Journal of Web Engineering, Vol. 1, No. 2 (2003) 128 146
© Rinton Press

AN ENHANCED SERVICE ORIENTED ARCHITECTURE FOR
DEVELOPING WEB-BASED APPLICATIONS

DOMENICO COTRONEOQO, CRISTIANO di FLORA?and STEFANO RUSSO
Dipartimento di Informatica e Sistemistica
Universita degli Studi di Napoli “Federico I1”
Via Claudio 21, 80125, Naples, Italy
(cotroneo,diflora,sterusso)Qunina.it

Received October 25, 2002
Revised March 21, 2003

Web services architectures have recently emerged as a standard, service oriented ap-
proach for developing Internet-scale distributed systems. Such architectures are charac-
terized by discovery and delivery infrastructures, since service provisioning follows the
publish-find-bind paradigm. Recently, a variety of service oriented architectures have
been proposed, where service discovery infrastructure does not take into account non-
functional requirements associated to a service. Furthermore, service repositories are
merely conceived as service descriptors containers, without any relationship with the
actual availability of services. This paper proposes an enhanced service oriented ar-
chitecture, called PRINCEPS, particularly suited for developing web-based applications.
PRINCEPS resorts to a novel service discovery protocol which assembles services at run-
time according to both functional and non-functional client requirements. The protocol
is XML-based and it exploits a lease mechanism to maintain service repositories consis-
tent with actual running service instances. PRINCEPS is endued with a service delivery
infrastructure, which is based on the HTTP protocol, and allows extended client-server
models to be implemented. PRINCEPS is interoperable with web-service technologies
standardized by the world wide web consortium. A complete example, which shows the
advantages of PRINCEPS architecture, is also provided.

Keywords: Service Oriented Architectures, Web Services, Service Discovery, Service
Delivery, Jini

Communicated by: D Schwabe & J Whitehead

1 Introduction

Recent advances in network technology and computing systems are leading to a new model for
distributed system, which stems from the integration of Commercial Off The Shelf (COTS),
legacy, and ad-hoc components. Such a model provides the user with services that are ac-
cessible via a web-based infrastructure regardless of client physical location and/or devices.
Heterogeneity and diversity are thus the trickiest issues to be addressed when developing mod-
ern distributed systems. Although middleware technologies simplify heterogeneity problems,
they do not completely solve them. As a matter of fact, abstraction layers introduced by mid-

*Contact author’s contact info: Dipartimento di Informatica e Sistemistica, Via Claudio 21 — 80125 Napoli,
Italy; tel: +39-0817683869; fax: +39-0817683816.

128

D. Cotroneo, C. di Flora and S. Russo 129

dleware to address integration issues may also cause interoperability problems when dealing
with different middleware platforms [1]. This is especially true when considering Internet-
scale software systems. Heterogeneity and diversity of such systems are nowadays addressed
by adopting a component based approach, which focuses on assembling systems from dis-
tributed services. More specifically, new standards, supported by many commercial products
such as IBM’s WebSphere and Sun One Application Server, are emerging, namely Microsoft
.NET platform [2] and Java 2 Enterprise Edition [3]. These platforms are quite suitable
for small-scale enterprise applications, for they are based on the concept of creating services
through configuration rather than through programming. Component-based approaches al-
low to obtain lower maintenance costs, since they focus on separation between development
and deployment issues. However, the main weakness lies in application configurability, which
has become nearly as complicated as programming: suffice it to think of the deployment
descriptor design of Enterprise Java Beans (EJB) [3]. In this scenario, the concept of service
is becoming crucial, since a distributed system consists of a collection of interacting services,
each providing access to a well-defined set of functionalities. The resulting system is defined as
service oriented architecture(SOA), and its evolution is guided by the addition of new services.
As defined in [4] “a service is implemented as course-grained, discoverable software entity that
exists as single instance and interacts with applications and other services”. SOAs federate
such services into a single, distributed system capable of spontaneously configuring itself upon
service connections and disconnections. SOAs can be implemented according to the following
paradigms:) service implemented on a single machine, ii) service distributed on a local area
network, and #i¢) service more widely distributed across several company networks.

A particularly interesting case is when services use the Internet as communication in-
frastructure, i.e., web-services architecture [5]. SOAs is not a new notion. The first definition
was given in 2000 [6], and it became important because of emerging web service technology.
Service oriented applications are developed as independent sets of interacting services offering
well-defined interfaces to their potential users [6]. A SOA supports applications to browse
and discover collections of services, select those of interest, and assemble them to create the
desired functionality, i.e., the one which satisfies client requirements. In such architectures
the service discovery infrastructure does not take into account non-functional requirements
associated to a service; furthermore, service repositories are merely conceived as service de-
scriptors containers, without any relationship with the actual availability of services. Hence,
in order to develop Internet-scale applications, more flexible solutions are required.

This work proposes an enhanced service oriented architecture, called PRINCEPS (Plug-
gable Reliable Infrastructure for Network Computing and Enhanced Properties of Services),
particularly suited for developing web-service applications. PRINCEPS resorts to a novel
service discovery protocol (SDP) which assembles services at run-time according to both
functional and non-functional client requirements. The protocol is XML-based and it exploits
a lease mechanism to keep descriptors repositories consistent with actual running service in-
stances. This mechanism allows each service that becomes available in the system to renew its
lease periodically. Services that are not effectively available loose their leases (e.g., the lease
expires). The implemented mechanism potentially increases service availability by registering
a redundant set of server clones which have the same interface.

PRINCEPS provides also a service delivery infrastructure (SDI}, which uses HTTP as

130 An Enhanced Service Oriented Architecture for Developing Web-Based Applications

transport protocol, and allows to implement extended client-server models. Indeed, clients’
resource limitations may require certain operations to be normally performed on PRINCEPS
servers. PRINCEPS supports different client-server computing paradigms, from thin client
(i.e., all the logic resides on the server) to fat client (i.e., all the logic resides on the client).

The rest of the paper is organized as follows. Section 2 introduces technologies exploited
for the implementation of PRINCEPS; it also discusses standards concerning service oriented
and web-service architectures used throughout the paper. Section 3 details the complete
architecture, highlighting the SDP and the SDI. Section 4 describes PRINCEPS as web-service
infrastructure. In particular, it deals with the design and implementation of components,
which make PRINCEPS interoperable with the standard universal description discovery and
integration protocol (UDDI), and simple object access protocol (SOAP). Section 5 describes a
complete example, using a service oriented multimedia application as a case study. Section 6
gives an overview of related research in the area, while Section 7 concludes the paper.

2 Background
2.1 Service oriented architectures and web services

Service oriented architectures are spreading out within the Internet as web service architec-
tures (WSA). As stated in [5], both basic and extended WSAs are based on SOA. A SOA is
characterized by several entities: i) service, i.e., the logical entity, defined by one or more
published interfaces; i) service provider, i.e, the entity that implements a service specifi-
cation; iit) service requestor, i.e., the software entity that requests a service to a specific
provider (it can be an end-user application or another service); iv) service locator, i.e.,
a service provider that acts as registry and allows the lookup of service provider interfaces
and service locations; and v) service broker, i.e., a service provider that forwards service
request to one or more additional service providers. Description of services, the context of
their use, and the strong heterogeneity of the environment impose a series of constraints upon
development of SOAs. These are briefly summarized in the following [4]:

e coarse-grained - operations on services are frequently implemented to encompass more
functionalities and operate on large data sets;

¢ interface-based design - implementation and interface are completely separated: mul-
tiple services can implement a common interface and a service can implement multiple
interfaces;

e discoverable - services may be discovered at run time, by providing a unique service
identifier, or by providing service characteristics;

¢ single instance - each service is executed as a single instance;

e loosely coupled - services connect to other entities, i.e., clients and services, using
standard and decoupled message-based methods, such as XML document exchanges.

It is worth noting that these aspects differentiate a service oriented application from an
application developed by using component-based middleware platforms such as J2EE or .NET.

D. Cotroneo, C. di Flora and S. Russo 131

A WSA is a particular class of SOA where services are uniquely identified by a uniform
resource identifier (URI), whose interfaces and bindings may be defined, described, and dis-
covered by XML artifacts.

The W3C and UDDI community have drafted vendor neutral open standards of the core
web service protocols, such as simple object access protocol (SOAP) [7], web service descrip-
tion language (WSDL) [8], and universal description discovery and integration (UDDI) [9].
Nevertheless, as stated by the world wide web consortium (W3C) [5], “the term Web Service
does not presuppose the use of SOAP as a packaging format or a processing model. Nor does
it presuppose the use of WSDL as service description language”. Some novel discovery pro-
tocols are emerging as alternatives to UDDI, such as the file-based web services inspection
language (WSIL) [10]. WSIL represents a promising step towards the extensibility of existing
mechanisms for managing web services descriptions. As stated in [10], WSIL documents allow
their consumers to select and retrieve services from the available descriptions and to access
only those they are able to understand. The main difference between WSDL and WSIL is
that WSDL is a language for description format and does not specify a retrieval mechanism,
whereas WSIL does. WSIL may be considered as an extension of the standard UDDI and
WSDL technologies, since it provides bindings for WSDL descriptions and for their retrieval
from UDDI registries.

2.2 Jini and Javaspaces

This sub-section briefly describes Jini technology [11, 12], highlighting the features exploited
to build the PRINCEPS prototype.

Jini technology consists of an infrastructure and a programming model which address the
fundamental issue of how clients connect to each other to form an impromptu community.
Jini provides a service discovery layer, which allows services to be discovered at run-time.
Such a layer is also able to group services in federations.

Jini services are characterized by a set of attributes, describing interface, properties and
additional information about a specific implementation.

The core of a Jini system is the lookup service (LS), which allows i) clients to find and use
services, and i) servers to join the Jini system. Three specific protocols define interactions
with the LS, which are described in the sequel.

The Jini SDP is used both by clients and by servers to locate available LSs. This protocol
is composed of: i) a multicast discovery protocol, used to discover one or more LSs on a local
area network (LAN); i1) a wnicast discovery protocol, used to establish communication with
a specific LS over a wide-area network (WAN); and i7) an announcement protocol, used by a
LS to announce its presence to other LSs.

The join protocol enables services to be added to a Jini federation: any server willing to
join the system provides the LS with the service object — which is the client-side component
of the provided service — along with service attributes. The result of a successful registration
is a service registration object. The join protocol forces service providers to lease service
registrations and periodically renew the interest in joining the federation; if the lease expires,
the LS removes the service.

The lookup protocol is used for locating services in one or more federations. It defines
interactions between client and LS. Clients locate services according to their attributes and

132 An Enhanced Service Oriented Architecture for Developing Web-Based Applications

SERVICE DISCOVERY A
N

(DELIVERY AND DEPLOYMENT |
(Client-side)

CLIENT MANAGER

SERVICE FINDER

SERVICE IMPLEMENTATION
(DOWNLOADED AT RUN - TIME)

SERVICE DIRECTORY }}

"!llII }}
O

A
] TION OBJECT

]1 APPLICA

)

SERVICE MANAGER

fre

ey
R LOOKUP SERVICE

-

CLIENT DAEMON

DELIVERY AND DEPLOYMENT

(Server-side)
e \
. 5 { . HTTP SERVER 1 : i
[)

ey
ye= DISCOVERY AND JOIN
‘?,;? PROTOCOLS

s DISCOVERY AND
i LOOKUP PROTOCOLS

= PRINCEPS Component

= Produced by Service
Developer

I:l = Developed by Third-party

Fig. 1. Overall architecture of the PRINCEPS infrastructure

interfaces, which are encapsulated into a single service template. Once a service has been
located, the service object is dynamically deployed on client devices. Afterwards, clients
interact with the service object by means of its interface, thus hiding service implementation
details. The interested reader may refer to [12] for further details on Jini technology.

JavaSpaces technology provides a mechanism for distributed objects persistence and ex-
change, which is based on the tuple space model [13]. JavaSpaces are designed to deal with the
implementation of distributed algorithms using the Java programming language; this func-
tionality is provided through the abstraction of a shared container of distributed Java objects;
JavaSpaces programming model consists of a few basic operations for writing, reading and
extracting objects from the space. The adopted implementation of the JavaSpaces service is
based on the Jini technology and it is shipped with the standard Jini distribution kit.

3 PRINCEPS architecture

3.1 Ovwerall architecture

PRINCEPS is a SOA particularly suited for implementing web-service applications. A pre-
liminary work on such an architecture was presented in [14], where focus was mainly on
implementation of extended client-server models.

Figure 1 depicts the conceptual model of the PRINCEPS architecture along with the
adopted technologies. The overall architecture is composed of the SDP and the SDI sub-
systems, which are partitioned between the client-side and the server-side. The client manager
and the service manager components act as entry points for service requestors and service
providers. Services and clients are represented by XML descriptors which are used by the

D. Cotroneo, C. di Flora and S. Russo 133

SDP for adapting services to client characteristics.

The client-side delivery infrastructure consists of the following components:

o the application object (AO) represents the application on the client side, for it contains
all the business logic which has not been deployed on the server-side; it is downloaded
at run-time;

o the client daemon (CD) is in charge of downloading and executing the AO.

On the server-side, the delivery and deployment infrastructure is mainly constituted by
the back-end server (BES) and by one or more HTTP Server. The former is in charge of %)
implementing server-side application logic and i) registering the service with the discovery

infrastructure. The latter represents the AO repository and enables clients to download AOs.
The SDP sub-system consists of the following components:

o the service finder (SF) is responsible for ¢) choosing services which best fit client char-
acteristics, and i7) assembling services at run-time in order to provide more complex
ones;

o the service directory (SD) manages the service descriptors repository, and updates ser-
vice list and service descriptors upon dynamic connections / disconnections of services,
and upon dynamic changes of service attributes.

As already mentioned, clients and service providers interact with the PRINCEPS archi-
tecture by means of the following components:

o client manager (CM) provides client registration and service discovery functionalities;

e service manager (SM) manages service registrations; service providers can register their
services interacting with such a component.

3.2 Service discovery

Several issues are addressed by the PRINCEPS SDP sub-system on both the client and the
server side. As far as the client is concerned, the CM provides service requestors with the
abstraction of a dynamic and adaptive service list. Such a list is dynamic in that it is automat-
ically updated upon service connections / disconnections, and it is adaptive since it is tailored
to client characteristics. In order to adapt services to client requirements, service discovery is
performed by analyzing both client and service descriptors. The client descriptor is an XML
file containing client characteristics, in terms of computing power, network connection, and
memory capacity. The service descriptor contains service functional characteristics, such as
the kind of service (e.g., video on demand, e-commerce), the service interface, and the service
requirements, in terms of needed bandwidth, connection reliability (this information is useful
for wireless connections), and needed computing power. A list of quality attributes (i.e., relia-
bility, availability, and security) is associated with each PRINCEPS service. Hence, the same
service (i.e., the same service instance) may be associated with more than one implementa-
tion, each one satisfying several non-functional requirements. It is worth noting that a service
may also represent the aggregation of more than one service. In particular, a PRINCEPS

134 An Enhanced Service Oriented Architecture for Developing Web-Based Applications

ServiceDescriptor

Service Manager

Service
Provider

TakeSpace

Update Update

Update

Service Directory components

Fig. 2. Update of service descriptors

service may be 1) a new service that has been developed from scratch, or %) an existing ser-
vice which has been integrated into the PRINCEPS infrastructure, or i) a composed service
which stems from the aggregation of functionalities provided by other services.

As pertains to the server, PRINCEPS adopts a lease-based discovery model in order to
provide a flexible mechanism for managing service registrations. Each service provider has
to renew its lease periodically. During the lease period, a provider can also update service
descriptors by providing new implementations. In order to keep service directories consis-
tent with actual running service instances, an event-driven mechanism exploiting JavaSpaces
technology [13] has been implemented. Each provider registering a new service obtains a
registration lease. During the renewal phase, the service provider may perform one of the
following operations: 7) a simple renewal, i.e., the service has not been changed and it is still
available, or i) creation of a new service descriptor, which is delivered to the SM component
(i.e., the service has been changed). Subsequently, the SM component produces an event,
which contains the new service descriptor and is persistently collected by the TakeSpace com-
ponent; this is a sort of distributed shared memory, implemented by means of JavaSpaces
technology, as illustrated in Figure 2. The TakeSpace delivers events to all registered SD
components, i.e., such components act as event consumers for the TakeSpace.

If the provider does not renew its lease, the SM component delivers a remove event to
TakeSpace. Subsequently, this forwards the event to SDs which erase the descriptor from
their local repositories, thus marking the service as not available. The proposed mechanism
enables providers to improve service availability. Indeed, a problem may arise if a service
crashes and a client tries to use it before the expiration of the lease, since the service is not
available. In this case, the PRINCEPS infrastructure will detect such a problem only upon
the expiration of the registration lease. To deal with this problem, PRINCEPS allows service

D. Cotroneo, C. di Flora and S. Russo 135

4

/
/ \
/ WORLD WIDE
WEB

Client Manager
Component

1: User has selected
a certain service

2: CM Sends a Service

Lookup Descriptor, Back-End Server

3: Service-Lookup
Template

5: Service Provision

4: Receive i
Application Object *

Client / Server
Communication Channel

5: Start
Service Provision

PDA Laptop DeskTop
Computer

Fig. 3. Application object retrieval

availability to be enhanced by registering a redundant set of server clones which have the
same interface and the same lookup attributes. Hence, all the server clones share the same
AO, which can be retrieved by using the same service descriptor. As a matter of fact, when
the CD receives a service descriptor object and looks up the service on a LS, it retrieves a
redundant set of AOs. If the selected AO fails, an exception is thrown and the daemon tries
to use a new AO.

3.8 Service delivery

The AO has been implemented as Jini service object. As depicted in Figure 3, when the user
chooses a specific service, the CM component sends a Jint service descriptor (JSD) object
to the CD; such an object is composed of a lookup locator (LL)} and a service template (ST)
object. The former is used to locate active Jini LSs, whereas the latter contains attributes that
will be used to download the AO through Jini’s lookup protocol. It is worth mentioning that
the combination of a web-based selection mechanism with a Jini-based AO provision strategy
allows the infrastructure to deal with nomadic users, giving them a means for browsing and
using services regardless of service and client location. The abstractions of the AO and BES
enhance the capability of the service-delivery infrastructure for a variety of reasons.

First, these abstractions allow the infrastructure to provide services by adopting the client-
server paradigm that suites client characteristics. As a matter of fact, service developers may
design different AOs depending on target devices, and enabling the infrastructure to adapt
services to client characteristics and service requirements. Indeed, if a palmtop / personal

136 An Enhanced Service Oriented Architecture for Developing Web-Based Applications

digital assistant (PDA) computer is used, the AO should be light, while all the service logic
should be executed on the server-side (thin client model). On the contrary, if the client
device is a powerful laptop, the AO should be heavy, and the server logic could be divided
between the client-side and the server-side (fat client model). For the sake of simplicity,
let us consider an mp& stream player. The decoding process of an mp8 media file is heavy
compared to computing capabilities of some portable devices (i.e., some PDAs or mobile
phones). Therefore, for such devices the AO should consist of a simple media player without
decoding component; the decoding algorithm should be implemented by a streaming gateway,
in charge of converting the required mp3-stream into a simpler (in terms of decoding costs)
format. However, a lot of portable devices, such as laptop computers and some PDAs, can
straightforwardly decode mp3 files. In this case, the AO can be “heavy” and the decoding
algorithm can be encapsulated into it.

Second, the SDI provides services with an architectural support to satisfy different non-
functional requirements. Indeed, the same service can be delivered with different quality
attributes. In order to improve the level of quality attributes, ad-hoc mechanisms should be
implemented by AO and BES. For instance, the mp3 streaming player may be delivered in
two different fashions, namely an unreliable streaming service and a reliable one. Reliability
is enhanced by implementing a replication technique. Basically, BESs is replicated according
to a passive replication scheme: when the primary server fails, the AO switches its own data
source from the original server to the replica, thus restoring service provisioning.

3.4 Implementation issues

This section provides some technicalities about PRINCEPS implementation which could be
useful for readers who are going to address similar issues. In particular, two major issues are
discussed here: 7) interfacing clients with the infrastructure; and i) deploying the AO on the
client-side.

Interfacing clients with the PRINCEPS infrastructure

In order to perform service discovery and selection, a Jini-aware servlet (JAS) has been de-
veloped. SF and CM have been implemented as group of cooperating JASs. Upon connecting
to the infrastructure, the user is given information about available services via a web-based
interface. As the client connects to the infrastructure, the SF servlet retrieves its descriptor
and generates a service list. Such a list is generated by collecting services that are compatible
with client characteristics. When the user chooses a specific service, the name of the selected
service along with optional arguments (e.g., the song name for an audio streaming service) are
posted to the CM servlet. Such a servlet provides a connection to the CD, in order to send
a JSD object. It is worth mentioning that CM must know the locations of all the actually
available LSs in order to create a JSD object.

Figure 4 shows the unified modeling language (UML) class diagram of a generic JAS.
This servlet instantiates an empty vector of Jini service registrar objects, i.e., service objects
associated to LSs. During the initialization of the servlet, a new lookup finder (LF) object is
created and it is provided with the lookup vector (LV) variable. LF and JAServlet share the
LV: the former is in charge of updating it; the latter is responsible for its instantiation. The
LF keeps track of all available lookup services, thus allowing the servlet to have a consistent
view of the underlying service discovery infrastructure. This is accomplished by periodically

D. Cotroneo, C. di Flora and S. Russo 137

H Y
<<Interface>> ttpSeret
DiscoveryListener -
/ Y

[discovered()
{ ®discarded()
e S

> JASendet

<<realize>> -
<<use>>
m <<Update>> " Lookupvector

Fig. 4. UML class diagram of the JAServlet

updating the LV.
Four are the operations performed by the CM to create a JSD object. These are described
in the following:

1. service parameters and remote user IP address retrieval. This is done by exploiting the
functionalities of the HttpServietRequest;

2. service template creation . This operation is performed by using the posted data;
3. lookup locator retrieval. This is returned by the LV object;

4. instantiation and delivery of the JSD object. This accomplished by serializing this
object and sending it on a TCP socket.

Retrieval and initialization of the application object

PRINCEPS SDI is based on an applet-like model for the deployment and execution of AOs.
CD is a multi-thread Java application, which waits for a JSD to arrive on a TCP socket:
upon receiving such an object, the CD is able to connect to a Jini LS, and to download
the AQO, i.e., it provides a LS with the received service template. All the AOs implement a
common interface, namely the GenericService interface, which contains the default methods
that will be invoked by the CD. The startService() method is in charge of providing service
initialization features (as the init() method of a Java applet does), including user interfaces
set-up and binding to remote and local resources. The stopService() method is in charge
of providing dispose and clean-up operations. CD and the GenericService interface must be
installed on the client-side; any other specific service interface or package can be included in
the AO and downloaded at run-time.

4 PRINCEPS as enhanced web service infrastructure

Web services allow clients to invoke services using HTTP and XML-based wire protocols.
From this standpoint, PRINCEPS is a web service architecture. Indeed, like web services,

138 An Enhanced Service Oriented Architecture for Developing Web-Based Applications

INTEGRATION INTEGRATION Web Services
Delivery on Client-si Discover
(Delivery on Client-side) (Discovery) SOAP-Based ~
) Web Service
Web Services Application Object -
{ Downloaded at run-time) UDDI-PRINCEPS
SOAP-PRINCEPS Wrapper .
(generated by the U-P wrapper) UDDI Registry
Apache SOAP ‘
Apache SOAP
Apache SOAP
J
N J \ /

Fig. 5. Integration of web services into PRINCEPS

PRINCEPS envisions a “publish-find-bind” scenario. In such a scenario, service provisioning
is composed of the following phases: i) services are published on a shared registry; 7¢) clients
discover services through the registry; ii¢) client binds to the service and effectively uses it.
To make PRINCEPS workable in practice as WSA, it is necessary to allow several applica-
tions, participating in a service, to correctly communicate on heterogeneous platforms. As
mentioned in Section 1, in standard WSAs service repositories are merely conceived as service
descriptors containers, without any relationship with the actual availability of services. In-
deed, HTTP, SOAP, or one of the transport protocols does not address this important issue.
However, one could reuse the HTTP caching semantics which allow browsers and firewalls
to cache pages. Unfortunately, this strategy is not under the provider’s control; moreover,
the requestor may not be using HTTP. Alternatively, a lease mechanism can be integrated
in the document exchange mechanism. For instance, encoding of messages between requestor
and provider could include the leasing information for the client. However, this leads to a
more complex solution. As already stated, PRINCEPS introduces a lease-based strategy for
addressing this issue. In order to integrate a web service into PRINCEPS, WSAs interoper-
ability issues have been addressed too. As far as interoperability with UDDI is concerned, the
adopted scheme is not a novel one, for it was already presented in [15], which demonstrated
that Jini and UDDI are complementary solutions. Our strategy is based on wrapping UDDI
registries as PRINCEPS services and has been realized by means of the UDDI-PRINCEPS
and SOAP-PRINCEPS wrapping components, depicted in Figure 5. The UDDI-PRINCEPS
wrapper (UPW) allows UDDI repositories to be registered with the PRINCEPS system.
Upon registering UDDI repositories, the UPW extracts all web-services descriptors contained
in the UDDI-registries, and creates a SOAP-PRINCEPS wrapper (SPW) AO for every ser-
vice. This mechanism has been implemented by using Apache SOAP [16] Java APIs. This
AO allows the user to invoke SOAP methods by means of a graphical user interface (GUI).
It is worth noting that the implemented integration mechanism allows to : %) discover UDDI-
Registries more dynamically than traditional WSAs; #¢) associate different GUIs to existing
web-services; and 4¢¢) build more complex functionalities by assembling existing web-services,
e.g., SOAP-based services, with a set of heterogeneous services, e.g., CORBA-based and even
legacy systems.

UPW and SPW enable the integration of web-services into PRINCEPS. A general solution
for the reverse integration process, i.e., translating PRINCEPS service into web-services, is
not feasible in that ad-hoc solutions are thus needed. Indeed, PRINCEPS provides a flexible

D. Cotroneo, C. di Flora and S. Russo 139

support to advanced client-server models, whereas the WSA does not: PRINCEPS code
mobility allows the service model to vary from thin to fat client, and viceversa. Therefore,
PRINCEPS clients are independent and conceptually unaware of the adopted model; on the
contrary, web-services clients are strongly dependent. Therefore, even if BESs may expose
their functionality through a SOAP-based interface, such a functionality may vary according
to the adopted model: hence, a general solution for exposing PRINCEPS services on a web-
services system is not conceivable.

5 A case study application

This section describes a complete example of a real-world application, consisting of a multime-
dia streaming service. In particular, it shows how SDP and SDI assemble and deliver services
according to the capabilities of client devices and to the desired non-functional requirements.

The case-study is a service for the delivery of multimedia contents (audio and video) on
demand. From a functional view-point, such a service is defined by the traditional media-
management interface (play, stop, pause, fast forward, rewind).

The rest of this section focuses on the provision of such a service with particular quality
attributes (i.e., non-functional requirements). For the sake of simplicity, two kinds of client
are considered, namely a powerful laptop computer (in the following heavy client) and a
resource-limited palmtop computer (light client).

5.1 Building an error-sensttive multimedia streaming service

Mobile users are often provided with different kinds of network connection, such as GPRS
and Wireless LAN. Availability and performance of these network infrastructures may vary
according to user location, client device and network congestion. In this context, monitoring
the quality of a multimedia streaming and measuring it from the view-point of effective
end-users is a crucial issue. In fact, a mobile device may exploit monitoring functions in
order to choose the connection which presents the highest quality of service (QoS) “at the
moment”. Moreover, in a real scenario, users pay for a certain QoS, and service accounting
is performed according to the desired QoS. Therefore, an error-sensitive streaming has to be
used to monitor QoS as perceived by end-users and to control that no contract-violations
occur. The implemented multimedia service is thus composed by the following services:

¢ multimedia streaming (MSTR): a multimedia streaming service, based on the real-time
transport protocol (RTP) [18];

e monitoring service (MMON): an RTP monitoring service which extracts performance
data concerning actual RTP sessions and eventually detects performance errors during
an active session. This service uses the real-time control protocol (RTCP) [18].

It is worth noting that these services may exist independently from each other.

In order to realize the MSTR and MMON as PRINCEPS services, it is necessary to split
the MSTR and MMON services into the AO and the BES. Such components have been here
implemented exploiting the Java media framework (JMF) libraries [17]. As far as the MSTR
is concerned, the AQO is based on a media-player for presenting the requested media to the
end-user, whereas the BES is in charge of streaming the requested media data to the end-user
by using RTP. As far as the MMON is concerned, the AO evaluates performance of a certain

140 An Enhanced Service Oriented Architecture for Developing Web-Based Applications

Table 1. Different versions of the media streaming service

| Client | Non-functional requirement] Delivered service
Light Client | None Simple media player
Light Client | Dependability ESS with monitoring gateway
Heavy Client | None Advanced media player
Heavy Client | Dependability ESS with local monitor

streaming session by: ¢) communicating with the BES in order to evaluate some network-
performance parameters (i.e., the network delay), and i) exploiting JMF RTCP APIs to
retrieve RTCP reports in order to get RTP-dependent information (i.e., packet loss and jitter
) at run-time.

We have built an error-sensitive streaming service (ESS) by assembling the MSTR and
MMON through the PRINCEPS infrastructure. Such a service is composed of:

1. AOs and BESs of service components (i.e. MSTR and MMON);
2. an ESS AO which contains the “composition logic” of the assembled service;

3. an ESS BES which is in charge of registering the service on PRINCEPS and renewing
registration leases;

Table 1 depicts the different versions of the media streaming service which we have deployed
on PRINCEPS.

5.2 Service discovery issues
Problem

The description and discovery of service implementations depicted in Table 1 require to:

o identify client capabilities (light client or heavy client) and represent different imple-
mentations of the ESS service;

e allow clients to dynamically discover all different versions of the ESS service that match
their characteristics;

e present the (assembled) ESS service as single service.

Solution

PRINCEPS allows to satisfy the outlined requirements. Each client descriptor contains all the
information that is necessary for distinguishing light clients from the heavy ones. Moreover,
as [ar as services are concerned, it is possible to represent different implementations of the
same service through PRINCEPS service descriptors. Furthermore, PRINCEPS SDP enables
the automatic discovery of available implementations. Service discovery can be tailored to
some meaningful attributes that are used on the client-side to retrieve the AO from the Jini
LSs, as shown in Section 3. It is worth noting that service discovery is tailored to client
device characteristics at run-time, and eventually to the desired non-functional requirements,
since these parameters are passed from the CM component to the CD. Moreover, the service
assembly has been masked behind a certain interface, providing the client with the abstraction
of a much more complex service.

D. Cotroneo, C. di Flora and S. Russo 141

Monitor Proxy Server Enhanced media Streaming Server
. (ESS)
Session
Performance L .
Evaluation “—— Monitoring Echo Replies
= pplication Object
e

Monitoring
Stub

Media Monitoring
Back-End Server

P

Monitoring RTCP Reporis

PDA Media
Streaming
AO

Media Streaming

RTP SESSION Back-End Server

Enhanced Media
Streaming
Back-End Server

Enhanced Media
Streaming
Application Object

Fig. 6. Delivery of the ESS service to a resource-constrained client

5.3 Service delivery issues
Problem

Several client-server models may be adopted for the resulting delivered application, as shown
in Table 1. In particular, if the client device is resource-limited, a thin-client approach is
preferable; on the contrary, the media streaming service should be provided adopting a fat-
client model in order to exploit capabilities of heavy clients. Moreover, the deployment of
service components at run-time does not depend on implementation details, such as wire
protocols and streaming protocol.

Solution

In order to serve light clients, PRINCEPS provides the following implementations:

simple media player : a media streaming AO with a light-weight (PDA-suited) GUI is
sent to the client; no monitoring functions are performed;

ESS with gateway : the media streaming AQ is sent to the light client, while the monitoring
AQ is sent to a monitoring proxy server; by this way monitoring is performed by a third-
party entity, namely the monitoring gateway, allowing the ESS service to be delivered
even to resource-constrained devices, as described in Figure 6.

Heavy clients may be provided with the following implementations:

Advanced media player : a media streaming AO with a complex and heavy-weight GUI
is sent to the client; no monitoring functions are performed;

ESS with local monitoring : both the MSTR and MMON AOQOs are sent to the heavy
client, without recurring to a monitoring proxy server.

142 An Enhanced Service Oriented Architecture for Developing Web-Based Applications

By describing the above implementations and registering them in the PRINCEPS service
directory, we have been able to present the mostsuited implementations to the right clients,
and to assemble and deliver their AOs at run-time. In fact, PRINCEPS has enabled to
automatically adapt the “media streaming” service to the particular client device and to the
desired service attributes, leveraging simple services, such as the MSTR and MMON services,
to a much more complex enhanced media streaming service.

It is worth noting that the service is delivered in a plug-and-play fashion without any
human interaction. Traditionally, users have to: i) look for the needed libraries, i.e., JMF, i%)
install them, and 4i%) finally configure the framework before starting and initializing a player.
PRINCEPS provides mechanisms to automate these processes, and it allows all the needed
libraries to be packaged into the application object, thus allowing to free device’s memory
upon service disconnection.

6 Related work

This section reviews some of the major trends in the area of SOAs and discusses how they
relate to our work and in which ways our approach is different.

As stated in [4], discoverability of services is a crucial issue in SOAs. While the standard
UDDI technology provides a client-initiated yellow-pages mechanism for looking up services,
there are a lot of emerging service discovery infrastructures and architectures, such as Jini,
Universal Plug and Play (UPnP), and Bluetooth that might leverage dynamism of WSAs
through their support for spontaneous discovery and adaptation of services. The interested
reader may refer to [19] for a comprehensive survey of modern service discovery technologies
and protocols.

Many current service discovery technologies do not explicitly take into account service
delivery issues and non-functional requirements. Moreover, most of them do not provide
code-mobility and dynamic composition of services, which are two fundamental means of ad-
dressing the outlined issues. Jini is the most important technology which provides Java-based
code mobility features. Moreover, language independence, characterizing all the above tech-
nologies except from Jini, results in architectures presenting a less dynamic and configurable
delivery infrastructure. On the contrary, Jini is based on the Java programming language
and constitutes a first step for leveraging Java code-mobility to service pluggability ® In this
context, the Openwings framework presents some similarities to PRINCEPS. Openwings [20]
is a framework for ad-hoc integration of distributed components. It is targeted to the de-
velopment of distributed systems for mission critical applications. Openwings uses Jini as
service discovery infrastructure: like PRINCEPS, it is possible to make Openwings interop-
erable with different SDPs; so far Openwings has been based on Jini, even though plug-ins
for UDDI and Bluetooth technologies are under development. Adaptation to different client
devices is not explicitly addressed by Openwings. Therefore, adaptation is more spontaneous
in PRINCEPS rather than in Openwings. Openwings is focused on availability, security and
interoperability of the delivered services. As far as availability is concerned, this work dif-
fers from Openwings in the management of service failures, in that PRINCEPS provides %)
an automatic lease-based strategy for maintaining consistency of the service directory upon

bPluggability is the possibility of plugging a software component onto a service oriented system and having it
automatically provide its services

D. Cotroneo, C. di Flora and S. Russo 143

service failure (as shown in Section 3.2), and ii) a BES replication strategy to increase service
availability. Openwings, instead, delegates these responsibilities to service developers. The
interested reader is referred to [21] for a comprehensive analysis of the behavior of service
discovery architectures in presence of communication failures.

Cooltown [22] is a recent SOA for nomadic computing. This work recognizes limitations
of web technologies, exacerbating their need to be integrated with sensing and service dis-
covery technologies in order to build nomadic computing systems. More than providing an
architecture for delivering services with a service-oriented approach, Cooltown represents an
effort to make the web more suitable for nomadic computing. In particular, it presents an
approach for context-awareness in web-based environments, providing a means of announcing
web-entities whose nature may vary from enterprise application servers to home appliances
and embedded systems. In this context the web is conceived as “the most suitable mid-
dleware” for connecting heterogeneous distributed components to mobile users. Interactions
between users and Cooltown services are exclusively based on web pages: even though this
assumption is reasonable when dealing with nomadic computing for embedded systems, it
might be too restrictive in the scenario depicted in Section 2, in which different (and much
more complex) kinds of AOs are needed in order to effectively exploit client device capability
and deliver services with enhanced non-functional requirements.

Agent technologies are an alternative approach for delivering web services. A variety of
agent-based solutions has been developed in order to address service provision and adapta-
tion issues [23, 24, 25]. Software agents [26], both intelligent and mobile, seem to be quite
suitable for developing service oriented architectures [27]. In particular, the mobile agent
paradigm bears a resemblance to our approach [28, 29]. FIPA [30] and KQML [31] spec-
ifications constitute the main efforts for standardization of mobile agent systems (MASs).
These specifications, promoting agent interoperability, do not explicitly consider adaptivity
issues. RAJA (Resource Adaptive Java Agent) [32] is an agent-based infrastructure for mo-
bile resource-adaptive applications which extends a FIPA-compliant MAS providing it with
resource management services. RAJA (as well as PRINCEPS) is based on separation of
non-functional requirements from application functionality. PRINCEPS AOs differ from mo-
bile agents in that they are downloaded owing to a user action, whereas MAs autonomously
migrate from host to host. Moreover, AOs are always executed as single instances; on the
contrary, a single instance of a mobile agent may be executed on multiple hosts.

There are projects, presented in [33, 34, 35], which do not explicitly refer to SOA but
propose solutions quite similar to those adopted in SOAs. In particular, in [33] a framework
is proposed, which allows each service to have multiple implementations that can coexist
at the same time. Services are designed to be composable; moreover, applications do not
depend on a particular service implementation. The work in [34] proposes a strategy for
adapting services to client device characteristics. Such a strategy is location-aware, and
can be used of composing services at run-time. Challenges in broadening the Internet to a
real ubiquitous computing environment are discussed in [35]. This work aims to provide an
infrastructure to make services more independent of different terminal devices, access/core
network technologies, and service providers. A local area SOA, namely Vinci, designed for
rapid development and management of robust web applications, is presented in [36]. Vinci
is based on XML document exchange. Most of the works we have studied mainly focus on

144 An Enhanced Service Oriented Architecture for Developing Web-Based Applications

the service discovery mechanisms (which are not dynamic, i.e., they statically bind to one
running service), and on the concept of service substitutability. Services no longer available
are not detected. Moreover, these works consider service discovery and service delivery as two
independent processes, related one to each other exclusively by means of sequential timing
constraints. Our solution, instead, is based on interaction between service discovery and
delivery: in particular, these two activities have been composed to build services “on the fly”.

7 Conclusions

This work presented an enhanced SOA, called PRINCEPS, particularly suited for imple-
menting web-service applications. The main contributions of this paper are the SDP and the
SDI sub-systems. PRINCEPS implements a novel SDP which is able to assemble services
according to functional and non functional client requirements. The foregoing protocol is
XML-based, implemented using Jini middleware, and is able to discover and create services
at run-time. The implemented lease-based mechanism resulted in a flexible discovery mecha-
nism. An event-driven model was implemented to maintain service directories consistent with
actual running service instances. The implemented SDP subsystem allowed to improve service
availability by registering a redundant set of server clones which have the same interface and
the same lookup attributes. PRINCEPS provides an SDI, which is based on HTTP as trans-
port protocol, and allows extended client-server models to be adopted. This approach can
be extremely effective when users own different kinds of devices (having different computing
capabilities). While developing the proposed architecture, we always strive to keep compat-
ibility with the web-services standards. To this aim, we carefully designed and implemented
two interoperability modules to integrate web-services, defined in terms of SOAP and UDDI,
as PRINCEPS services. On the contrary, being PRINCEPS a SOA which is more complex
than WSA, a general solution for translating PRINCEPS services into web-services is not fea-
sible in that ad-hoc solutions are thus needed. Finally, the provided example demonstrated
that: i) a service can be created on the fly by assembling existing services; i7) the SDP is
able to discover a service depending on client requirements (functional and non-functional),
client and service characteristics; and i) service discovery components allow clients to dy-
namically download the particular application object that satisfies all the above requirements.
We believe our experience can be used as guideline for software developers to solve similar
problems.

Acknowledgements

This work has been partially supported by the University of Naples Federico II, the Consorzio
Interuniversitario Nazionale per I'Informatica (CINI) and by the Italian Ministry for Educa-
tion, University and Research (MIUR) in the framework of the FIRB project “WEB-MINDS:
Wide-scalE, Broadband, MIddleware for Network Distributed Services”.

References

1. S. Vinoski (2002), Where is middleware, IEEE Internet Comput., Vol.6(2), pp. 83-85
2. Microsoft Corporation (2002), .NET Framework Reference,
http://msdu.microsoft.com/netframework /techinfo/documentation/default.asp

10.

D. Cotroneo, C. di Flora and S. Russo 145

. B. Shannon (2002), Java 2 Platform Enterprise Edition Specification, v1.4,
http://java.sun.com/j2ee

A.W. Brown, S. Johnston and K. Kelly (2002), Large-Scale, Using Service-Oriented Architecture
and Component-Based Development to build Web Service Applications, Rational Software White
Paper, TP032

M. Champion, C. Ferris, E. Newcomwe and D. Orchard (2002), Web Service Architecture, working
draft 14 http://www.w3.org/TR/2002/WD-ws-arch-20021114/

A W. Brown (2000), Large-Scale, Component-Based Development, Prentice Hall

D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelson, H.F. Neilsen, S. Thatte and
D. Winer (2000), Simple Object Access Protocol (SOAP) Ver. 1.1, World Wide Web Consortium
(W3C), http://www.w3.org/TR/SOAP.html

E. Christensen, F. Curbera, G. Meredith and S. Weerawarana (2001), Web Ser-
vice Description Language (WSDL) Ver. 1.1, World Wide Web Consortium (W3C),
http://www.w3.org/TR/wsdl.html

D. Ehnebuske, B. McKee and D. Rogers (2002), Universal Description Discovery and Integration
(UDDI) 2.04, http://www.uddi.org/specification.html

K. Ballinger, P. Brittenham, A. Malhotra, W.A. Nagy and S. Pharies (2001), Web Services In-
spection Language (WSIL) 1.0, International Business Machines Corporation (IBM)
http://www.ibm.com/developerworks/library /ws-wsilspec.html

11. K. Arnold, A. Wollrath, B. O’Sullivan, R. Scheifler and J. Waldo (1999), The Jini Specification,
Addison-Wesley, Reading

12. WK. Edwards and B. Joy (2001), Core Jini 2ed, Prentice Hall PTR,
http://www.kedwards.com/jini/

13. Sun Microsystems Inc. (2002), JavaSpaces Service Specification, Version 1.2.1
http://wwws.sun.com/software/jini/specs/jinil.2html/js-title.html

14. D. Cotroneo, C. di Flora and S. Russo (2002), A JINI framework for distributed service flezibility,
in proc. of 10th Euromicro Workshop on Distributed and Parallel Network-based Processing, pp.
109 -116

15. S. Ghandeharizadeh, F. Sommers, K. Joisher and E. Alwagait (2002), A Document as a Web
Service: Two Complementary Frameworks, in proc. of the Second International Workshop on
Multimedia Data Document Engineering (MDDE 02)

16. Apache Software Foundation (2002), Apache SOAP Ver. 2.3.1
http://ws.apache.org/soap/

17. Sun Microsystems Inc. (2002), Java Media Framework API Ver.2.1.1b,
http://java.sun.com/products/java-media/jmf/

18. H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson (1996), RTP: A Transport Protocol for
Real-Time Applications, IETF Request for Comment (RFC1889),
http://www.ietf.org/rfc/rfc1889.txt

19. A. Rakotonirainy and G. Groves (2002), Resource discovery for pervasive environments, in CooplS
/ DOA / ODBASE 2002: Lecture Notes in Computer Science, Springer Verlag: LNCS 2519, pp.
866—883

20. G. Bieber and J. Carpenter (2002), Openwings: A Service Oriented Component Architecture for
Self-Forming, Self-Healing, Network-Centric Systems, Rev. 2.0, http://www.openwings.org

21. C. Dabrowski and K. Mills (2002), Understanding self-healing in service-discovery systems, in
proc. of the first workshop on self-healing systems, ACM

22. T. Kindberg and J. Barton (2002), People, Places, Things: Web presence for the Real World, ACM
Mobile Networks and Applications, Vol.7(5), pp. 365-376

23. J. Kiniry and D. Zimmerman (1997), A hands-on look at Java mobile agents, IEEE Internet
Comput., Vol.1(4), pp. 21-30

24. K. Sycara, M. Paolucci, M. van Velsen and J. Giampapa (2003), The RETSINA MAS Infrastruc-

ture, To appear in the special joint issue of Autonomous Agents and MAS, Vol.7, Nos. 1 and 2,
July, 2003

146 An Enhanced Service Oriented Architecture for Developing Web-Based Applications

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

P. Bellavista, A. Corradi and C. Stefanelli (2001), Mobile agent middleware for mobile computing,
IEEE Computer , Vol.34(3), pp. 73-81

M. Wooldrige (1999), Intelligent agents, Multiagent Systems - A Modern Approach to Distributed
Artificial Intelligence, MIT Press, pp. 21-35

B. Schulze and E.R.M. Madeira (1997), Contracting and Moving Agents in Distributed Applications
Based on a Service-Oriented Architecture, Mobile Agents, Lecture Notes in Computer Science -
LNCS 1219, pp. 74-85

Z. Wang and J. Seitz (2002), Mobile Agents for Discovering and Accessing Services in Nomadic
Environments, in proc. of fourth international workshop on mobile agents for telecommunication
applications, Barcelona, Spain, Springer-Verlag LNCS 2510, October 2002

J. Jing, A.S. Helal and A. Elmagarmid (1999), Client-server computing in mobile environments,
ACM Computing Surveys, Vol.31(2), pp. 117-157

FIPA: The Foundation for Intelligent Physical Agents, http://www.fipa.org

T. Finin, Y. Labrou, and J. Mayfield (1995), KQML as an agent communication language, in
Software Agents, MIT Press

Y. Ding, R. Malaka, C. Kray and M. Schillo (2001), RAJA: a resource-adaptive Java agent in-
frastructure, in proc. of the fifth international conference on autonomous agents, ACM Press, pp.
332-339

R. Feiertag, T. Redmond and S. Rho (2000), A framework for building composable replaceable se-
curity services, in proc. of DARPA Information Survivability Conference and Exposition (DISCEX
00), IEEE Computer Society, Vol.2, pp. 391-402

T. Hodes and R. Katz (1999), Composable Ad hoc Location-based Services for Heterogeneous
Mobile Clients, ACM Wireless Networks, Vol.5(5), pp. 411-427.

35.

36.

D. Mandato, E. Kovacs, F. Hohl and H. Amir-Alikhani (2002), CAMP: a context-aware mobile
portal, IEEE Commun. Mag., Vol.40(1), pp. 90-97.

R. Agrawal, R.J.Jr. Bayardo, D. Gruhl and S. Papadimitriou (2002), Vinci: A Service-Oriented
Architecture for Rapid Development of Web Applications, Elsevier Computer Networks, Vol.39
http://www.almaden.ibm.com/cs/people/bayardo/vinci/vinci.htmi

