleMarkForStringRequest":
<wsdlimessage name="getSimpleMarkAXRequest">
<wsdl:message name="requestAdvancedmarkForHashResponse">
<wsdliportType name="T8">
<wsdl:hinding name="rpcrouter8oapBinding” type="impl:T8">
<wsdl:service name="TSService">
- <wsdl:port hinding="impl:rpcrouterSoapBinding" name="rpcrouter'>
<wsdlsoap: address location="http://143.225.225.250:9080/servlet /rpcrouter" />
</wsdl:port>
</wsdl:service>
</wsdl: definitions>

[T S S

o+ o+ o+

Fig. 15. WSDL description of the SOAP messages involved in time stamp issuance.

A. Cilardo, A. Mazzeo, L. Romano, G. P. Saggese, and G. Cattaneo 169

Internet protocol backbone is implemented with the Application Server IBM WebSphere 4,
running on Dell PowerEdge 1400SC with two 1400MHz Pentium III processors, running a
Linux Red Hat kernel 2.4.18-3 with dual processor support.

On this testbed, we conducted a massive experimental campaign, for different values of
key system parameters, and in particular of the time window T, and of the tree depth d.
This allowed us to identify the parameter configuration which delivered the best performance
for a given time resolution. Since our objective was to achieve a time resolution of 10 seconds
(T, = 10s) we set d to 13. These values lead to a throughput of 2'® = 8192 documents every
10 seconds, i.e. 2949120 documents per hour. Experimental tests showed that the system
was able to achieve this throughput with a CPU utilization and a memory occupation which
never exceeded 60 and 80 percent, respectively.

We also tested the functions of the time stamping server from a thin-client browser running
on a java-enabled PDA. We used a Compaq IPAQ 3870 handheld device as the experimental
client system. This is a challenging but nevertheless more and more likely scenario, due to
the astonishing increase in the popularity of handheld devices.

The PDA runs the Linux Familiar Operating System 2.4.18. Note that the Java virtual
machines (JVMs) available for PocketPc-based devices are compliant with J2ME/MIDP spec-
ifications; these JVMs lack standard XML APIs and support for the SSL protocol. Moreover,
these devices are equipped with web browsers that are not capable of managing Java applets.

Hence third party J2ME/CLDC (Connected Limited Device Configuration) libraries have
been used in order to handle XML, especially Web services-specific XML protocols. KXML
and KSOAP libraries contain XML parsing and SOAP-based communication primitives for
J2ME applications.

Figure 16 shows the execution of a client application written in java, which sends a time
stamp request to the time stamping server.

usr

x1ibs_4.1-5_arm,ipk
fmritfhda # od sintel
fmrt/hdafsinte]l # s

certlogeli certlongjars sharedjars tswolid texjars
Jmrtfhdassinte]l # od tsweldS

Smntihdassintel frsnctd & s

MyFile.ts & Soha zervices

MyFile.txt TestTsx. §

Smnt/hdas=intel ftaxc]i # L MyFile.tet MyFile.ts

:'n_aH~ Toe jnd podrt o bbb /145,225,229, 25009080/ 785/ zerv et frporauter
F1 2a

Prowy instanced

Poct ref received

time o chack back recaived

Waitd T B0 BB e e ittt e e me e e e e e e e e e e ket e

AEAEMD FECETVE

5
operring file for writing

Time stamp tokan saved

Done

fmrtfhdaldsintel fosactd # uname -3

Lirux Tfaniliar 2.4.18-rmk3 21 Tue Oct 15 14:38:20 EDT 2002 armv4l unknown
fmntihdadsintel foswcli # _

d
f

Fig. 16. Execution of the case-study application.

The server returns an XML structure {called TSSResponse) which contains an ID num-

170 A Web Services Based System For Digital Time Stamping

ber (poolRef) associated with the particular time stamping request, and an integer value
(timeToCheckBack) representing the (minimum) time the client has to wait. When time-
ToCheckBack seconds have elapsed, the client gets the time stamp identified by poolRef (see
figure 12). The PDA was able to receive and store a time stamped token of a file containing
the data of an electronic transaction. The experiment was successful, in that this goal was
achieved in a seamless way. We emphasize that this would not have been the case if traditional
technologies had been used.

7 Lessons Learned

In this section we present some of the problems we had to cope with during the actual
implementation of the system, and the lessons learned from these difficulties.

A major problem concerned the protocol used for codifying the time stamping token. We
followed — whenever possible — the recommendations of RFC3161. However, RFC3161 relers
to the information exchange between the clients and the server of a time stamping system
which is based on a simple scheme. As already mentioned in subsection 3.2, simple schemes
allow a malicious TSA to fraudulently alter the time parameter of a certain time stamp
without being caught. As a consequence, simple schemes are inadequate for most real-world
scenarios. We thus had to come up with some workarounds, in order to develop a time stamp-
ing service which was based on a linking schemes while still being compliant to RFC3161.
In particular, in linking schemes an additional piece of information {as compared to simple
schemes) is returned to the clients, i.e. the hash chain from the current hash value to the root
of the round. Such an additional piece of information is retrieved immediately, along with the
date/time information. Additionally, in the linking scheme the client requests a hash chain
extension leading to the closest published value. This request must take place at a later time,
and is always initiated by the client. It is impossible to accomplish all these operations while
complying with RFC3161, simply because this standard — being based on simple schemes —
assumes that no such additional data item be returned, nor it does specify any interaction
between the server and the client after the time stamping token is delivered to the client. To
allow the retrieval of the round hash chain, we exploited the extension field included in the
RF(C3161. For returning the hash chain to the published value we resorted to a proprietary
protocol which closely follows the RFC3161 (a further field is needed to indicate the opera-
tion type). From this experience, we can thus conclude that the RFC3161 is an incomplete
standard, as far as time stamping services based on linking schemes are concerned. Given the
ever increasing interest that linking schemes are gaining in open networked environments, it
appears that there is an urging need for a more mature protocol.

Another key issue we had to address was related to the compliance of the WSDL code for
the service — which we generated by means of Commercial-off-the-Shelf development tools — to
the recommendations of the World Wide Web consortium for Web Services interoperability.
We found that currently available development kits exhibit several interoperability problems,
especially for aspects related to data type serialization and name spaces. In the following, we
give an example of an actual problem experienced during the development of the middle-tier.

A. Cilardo, A. Mazzeo, L. Romano, G. P. Saggese, and G. Cattaneo 171

We used the development kit shipped with WebSphere 4 to generate the WSDL code for the
time stamping service and verified the validity of such code using xmlspy [30]. Figure 17
shows the output of the verification process.

ez P g P MNP W LW WS WS S T LA RS LT AR (L

Fesadivnaven

El‘lﬂlllsn
& T58iredn

aod
M |

|
Message parl hast? (in Message getSimpledarkA¥Request) - parameter bazebd not
defined!

Fig. 17. An xmlspy screenshot showing the flawed piece of WSDL code.

The xmlspy verifier detected problems with several datatypes and namespace definitions.
Some of the problems were fixed by re-generating the code using a more recent version of the
WSDL Toolkit (which we downloaded from the IBM alphaworks site). In some other cases,
we had to manually hack the WSDL code. From this experience we can conclude that there
is still a long way to go, as far as seamless interoperability of Web Services technologies is
concerned.

8 Related Work

In this section, we provide an overview of relevant projects/products for implementing time
stamping services. We comment individual solutions and contrast them to our work.

Among commercial solutions, the most relevant is the one proposed by Surety [29], the
American company founded in 1994 by Haber and Stornetta, the pioneers of time stamping.
The vendor does not provide details about implementation, performance, and development
and deployment costs of this solution. According to the (scarce) technical documents avail-
able, Surety builds a time stamping infrastructure based on a linking scheme. The central

172 A Web Services Based System For Digital Time Stamping

system manages the construction of the time stamp chain, the stamp repository, and even
the verification process. Our solution is based on a linking scheme, too. As such, both so-
lutions do not require that the TSA be uncouditionally trusted. This is a key feature for a
time stamping service which is to be deployed in a real-world scenario, as discussed in section
1. As to the throughput, both systems are able to satisfy the requirements of a wide scale
environment. However, users of the service provided by Surety are tightly tied to a propri-
etary system protocol, in particular in the verification phase. Our solution relies instead on
open and widely adopted standard protocols, namely the Web Services technologies. As such,
our solution is ideally suited for deployment in an Internet-based scenario, where challenging
interoperability issues arise from the fact that the service must be made available to a po-
tentially large community of users, which typically rely on a whole variety of heterogeneous
hardware/software platforms.

Another interesting commercial service is provided by Cybernetica [5]. The system in-
frastructure is based on a binary linking scheme. To use the service, a proprietary protocol
and ASN.1 data structures are defined and made publicly available. Software programs which
comply with this set of rules can interact with the system have. Our solution is based on a
linking scheme, which may not be as efficient as a binary linking scheme. We are not able to
provide a quantitative estimate of this aspect, since the Cybernetica system has been set up
only recently and data on its ability to cope with the scalability requirements of real-world
scenarios is not available at the time of this writing. As to interoperability, our solution ap-
pears to be better, since — as already mentioned — it relies on the Web Services technology,
which is based on open and widely adopted standard protocols.

Among open-source implementations, the most active project is OpenTSA [21], whose
main aim is to develop an RFC 3161 [1] compliant, stable, and free time stamping authority
client and server application. The time stamp request creation, response generation and re-
spounse verification functionality is implemented as an extension to the latest stable version of
OpenSSL [22]. The major drawback of this project is that it is based on a simple scheme. As
discussed in subsection 3.2, simple schemes allow a malicious TSA to fraudulently alter the
time parameter of a certain time stamp without being caught. As a consequence, the solution
proposed by OpenTSA is inadequate for most real-world scenarios.

Another example of open-source, free digital time stamping service is the PGP Digital
Timestamping Service [23]. PGP Digital Timestamping provides an automatic service for
corroborating the date at which a user signs a document with PGP. Every signature made
by the system has a unique serial number, which automatically increments by one every time
a document is signed. The system also stamps summaries of its own signatures from the
previous day. This system does not comply with any existing time stamping protocol. Also,
PGP is known to have major scalability problems. The PGP Digital Timestamping Service
is thus not suitable for an Internet-based environment.

A. Cilardo, A. Mazzeo, L. Romano, G. P. Saggese, and G. Cattaneo 173

9 Conclusions

This paper described the results of a year long research activity conducted cooperatively
by an academic and an industrial party, aimed at designing and implementing a practical
solution for providing time stamping services and exposing them to the Internet. The paper
provides practitioners of computer security with field experience and lessons learned about
best practices for wide scale deployment of time stamping services using Commercial Off-The-
Shelf (COTS) software products.

The paper provided a comprehensive overview of the main state-of-the-art algorithms for
time stamping applications and thoroughly discussed pros and cons of each technique. In
particular, it highlighted the crucial issues raised by the practical implementation of time
stamping algorithms.

A practical architecture for time stamping services was then introduced, which provided
both relative temporal authentication, based on a linear linking scheme, and absolute temporal
authentication, based on publishing mechanisms as well as on a trusted time source. The
emerging Web services technology was used to expose the time stamping services to the
Internet. This choice allowed us to cope with the challenging ubiquity and interoperability
requirements, which arise from the large number of users and heterogeneous technologies
involved in emerging Internet-based scenarios.

The problems we experienced with the actual implementation of the system allowed us
to emphasize some of the key open issues related to the provision of time stamping services
in open networked environments, and in particular: i) the lack of a convenient agreed-upon
standard for time stamping services which are based on linking schemes, and ii) some yet
unresolved interoperability problems of Commercial-Off-The-Sheld (COTS) products for the
development of Web-Service based applications.

Experimental tests were conducted on a distributed prototype — which included a Compaqg
IPAQ 3870 handheld device as the client system. Such tests demonstrated the effectiveness
of the proposed solution even for wired/wireless internetworked computing infrastructures.

Acknowledgements

Authors are grateful to Annalisa Caso, Sonia Del Vacchio, Francesco Festa, and Ger-
ardo Maiorano for the numerocus fruitful technical discussions, and for developing the bulk
of the code. This work has been carried out under the financial support of the University of
Naples Federico II, Sintel SPA, the Consorzio Interuniversitario Nazionale per I'Informatica
(CINI), the National Research Council (CNR), the Ministero dell'Istruzione, dell’Universita’
e della Ricerca (MIUR), and the Regione Campania, within the framework of projects: SP1
Sicurezza dei documenti elettronici, Oltre la Firma Digitale(OFD), Gestione in sicurezza dei
flussi documentali associati ad applicazioni di commercio elettronico, FIRB - Middleware
for advanced services over large-scale wired-wireless distributed systems (WEB-MINDS), and
Telemedicina.

References

1. C. Adams, P. Cain, D. Pinkas, R. Zuccherato (2001), Internet X.509 Public Key Infrastructure
Time Stamp Protocol (TSP), available at http://www.ietf.org/rfc/rfc3161.txt

174 A Web Services Based System For Digital Time Stamping

2.

o

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

D. Bayer, S. Haber, W.S. Stornetta (1993), Improving the efficiency and reliability of digital
timestamping, in Proceedings of Methods in Communication, Security, and Computer Science,
Springer-Verlag, pp. 329-334.

J. Benaloh, M. de Mare (1991), Efficient Broadcast time stamping, Technical Report 1, Clarkson
University Department of Mathematics and Computer Science.

A. Buldas, P. Laud, H. Lipmaa, J. Villetuson (1998), Time Stamping with Binary Linking Schemes,
in Proceedings of Advances in Cryptology CRYPTO ’98.

Cybernetica web site - http://www.timestamp.cyber.ee/

A. Cilardo, A. Mazzeo, L. Romano, G.P. Saggese, G. Cattaneo (2003), Providing Interoperable
Time Stamping Services, in Proceedings of International Conference on Advances in Infrastructure
for Electronic Business, Education, Science, Medicine, and Mobile Technologies on the Internet,
L’Aquila, Ttaly.

A. Cilardo, A. Mazzeo, L. Romano, G.P. Saggese, G. Cattaneo (2003), Using Web Services Tech-
nology for Inter-Enterprise Integration of Digital Time Stamping, in Proc. of Workshop on Reliable
and Secure Middleware (WRSM 2003), LNCS 2889, Springer-Verlag. pp. 960-974.

D. Cotroneo, C. di Flora, A. Mazzeo, L. Romano, S. Russo, G. P. Saggese, Providing Digital Time
Stamping Services to Mobile Devices, to appear in: Proc. of the 9-th IEEE international Workshop
on Object-oriented Real-time Dependable Systems - Fall (WORDS 2003F), IEEE CS Press, pp.
94-100.

Crypto++ Project: http://www.eskimo.com/ weidai/cryptlib.html

. H. Dobbertin, A. Bosselaers, B. Preneel (1996), RIPEMD-160, a strengthened version of RIPEMD,

in Fast Software Encryption, LNCS 1039, D. Gollmann, Ed., Springer-Verlag, pp. 71-82.

S. Haber, W.S. Stornetta (1991), How to timestamp a digital document, in Journal of Cryptology,
Vol. 3, pp. 99-111.

S. Haber, W.S. Stornetta (1997), Secure Names for Bit-Strings, in Proceedings of the 4th ACM
Conference on Computer and Communications Security, pp. 28-35.

R. Housley (1999), Cryptographic ~ Message Syntaz (CMS), available at
http://www.ietf.org/rfc/rfc2630.txt

International Organization for Standardization and International Electrotechnical Commission
(2002), ISO/IEC Standard 18014: Information technology - Security techniques -Time stamping
Services

Java 2 Platform, Standard Edition: http://java.sun.com/j2se

H. Kreger (2001), Web Services Conceptual Architecture, IBM Software Group, available at
http://www-3.ibm.com/software/solutions/webservices/pdf/ WSCA.pdf

A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone (1996), Handbook of Applied Cryptography ,
CRC Press.

R. C. Merkle (1980), Protocols for public key cryptosystems, in Proceedings of the 1980 IEEE
symposium on security and privacy, pp. 122134, IEEE Computer Society Press.

R. C. Merkle (1989), A certified digital signature, in Proceedings of Advances in Cryptology
Crypto89, vol. 435, pp. 218238, Springer-Verlag.

National Institute of Standards and Technology (1995), Secure Hash Standard, FIPS
PUB 180-1, Federal Information Processing Standards Publication (available on-line at
http://www.itl.nist.gov/fipspubs/fips180-1.htm.)

Open TSA project web site - http://www.opentsa.org/

Open SSL project web site - http://www.openssl.org/

PGP Digital Timestamping Service web site - http://www.itconsult.co.uk/stamper.htm

R. Rivest (1992), The MD5 Message-Digest Algorithm, RFC 1321, MIT LCS & RSA Data Security
Inc.

B. Schneier (1995), Applied Cryptography: Protocols, Algorithms, and Source Code in C, John
Wiley & Sons.

Secure Sockets Layer (SSL): http://wp.netscape.com/eng/ssl3/draft302.txt

Snacc website: http://www.fokus.gmd.de/ovma/freeware/snacc/entry.html

A. Cilardo, A. Mazzeo, L. Romano, G. P. Saggese, and G. Cattaneo 175

28. H.M. Sneed (1996), Encapsulating legacy software for use in client/server systems, in Proceedings
of Working Conference on Reverse Engineering, pp. 104-119.

29. Surety web site - http://www.surety.com

30. xmlspy web page - http://www.xmlspy.com/

