
Journal of Web Engineering, Vol. 1, No.1 (2002) 037-060 
© Rinton Press 
 

 

A SOFTWARE ARCHITECTURE FOR STRUCTURING 
COMPLEX WEB APPLICATIONS 

MARK DOUGLAS JACYNTHO (*), DANIEL SCHWABE (*) AND GUSTAVO ROSSI (**) 
 (*) Departamento de Informática. PUC-Rio, Rio de Janeiro, Brazil 

E-mail: schwabe@inf.puc-rio.br , mark@inf.puc-rio.br  

(**) LIFIA - Facultad de Informática. UNLP, La Plata, Argentina 

E-mail: gustavo@sol.info.unlp.edu.ar 

                                                           Received September 6, 2002     
                           

 In this paper we present an architecture for building families of rich Web applications. We first 
characterize current trends in Web applications, from read-only Web sites to sophisticated applications 
where complex distributed transactions must be supported. We next some design principles for building 
Web applications, and give the rationale for separating application behavior from navigation and interface 
issues. We briefly argue the need for developing a product line architecture for simplifying the systematic 
construction of different families of applications. We next describe the main components of our 
architecture explaining how we manage to decouple application specific aspects from technological 
aspects (such as dynamic page generation and persistence) that can be eventually solved by reusing of-the-
shelf components. We show how to build application frameworks using this architecture using a concrete 
example of an electronic CD store. 

Key words: Web design, software architecture, frameworks 
Communicated by: B White 

 

1 Introduction 

Building complex Web applications such as E-commerce applications is difficult, since these 
applications often act as integrators of distributed data or behavior repositories, and usually support 
different user profiles. Web applications combine challenging technological issues such as allowing 
access from mobile devices, or balancing support for current html/xml releases, with more conceptual 
ones such as implementing new business models (because internet-based business may be quite 
different from traditional ones). 

We need to understand the underlying application domain: objects, behaviors, business rules, etc., 
and come up with flexible and evolvable software architectures in that domain. To make matters worse 
these applications evolve continuously and, at the same time, they should be deployed quickly and 
with zero defects. Systematic engineering and reuse-centric approaches are certainly a must.  

In the last 6 years we have been using the Object-Oriented Hypermedia Design Model (OOHDM)1 
for designing complex Web applications. We have also explored reuse in Web applications. We have 
mined architectural and navigation patterns in these kinds of applications2 , and also discovered 
patterns in specific application domains such as E-commerce3.  



 

 

38     A software architecture for structuring complex Web applications 

 

Although micro-architectural reuse such as afforded by applying design patterns may help to build 
high-quality Web applications, we need more powerful approaches in order to deal with complexity, 
evolution and short development and maintenance times, in particular in the context of families of 
Web Applications (e.g. virtual museums, electronic stores, etc). We have introduced Web frameworks 
as a way to introduce domain knowledge in the application’s design architecture4. Unfortunately, 
however, when these patterns and frameworks are mapped onto current implementation settings, we 
can loose most reuse opportunities if we don’t use an architectural-centric approach 5. 

In this paper we present a component-based architecture and an implementation framework for 
building complex Web applications. We first present our view of Web applications as views on Object 
Models; we next justify the need for improving current Web implementation architectures (such as 
J2EE) with components that simplify the development of new applications; we next describe 
OOHDM-Java2, an architecture that allows decoupling design decisions related with the domain 
model from those related with the navigation and interface architecture. We show how using this 
architecture we can implement application frameworks for different families of Web applications. We 
next give an example in the field of E-commerce. Finally we discuss further issues and draw some 
conclusions. 

2 Design Principles for Web Applications 

It has been argued that good Web applications should be first good hypermedia applications6, 
since the Web is based on the hypertext paradigm, in as much as it is composed of pages (nodes) 
which can be linked to each other through links (URLs). We should use good hypermedia design 
practices to come up with applications that are easy to use, provide friendly navigational spaces, and 
seamlessly integrate the underlying transactional behavior, if any, with the familiar metaphor provided 
by navigational links. 

Most mature Web design methodologies, such as HDM20007, WebML8 and OOHDM1, recognize 
this fact by clearly separating data design from behavioral aspects of the application, and from the 
navigational and interface concerns. Clear separation of concerns is widely regarded as a key aspect 
for obtaining design quality and reuse, as well as ease of evolution and maintenance. However, in 
many cases these benefits are partially lost during implementation, due to poor support for 
composition and abstraction mechanisms in current implementation platforms. 

Mapping design documents into implementation artifacts is usually time-consuming and, in spite 
of the general acceptance about the importance of software engineering approaches, implementers tend 
to overlook the advantages of good modeling practices. The relationship among design models and 
implementation components are lost, making traceability of design decisions, a fundamental aspect for 
supporting evolution, a nightmare. We claim that this problem is not only caused by the relative youth 
of Web implementation tools but mainly by: 

• A lack of understanding that navigation (hypertext) design is a defining characteristic of 
Web applications;  

• The fact that languages and tools are targeted more to support fine grain programming 
than architectural design; 

• The inability of methodologists for providing non-proprietary solutions to the 
aforementioned “mapping” dilemma. 



 

 

 M. Jacyntho, D. Schwabe and G. Rossi    39

In this paper we present a software architecture together with an implementation framework that 
allows improving the process of mapping a design schema onto a running Web application. The 
architecture supports and encourages the use of a set of design principles provided by most 
methodologies, and implements them in the context of the J2EE architecture, thereby improving 
existing approaches for using J2EE. The salient principles are: 

• Applications should be built using layers in which different concerns are taken into 
account; in particular, application data should be separated from the page’s contents 
(navigation nodes) and these contents, in turn, should be clearly separated from the 
interface look-and-feel (pages). In Figure 1 we illustrate a three-layer design architecture 
following this principle. When we clearly decouple interface from navigation and from 
application behavior we have better opportunities for reuse 

• Nodes should represent logical views on domain objects, thereby allowing the 
construction of customized applications according to the user profile simply by changing 
views instead of changing domain objects. This principle refines the previous one by 
identifying nodes as first-class abstractions that should not be subsumed in interaction 
code. For example, in an electronic store, the manager view of a product will be different 
from the customer view, and for each we may have different look and feel depending on 
the interface device (as shown in Figure 1). 

 

 Shared Conceptual Model 
implementing domain 
abstractions 
and behaviors  

Web applications built as 
views on the shared 
conceptual model. Nodes 
represent page contents 

...... 

...... 

............

...... 

...... 

............

Interface objects 
contain the look and feel 
of navigation objects

. 

. 

............ 

....……

...... 

............

 
Figure 1: A three-layered design architecture 

 

• Context-based, or more specifically, set-based navigation should be provided, simplifying 
the traversal of collections of related information items. This principle recognizes that 
navigation always occurs within a context, and treats sets as first-class citizens in Web 
applications. For example, when we traverse the set of CDs of a rock group, we should 
have the possibility to move sequentially from one element to the other without 
backtracking to the index. Since the same CD may also appear in other sets, such as 
today’s recommendations, navigation controls should depend on the set and not only on 
the node. At the same time, complementary context-related information should ideally be 
provided; for example for each recommended CD we should explain why we recommend 



 

 

40     A software architecture for structuring complex Web applications 

 

it  - and this information would not appear when the CD is accessed within the former set. 
A different example not involving sets occurs if we want to restrict navigation or other 
operations in some context: e.g. when we navigate from the shopping cart to a CD we 
may want to prevent the user from adding the CD again to the cart. 

In OOHDM for example, a design model comprises a conceptual, a navigational and an interface 
model. The conceptual model is described using a variant of UML (with use cases, class diagrams, 
etc). The navigational model is specified with two schemas, the navigational schema showing nodes 
and links (as views of conceptual objects) and a context schema that shows indexes and contexts in the 
application. 

As an implementation environment, the J2EE (Java 2 Enterprise Edition)9 which has become 
popular in the market, is a platform for implementation of distributed multi-tier applications 

To illustrate how the use of a software architecture improves the implementation of complex 
applications we can use as an example the J2EE platform. J2EE consists mainly in three tiers: client, 
middle and EIS (Enterprise Information System). In the client tier we may have a stand-alone 
application or a Web browser; the EIS tier usually handles persistence, while the middle tier is itself 
divided in sub-tiers, which use components deployed into containers. There are two containers: the 
EJB container and the Web container. In the Web container we deploy JSP pages and servlets, whereas 
in the EJB container we deploy enterprise java beans (EJB) components that implement business rules 
in a software applications. EJB components may be entity beans, representing entities stored in some 
persistence mechanism; session beans, representing a client on the J2EE server, i.e., a logical extension 
of the client on the server; and Message Driven Beans, which permit J2EE applications to process 
messages asynchronously. 

Using J2EE may be extremely difficult, since a programmer may be led to incorrectly distribute 
software responsibilities. However if we use a software architecture to reason about the construction of 
Web applications using J2EE, we can simplify the process. For example, using the Model View 
Controller (MVC)10 architecture we are not condemned to leave most architectural design decisions to 
the programmer’s wisdom or ability. 

3 Why We Need a Software Architecture 

Complex Web applications usually involve customized navigation topologies and support for 
triggering transactions in their underlying corporate application, which in turn may contain 
sophisticated business rules that may affect the application’s behavior and look-and-feel. 

A naive approach will face some problems during evolution and maintenance. For instance, if the 
designer includes business rules inside server pages (e.g. JSP); he will have difficulties to change them 
if the same rules must be used twice in different pages; or if he deletes or changes an interface, he may 
inadvertedly erase the rule. Simply encapsulating business rules in application objects and invoking 
them from interface pages does not solve the problem, since there still is a strong coupling among 
interface and business-specific behavior.  

The evolution of software platforms for building Web applications shows a perceivable trend 
towards modular architectures, i.e. those in which program components and their interactions follow 
established software engineering practices, such as separation of concerns, good support for evolution, 
etc. 



 

 

 M. Jacyntho, D. Schwabe and G. Rossi    41

For example, we can consider that the use of the Model View Controller (MVC) 10 architecture for 
improving the development of J2EE-based applications enhances earlier proposals in which most 
architectural design decisions were left to the programmer’s savvy or ability. The MVC architecture, 
summarized in Figure 2, has been extensively used for decoupling the user interface from application 
data and from its functionality. Different programming environments provide large class libraries that 
allow the programmer to reuse standard widgets and interaction styles by plugging corresponding 
classes into his “model”. 

 

B
R
O
W
S
E
R

CONTROLLER
(Session EJB, Servlets)

 Defines application behavior
 Maps http requests to model updates
 Selects view for response
 One for each functionality

VIEW
(JSPs)

 Renders the model data
 Requests updates from model (pull)
 Allows controller to select the view

MODEL
(EJBs)

 Encapsulates application data
 Encapsulates application functionality
 Provides an interface for state queries
 Provides an interface for functionality
 Notifies view of changes (push)

http request

http response

State Change

View Selection

State Query

Change Notification

Application Server

Data
Source

 
Figure 2: The MVC architecture 

 

The model contains application data and behaviors, also providing an interface for the view and the 
controller. For each user interface, a view object is defined, containing the information about 
presentation formats, and is kept synchronized with the model’s state. Finally, the controller processes 
the user input and translates it into requests for specific application functionality. This separation 
reflects well the fact that Web applications may have different views, in the sense that it can be 
accessed through different clients, such as browsers, WAP clients, Web service clients, etc., with 
application data separated from its presentation. The existence of a separate module to handle user 
interaction, the controller, (or, more generally, interaction with other systems or user) provides better 
decoupling between the application behavior and the way in which this behavior is triggered.  

Moving to a software architectural approach has many benefits, which will be evident throughout 
the paper; to mention only some of them5 we can: 

• Improve communication among stakeholders; as the architecture represents a common 
high-level abstraction of a system that most stakeholders can use as a basis for creating 
mutual understanding and forming consensus. 



 

 

42     A software architecture for structuring complex Web applications 

 

• Represent early design decisions; because architecture represents the manifestation of the 
earliest and most important decisions with respect to the entire system development 
cycle. 

• Promote large-scale reuse in our applications; because we can apply the same 
architectural styles to many similar systems regardless to their in-the-small concerns. 

These advantages become even more tangible when we can refine our software architecture into a 
set of smaller-grained architectures for particular families of domain-specific Web applications, such 
as e-commerce or interactive learning applications. We can build a product-line architecture5 and 
different application frameworks for each domain. The development of a new application will then 
involve just instantiating and connecting framework components, instead of building everything from 
scratch each time. 

In the following section we introduce the OOHDM-Java2 architecture, explaining its components 
and the interactions among them, and show an example of use of the architecture. 

4 The OOHDM-Java2 Architecture 

4.1 Limitations of the MVC architecture 

While the MVC provides a set of structuring principia for building modular interactive 
applications, it does not completely fulfill the requirements of Web applications for providing rich 
hypermedia structures, since it is based on a purely transactional view of software. Most of all, it does 
not take into particular consideration the navigation aspects that we have argued should be 
appropriately supported. 

The view component subsumes structure and presentation of data, while contents are kept in the 
model. Concretely, in a naive use of the MVC, nodes and their interfaces are handled by the same 
software component (typically a JSP object).  

In addition, the basic idea that navigation always occurs within a context and that context-related 
information should be provided to the user is absent in the MVC. For example, if we want that the 
same node has a slightly different structure depending on the context in which it is accessed (e.g. CD 
in a thematic set or in the shopping cart), we have to use the context as a parameter for the JSP page, 
and write conditional statements to insert context sensitive information as appropriate. The JSP 
becomes overloaded, difficult to manage and evolution becomes practically unmanageable. The same 
problem occurs if we use different JSP pages for different contexts, duplicating code.  

An alternative approach is having one JSP page that generates the information common to all 
contexts ("basic node"), and one JSP page for each  "node in context" that dynamically inserts that 
common JSP page, adding the context sensitive information. This is still unsatisfactory, since this case, 
the "basic node" layout becomes fixed and we have lost flexibility. 

Summarizing, the main problem is that the navigational logic (node and context management) is 
dealt with in the JSP page, which mixes it with the interface layout. To solve this problem, we propose 
the creation of a navigational layer encapsulating all navigational logic. While the JSP is responsible 
for the page layout structure, the navigational layer manages the node contents and deals with context-
specific information.  



 

 

 M. Jacyntho, D. Schwabe and G. Rossi    43

4.2 Overview of the architecture 

The OOHDM-Java2 architecture and the associated architectural framework was designed and 
implemented with the following objectives: 

• It should support and encourage good design and implementation practices; 

• It should be easily portable across platforms; 

• It should have minimum dependencies on particular programming languages and/or tools 
(such as databases, operating systems or compilers); 

• It should implement the most common used abstractions in Web applications leaving the 
designer the task of just providing application-specific code; 

• It should provide support for building complex transactional Web applications; 

• It should be easy to use in read-only applications (such as virtual museums); 

• Component reuse should be mainly black-box reuse (i.e. the designer should only know 
the interface of the architectural components). 

OOHDM-Java2 extends the idea of the MVC by clearly separating nodes from their interfaces, 
thus introducing the idea of navigation object; it also recognizes the fact that navigation may be 
context-dependent.  

Model

Controller

Extended View

JSP (layout)

Navigational Node
(contents, model

view)

Http Request
Translator

Executor Business
Objects

1) Http
Request

2) Business
Event

3) Application
Funcionality
Invocation

View
Selector 4) Queries on

Model State

5) Selected
View

6) Http
Response

Client

Navigational Node
(contents, model

view)

 
Figure 3:  Main components of OOHDM-Java2 

 

In Figure 3 we present the higher-level components of the OOHDM-Java2 architecture, together 
with the most important interactions between components when handling a request. Although we 
explain different configurations of the architecture later in this paper, it is important to stress that not 
all applications need to use all parts of the architecture; simpler applications, such as read-only 
navigational applications, may use just a sub-set of these components.  

 

The main components of the architecture are summarized below. 



 

 

44     A software architecture for structuring complex Web applications 

 

Component Description 

HTTP Request Translator 
(Controller) 

Every http request is redirected to this component. It 
translates the user request into an action to be executed by 
the model. This component extracts the information 
(parameters) of the request and instantiates a business 
event, which is an object that encapsulates all data needed 
to execute the event. 

Executor (Controller) This component has the responsibility of executing a 
business event, invoking model behaviors following some 
pre-defined logic. 

Business Object (Model) This component encapsulates data and functionality 
specific to the application. All business rules are defined 
in these objects and triggered from the executor to execute 
a business event. 

View Selector (Controller) After the execution of a business event, this 
component gets the state of certain business objects and 
selects the response view (interface). 

Navigational Node (Extended 
View) 

This component represents the product of the 
navigational logic of the application; it encapsulates 
attributes that have been obtained from some business 
objects and other navigational sub-components such as 
indexes, anchors, etc. This component has the contents to 
be shown by the response interface (JSP). 

JSP (Extended View) This component generates the look-and-feel that the 
client component receives as a response to its request. To 
achieve this, it instantiates the corresponding navigational 
node component and adds the layout to the node’s 
contents. Notice that the JSP component does not interact 
directly with model objects. In this way we can have 
different layouts for the same navigational node. 

 

4.3 Using OOHDM-JAVA2 

We next present a summary of the abstract tasks that a designer must perform in order to 
instantiate a running application using OOHDM-Java2. In section 5 we refine this explanation 
referring to concrete classes in an example. This description assumes a more complex application, 
involving business logic as well as navigation. For read-only applications, the process starts at step 5 
below. 

1. First, the designer must define the structure and behavior of application business objects, 
derived from the application’s conceptual model; this is one of the points of flexibility of 
the architecture, analogous to a hot-spot in a framework. Notice that in some domains we 



 

 

 M. Jacyntho, D. Schwabe and G. Rossi    45

can even provide a set of pre-defined classes and behaviors (See section 6), thus 
providing more specific points of flexibilization. 

2. The next step consists in defining the business events in the application, i.e. those objects 
that encapsulate the parameters needed for that event, coming from the http request. 
Examples of business events may be adding an item to the shopping cart, creating an 
order, etc. The component Http request translator must be specialized, adding for each 
different http request, the application specific logic for translating the request into the 
corresponding business event 

3. The Executor component is then customized. For each business event object, the designer 
must indicate the execution logic of this event, i.e. how model objects are invoked to 
implement the business event. 

4. After the execution of the business event it is necessary to send a response to the client. 
The designer must specialize the View Selector component adding the application’s 
specific logic to select the response interface. In some cases this logic is a simple 
mapping between the http request and the response interface; in other cases it may be 
necessary to query the model state to select the response interface. 

5. Next, or if the application is read-only, the structure of the navigation space is defined by 
identifying the meaningful contexts (sets) of nodes. These are represented in the 
architecture by specializing the Navigational Context component, specifying the context 
properties and adding the logic to load the context elements according the context 
selection and ordering criteria. 

6. Once the contexts have been defined, we have to define the structure of nodes in the 
application, which are usually specified as part of a navigational model in existing 
methods. This is achieved by refining the Navigational Node component, adding the 
attributes that must be made perceivable to the client. 

7. Finally the designer must specify the JSP pages in the application defining the layout for 
the corresponding navigational node structure. These pages obtain their contents from the 
navigational nodes defined in step 6. 

It should be noted that steps 5-6 can be automatically generated from an XML specification of the 
design in a DTD such as OOHDM-ML 11since all the information is known at design time. 

In Figure 4 we summarize the mapping of an OOHDM design model into the OOHDM-Java2 
framework. 

 



 

 

46     A software architecture for structuring complex Web applications 

 

 
Design 
Model 

OOHDM-Java2 
Framework 

 

Navigational 
Model 

Interface 
Model 

Conceptual 
(Business) 

Model 

Use Cases 
And 

Scenarios 

EJBs 

State Objects

Web Objects

Navigational 
Contexts 

Node 
Creators 

Index 
Creators 

Event 

Request 
Handlers

Event 
Handlers

JSP 
Pages 

Contexts 

Indexes 

Nodes 

 
Figure 4: Mapping from a Design Model to OOHDM-Java2 

 

4.4 Event Handling and Processing in OOHDM-Java 2 

In this section we refine the description of the architecture by explaining some physical 
components that implement the previously described logical components. In Figure 4 we show the 
complete process for treating an http request. 

The following description is based in a 3-tier scenario (web tier, EJB tier, and persistence tier). 
Nevertheless, it is perfectly possible to use this architecture in a 2-tier scenario (web tier, and 
persistence tier). In the 2-tier scenario the model is composed of simple Java Objects in place of the 
EJBs, and the EJB Controller core functionality is merged into the Web Controller. The OOHDM-
Java2 a architecture implementation has a configuration parameter that must be used to indicate 



 

 

 M. Jacyntho, D. Schwabe and G. Rossi    47

whether is a 3-tier or a 2-tier application. The client tier (the client browser) was omitted for the sake 
of simplicity. 

 

 

2) Calls the 
Request Manager, 
passing the http 
request that will be 
translated in  an 
event. 

1)  The http 
request is  
redirected to this 
servlet. by the 
container. 

3) Sends the 
event to the 
Web 
Controller. 

4) Redirects the event to 
the EJB Controller. 

5) Executes the 
event calling 
methods on 
business 
(conceptual) 
objetcs. 

6) Access 
and update 
the 
database. 

7) Calls the 
Interface Manager 
to select the answer 
interface. 

9) Calls the 
Navigational 
Manager to 
assemble the 
contents of 
the 
navigational 
node. 

8) Answer 
interface 
selected. 

10) Calls the Web Controller to 
access the state of business 
(conceptual) objects. 

Request 
Manager 

  Interface 
Manager 

Navigational 
Manager 

Web Tier

  Http  
request 

Front
   Servlet 

EJB Tier 

   Answer   
  JSP

Model  
(EJBs) 

DBMS

Web 
Controller 

(proxy)
        EJB

Controller

Controller

Extended View

 
Figure 5: Treating an http request in OOHDM JAVA2 

 

All http requests are re-directed by the application server container to the Front Servlet 
component, the single application entry point. When the Front Servlet is created it must initialize the 
application, instantiating all global application components. Treatment of the request occurs in the 
scope of its main method that is executed within a thread. Front Servlet is a black-box component 
provided by the framework. 

The Front Servlet sends the http request to the Request Manager component, which translates it 
into a business event. The Request Manager uses auxiliary objects called Request Handler that know 
how to handle different http requests. The Request Handler contains the logic for generating a business 
event; an XML configuration file establishes the correspondence between http requests and the 
Request Handler. 

After translating the request into an event, the Request Manager sends this event to the Web 
Controller. This is a component that resides inside the scope of the user’s session and is instantiated by 
the Request Manager in the first user request. The Web Controller is responsible for interfacing with 
the EJB Controller and providing access to conceptual objects. 



 

 

48     A software architecture for structuring complex Web applications 

 

Upon reception of the event, the Web Controller redirects the event to the EJB Controller. This 
object controls the EJB layer, also called business layer. The EJB Controller invokes the appropriate 
business objects, and notifies the Web Controller of the resulting changes to be reflected in the 
observer objects. 

The EJB Controller invokes the Event Handler, which has the specific logic for executing the 
events, i.e. knows which conceptual objects (EJBs) to invoke, when and how. For each business event 
there is a corresponding Event Handler and this correspondence is defined using an XML 
configuration file. 

At this stage we need to send a response back to the client. The Front Servlet invokes a black-box 
component, the Interface Manager, which selects the response interface. When the mapping between 
the http request and the response interface is not direct, the Interface Manager invokes the Interface 
Handler, containing the logic for selecting the interface based on the request and on the state of 
conceptual objects. The mapping between the http request and the response interface (and if necessary 
the Interface Handler) are also specified using an XML file. 

In OOHDM-Java2 an interface template is a JSP page containing place holders, known as template 
parameters. There are two kinds of template parameters: those whose value is a text to be inserted 
directly, and those whose value is another JSP page whose contents are inserted dynamically. 
Template pages are defined using the custom tag parameters containing an attribute defining the 
parameter name or place holder of the template. A template plus its parameter’s values define an 
interface. Application interfaces are also defined using XML files. 

When the response interface contains a JSP page that exhibits a navigational node or an index, it is 
necessary to instantiate them using components Navigational Node or Index. This JSP invokes the 
Navigational Manager component using the custom tag crate_node or create_index. The Navigational 
Manager invokes the corresponding factory object (Node Creator or Index Creator) containing the 
specific logic for creating the node or index. These objects access appropriate conceptual objects 
through the Navigation View interface, which is responsible for implementing the view over the 
conceptual object. 

The Navigational View interface declares three methods: getContextNodeIDs, getObjectList, and 
getObject. The first method returns the node identifiers (NodeIDs) of a navigational context. The 
second return the list of objects that contains the data used to create each index entry of an index. The 
last method returns a state object encapsulating the actual data used to create the navigational node in a 
context. 

Another important component (not shown in Figure 4 for the sake of simplicity) is the 
Navigational Context, which represents the set of nodes the user is currently navigating. This 
component interacts with the Navigation View component to access the conceptual objects 
corresponding to the nodes in the current context. The Navigational Manager interacts with the 
Navigational Context to provide adequate contextual information for a Node Creator or Index Creator 
to instantiate the node or index. This information includes ID of the next and previous nodes, number 
of elements in the context, the URL(s) where the node in context is exhibited, etc. In other words, 
when the node is created, the linking information is retrieved and inserted into the node by the Node 
Creator. 

The definition of contexts and the correspondence between contexts and the corresponding 
Navigational Context and Node Creator are specified using XML configuration files. 



 

 

 M. Jacyntho, D. Schwabe and G. Rossi    49

Finally, if the http request does not have an associated business event, i.e. it is only a navigational 
request, the process is fairly simple; the interface response must be defined, the corresponding node (in 
context) must be created and the JSP must generate the layout. In this case, the Front Servlet invokes 
the Interface Manager and processing follows from that point. 

5 Instantiating an Application 

In this section we explain how a designer instantiates our framework for creating a specific 
application, illustrating each step using the example of an online CD store. Although we show a step-
by-step explanation, the process is usually incremental. 

We assume that the designer has built design models (for example using OOHDM), and thus he 
has partitioned the design space into three different models: conceptual, navigational and interface. For 
the sake of conciseness we do not describe persistence issues in this explanation. We also give a 
simplified presentation of the application layer because it is straightforward, e.g. mapping design 
classes into EJBs (entity beans, session beans, state objects, data access objects, etc), or into Java 
classes. 

In figure 6 we present a small draft of the OOHDM conceptual model of the CD store. 

 

CD 
title: string 
description: text 
kind: [Rock, Jazz, etc] 
. . . 

Order 

number: integer 
shipAddress: string 
/total_price: real 
prazo_entrega: real 
. . . 
 
createOrder() 
addItem(cd: CD,  
              quantity: integer) 
. . . 

1..*0..* includes 

Item 
quantity: integer 
. . . 

0..* 

Client 
name: string 
password: string 
. . . 

makes 

1 

0..*

Artist 
name: string 
description: string 
. . . 

participates

1..*

 
Figure 6 – The OOHDM conceptual model of the CD Store 

 

The EJB layer should only be used for applications with complex transactions and concurrent 
access to data. Simple database access may be done directly, although we may use pseudo entity beans 
to abstract persistent objects. 

For example, analysing the conceptual model and the uses cases of the our CD Store the following 
main objects were created: 

• Catalog – A stateless session bean that provides information about CDs and artists. It is 
stateless since it is independent of the session or the user. 

• Cart – The shopping cart (current order) of the application. It is a stateful session bean, if 
we assume the shopping cart is not kept in between navigation sessions. 



 

 

50     A software architecture for structuring complex Web applications 

 

• Account – An entity bean that represents the client account. It is an entity bean since it is 
persistent. 

• Order – An entity bean that represents the client order. It is an entity bean since it is 
persistent 

Once the application model is ready, we must map our navigation objects - nodes, indexes, 
contexts - into the architecture. The first step is to implement the Navigational View interface for those 
objects (EJBs, State Objects or Web Objects) that must provide information for the creation of nodes 
and indexes. To implement this interface we must analyse the navigational model to know the 
necessary information. The figure 7 and 8 ilustrate part of the navigational model. 

 

1 1..*contains

0..*participates1..*

Artist  
                     {from a: Artist} 
name: string 
description: text 
. . . 
cds: Index CDs by Artist (self)
 

Order 
                                        {from o: Order} 
name: cl:Client, cl.name where cl makes o   
e-mail: cl:Client, cl.e-mail where cl makes o  
number: integer 
. . . 
ship_address: string 
. . . 
cds: Index CDs by Order (self) 

CD   
                            {from c: CD}                       

name: string 
description: text 
kind: [Rock, Jazz,etc] 
. . . 
artists: Index Artists by CD (self) 
 
addItem(self,quantity:integer):o:Order, o.addItem where o.state =    
‘current (shopping cart)’ 

Item 
    
cd_name: c:CD, o: Order, c.name where Item (c, o) 
order_num: c: CD, o: Order, o.number where  Item (c, o) 
quantity: integer 
 
updateItemQuantity (c:CD, quantity: integer): c:CD, 
o:Order, o.updateItemQuantity where item(c,o) 

is 
1 

0..*

 
Figure 7 – The OOHDM navigational diagram (nodes and links) of the CD Store 

 

CD 

  By Kind Kinds 
Main 
Menu 

 
Figure 8 – Part of the OOHDM context diagram (the Kinds index and the “CDs By Kind” navigational context) 

 

In our example application, there are several objects that implement the Navigational View. For 
instance, the catalog bean implements this interface to supply conceptual information to all contexts 
and indexes involving CD or Artist. 

To illustrate this step, we show a fragment of code of the Catalog EJB that is responsible for 
implementing the Navigational View interface to return data about CDs and Artists. For instance, the 
Catalog EJB queries the database and return the list of node objects that encapsulate the necessary data 
for Index Creator to mount the Kinds index. The query is made according to the selection criteria 
specified in the corresponding index specification card. 

 
public class CatalogEJB implements SessionBean 
{ 
. . . 
/** 
  * Implementation of Navigational View Interface. Used by Navigational Context components. 
  */  
 public ArrayList getContextNodeIDs(String contextID, 
                                    HashMap parameters) 



 

 

 M. Jacyntho, D. Schwabe and G. Rossi    51

       throws UnknownIDException 
 { 
  . . . 
  Collection result = null; //collection of NodeIDs 
  if (contextID.trim().equals(ContextIDs.CD_BY_KIND_ID)) 
  { 
   String KindID = parameters == null ?  
     null : (String) 
parameters.get(HttpParameterNames.KINDID);  
   . . .  
   result = this.getCDsByKind(new ID(KindID)); 
  } 
            . . . 
  return result;     
 } 
. . .  
/** 
  * Implementation of the Navigational View Interface. Used by Index Creator components. 
  */ 
 public ArrayList getObjectList(String indexID, 
                                HashMap parameters) 
       throws UnknownIDException 
 { 
  . . . 
  if (indexID.equals(IndexIDs.CD_BY_KIND_ID)) 
  { 
   String kindID = parameters == null ?  
null :(String) parameters.get(HttpParameterNames.KINDID); 
      
   return (kindID == null ? 
         null :  
         (ArrayList) this.getCDsByKind(new ID(kindID))); 
  }  
  . . . 
 } 
 . . . 
 /** 
  * Implementation of the Navigational View Interface. Used by Node Creator components. 
  */ 
 public StateObject getObject(String conceptualObjectName, 
                              PrimaryKey objectID) 
      throws UnknownIDException 
 { 

 . . . 
           

   if(conceptualObjectName.trim(). 
equals(ConceptualObjectNames.ARTIST)) 
  { 
   return this.getFullArtist((ID)objectID); 
  } 
   
            . . .      
 } 
. . . 
} 

There are several events in a CD store, corresponding to the business logic. For instance, analysing 
the sequence of actions and operations in the use case “Select CDs by kind to buy” we may have the 
event “add CD to shopping cart” or in the use case “Confirm order”, the event “create a new order”. 

For each business event we define the structure of corresponding event object (from Event 
component). We must identify the business objects affected by the event because the event structure 



 

 

52     A software architecture for structuring complex Web applications 

 

must contain all data needed for its processing by the corresponding Event Handler, which is captured 
from the http request by the associated Request Handler. 

For example, the following code defines the event AddItemEvent for the CD store. This event 
adds a CD into the stateful session bean Cart. 

. . . 
/** 
 * AddItemEvent. 
 */ 
public class AddItemEvent implements Event 
{ 
 //Item 
  private CartItem item = null; 
     //constructor 
  public AddItemEvent(String cdID, int quantity) 
  { 
   this.item = new CartItem(new ID(cdID), quantity); 
  } 
  public CartItem getItem() 
  { 
   return this.item; 
  } 
} 

The navigational layer is straightforward. Before showing more details, it should be stressed that 
most of this code can be derived automatically from an XML representation of the design in a DTD 
such as OOHDM ML11 

For each context in the application we must create the corresponding Navigational Context object. 
The implementation of these objects consists in getting context parameters from the http request, 
accessing the Navigational View to retrieve the identifiers of the Nodes in Context and returning these 
identifiers. For each index, we define the corresponding Index Creator, implemented in an analogous 
manner. 

In the former figure 8we present one of the navigational contexts of the CD store application: 
“CDs By Kind”. The specialization of the Navigational Context component is shown in the following 
code. 

. . .  
public class CDByKindContext extends NavigationalContext 
{ 
 . . . 
 /** 
       * Implementation of the load method of the superclass. 
       */ 
 protected ArrayList load(HttpServletRequest request,  
                WebController webController) 
      throws ContextException 
 { 
  . . .   
  return this.getNodeIDs(request, parameters,  
          CatalogJNDINames.CATALOG_EJBHOME); 
 } 
} 

 

In the code above the getNodeIDs (implemented in superclass) method invokes, transparently, the 
Web Controller to get the Navigational View whose ID is 
CatalogJNDINames.CATALOG_EJBHOME, that is, the Catalog EJB. The Catalog EJB is invoked to 
obtain the list of node identifiers of the context.  



 

 

 M. Jacyntho, D. Schwabe and G. Rossi    53

Finally we must create nodes for each context (component Navigational node). For each node 
present in the navigational diagram (base node) and node in context type we define the corresponding 
Node creator.  

The implementation of a Node Creator for a base node consists in obtaining the ID of the node 
corresponding to the http request, accessing the Navigational View to obtain the corresponding (State) 
object containing the node’s information: attributes, anchors and indexes. The Navigational Manager  
is accessed to obtain context-related information about the node. The code illustrating the creation of a 
CD base node is shown in the appendix. 

The following code shows the Node Creator that instantiates the CD node in the “CD by Kind” 
context. 

. . . 
/** 
 * CD Node in CDByKind context 
 */ 
public class CDByKindNodeCreator extends CDNodeCreator 
{ 
 . . . 
 /**  Implementation of createNode method of the Node Creator. */ 
 public NavigationalNode createNode(HttpServletRequest request, 
                WebController webController) 
                throws NodeCreatorException 
 { 
 //base node 
 /*  Invoke the createNode of the superclass to obtain the base node */ 
  NavigationalNode node = super.createNode(request, webController); 
  ... 
  //add anchor next and previous in current context 
      //access the Navigational Manager to obtain the context info 
  . . . 
  return node; 
 } 
} 

Note that in the code above the class CdbyKindNodeCreator is a subclass of CDNodeCreator, and 
the first step in the createNode method is to invoke the createNode of the superclass to obtain the base 
node. 

Once we have defined the navigational nodes and indexes, it is necessary to create the interface 
objects, that is, the JSP pages that will establish the layout of the nodes and indexes. In the JSP page, 
the first step we must do is to use the appropriate custom tag (create_node or create_index) to 
instantiate the node or index. Then we access the node or index to create its “look and feel” for its 
information. 

The following JSP page excerpt presents the CD node in the “CDs by Kind” context in the CD 
store application. 

 
<%@page contentType="text/html"%> 
<%-- imports --%> 
. . .  
<%@ taglib uri="/WEB-INF/taglib.tld" prefix="oohdmjava2" %> 
<%-- Create the node  --%> 
<oohdmjava2:createnode context="<%= ContextIDs.CD_BY_KIND_ID %>"/> 
 
<%--  Get the node in the request scope  --%> 
<% 
 NavigationalNode node =  



 

 

54     A software architecture for structuring complex Web applications 

 

  (NavigationalNode) request.getAttribute(WebNames.CURRENT_NODE);  
%> 
    
   <br>Nome:&nbsp;  
    <%= node.getComponent(AttributeIDs.CD_NAME_ID) %> 
   <br>Description:<br>  
   <%= node.getComponent(AttributeIDs.CD_DESCRIPTION_ID) %> 
   . . . 
    
   <% Anchor addCartAnchor = (Anchor) 
    node.getComponent(AnchorIDs.ADD_ITEM_CART_ID); 
   %> 
   <br><br><br><br> 
   <a href="<%= addCartAnchor.getDestination() %>"> 
    <%= addCartAnchor.getText() %> 
   </a> 
   . . . 

In addition, we must create the templates and other general JSP pages of the application (responses 
to events, form pages, error pages, etc). 

Finally we must configure the whole application defining corresponding XML files, as follows: 

• urlmappings.xml - Maps the request URL into the answer interface and, if necessary, into 
the Request Handler and/or Interface Handler.. 

• interfaces.xml - Defines each interface of the application, that is, for each interface 
(present in the urlmappings.xml or exceptionmappings.xml) it defines the template and 
the values of template parameters. 

• eventmappings.xml - Maps each event to respective Event Handler. 

• exceptionmappings.xml - Maps each event exception to respective Exception Handler or 
answer interface. 

• contextsmappings.xml - Defines all contexts of the application (navigation type, Node 
Creator, Navigational Context, URL(s)). Each URL present here must have a 
correspondent entry in the urlmappigns.xml file. 

• indexmappings.xml - Defines all indexes of the application (Index Creator, URL). Each 
URL present here must have a correspondent entry in the urlmappings.xml file. 

6 Moving Towards a Domain-specific Architecture 

 

One of the most important benefits of using an architecture-centric approach is that we can 
improve large-scale reuse of application components. In 4 we introduced the concept of Web design 
frameworks (WDF) as “a generic, reusable Web application model in a particular domain, that can be 
later instantiated into specific applications in that domain”. For example, we can describe a WDF for 
the field of e-commerce by building a generic conceptual model, plus corresponding generic 
navigation and interface models. and then refine it to build a particular e-store.  

The generic conceptual model is similar to an object-oriented application framework 12 it contains 
generic classes (Product, Order, Invoice, Customer, etc) and corresponding behaviors (e.g. check-out). 
Building one e-store may imply adding new sub-classes (types of products), refining some behaviors 
such as different pricing strategies or check-out processes, to adapt the generic model to the 
specificities of the application. 



 

 

 M. Jacyntho, D. Schwabe and G. Rossi    55

A generic navigational model meanwhile implies specifying a generic navigational and context 
schema that abstracts most common navigational topologies in the application domain. For example 
we may have generic nodes such as Product and Shopping Cart and generic contexts such as “product 
by <class property>”. 

The OOHDM-Java2 architecture allows mapping such reusable application models into a domain-
specific architecture in which these generic design artifacts are implemented using the base framework 
components. For example, generic navigation schema and indexes can be implemented defining 
objects that implement the Navigational View interface in a generic manner, and then refined by 
specializing these generic objects adding the application specific behavior (for example, adding a new 
context or customizing a state object). In addition, we may define generic Node Creators and Index 
Creators to assemble generic contents and then specialize them adding specific attributes of the 
application. 

7 Concluding Remarks 

In this paper we have presented the OOHDM-Java2 architecture and its associated component 
framework. We have described the overall structure of the architecture and the process of building a 
new application. 

The architecture implements an extension of the MVC model and provides the following features: 

• It supports a clear separation between application and presentation logic 

• Further separation between navigation logic and interface aspects 

• Support  for  navigational contexts and set-based navigation 

• Decoupling between JSP pages and business events 

• Centralized control of http requests (in particular of the translation of http  requests into 
business events) 

• Centralized control of business events execution 

• Centralized control on the selection of response interfaces 

• Single entry points (Facades) to business objects, both in the Web and EJB layers. 

• Single entry point for serializing requests of the same user 

• Centralized mapping of business events into corresponding execution logic 

• Centralized control of navigation logic 

 

Many of the above features impact positively in the evolution and maintenance of applications 
built on top of OOHDM-Java2. In particular: 

• We can easily alter the interface response 

• Changes in the navigational structure do not impact on the business logic 

• Similarly, changes in the business logic are transparent to the navigational layer. 

• We can easily implement indexes and contexts without writing complex code structures 

• As applications are configured declaratively using XML files, we get further benefits: 



 

 

56     A software architecture for structuring complex Web applications 

 

• Each XML file constitutes a point of control 

• The navigational and interface application behavior can be altered just by altering or 
adding XML attributes 

• Each XML file provides a map of some specific application functionality, easing its 
maintenance 

• The definition and modification of Contexts and Indexes can be done easily. 

There is an evident trade-off between these benefits above and the complexity of the architecture, 
in particular the learning curve for instantiating an application. We have designed it in order to 
optimize this compromise. For example, for simple read-only applications, a designer must only use a 
minimal sub-set of the previously described constructs (see Section 4.3), and a large part of it may be 
automatically generated from XML specifications using the OOHDM-ML DTD. For complex, 
transactional applications, we consider that the learning endeavor is similar to the need to use the J2EE 
platform. From the point of view of design complexity, the overload caused by of OOHDM-Java2 
components is then balanced by the benefits mentioned above. 

Our current research includes defining frameworks for particular domains such as e-stores 
catalogs; implementing the translation between OOHDM ML specifications and OOHDM Java 2 
implementation of navigational nodes, indexes and contexts; creating custom tags that encapsulate the 
data retrieval from the node in the JSP page; and exploring extensions to integrate web services 
defined using WSDL. 

8 References 
 
1.D. Schwabe, G. Rossi: “An object-oriented approach to web-based application design”. Theory and 
Practice of Object Systems (TAPOS), Special Issue on the Internet, v. 4#4, pp.207-225, October, 1998. 
2.G. Rossi, D. Schwabe, F. Lyardet: “Improving Web Information Systems with Navigational 
Patterns”, Proceedings of the 8th. International Conference on the World Wide Web, Elsevier 1999, pp 
589-600. 
3. F. Lyardet, G. Rossi, D. Schwabe: “Patterns for E-commerce applications”. Proceedings of 
EuroPLoP 2000. 
4. Schwabe, D.; Rossi, G.; Esmeraldo, L.; Lyardet: F. ; "Engineering Web Applications for reuse", 
IEEE Multimedia 8(1)- Special Issue on  Web Engineering, Jan-Mar 2001. pp 20-31 ISSN 1070-986X. 
5. L. Bass, P. Clements, R. Kazman: “Software Architecture in Practice”, Addison Wesley 1998. 
6. L. Baresi, F. Garzotto, P.Paolini,”From Web Sites to Web Applications: New Issues for Conceptual 
Modeling”, Proc. ER’2000 Workshop on Conceptual Modeling and the Web, Lecture Notes in 
Computer Science 1921, Springer Verlag, Heidelberg, 2000, pp.89-100 
7. L. Baresi, F. Garzotto, P. Paolini, and S. Valenti: “HDM2000: The HDM Hypertext Design Model 
Revisited”, Tech. Report, Politecnico di Milano, Jan. 2000. 
8. S. Ceri, P. Fraternali, S. Paraboschi: “Web Modeling Language”, (WebML): a modeling language 
for designing Web sites. Proceedings of the 9th. International World Wide Web Conference, Elsevier 
2000, pp 137-157. 
9. SUN Microsystems, Java 2 Enterprise Edition (J2EE) Official site, http://java.sun.com/j2ee/ 
10. G. Krasner, S. Pope, A cookbook for using the model-view controller user interface paradigm in 
Smalltalk-80, Journal of Object-Oriented Programming, 1(3), August/September 1988, 26-49 MVC-
based Architecture for e-commerce.Journal.doc 22/22 
11. Medeiros, A. P.; “Declarative Specification and Implementation of Hypermedia Applicatons in the 
Web”, MSc Thesis, Dept. of Informatics, PUC-Rio, 2001 (in Portuguese). 



 

 

 M. Jacyntho, D. Schwabe and G. Rossi    57

12.  M. Fayad, R. Johnson and D. Schmid (ed): “Object-Oriented Application Frameworks”, Wiley, 
1999. 

9 Appendix 

For the sake of completeness, we include here additional examples of Java code and XML 
specifications, mentioned in the main text of the paper. 

9.1 Page Template 

In the CD store application there is only one template page, shown below. 
<%@page contentType="text/html"%> 
<%@ taglib uri="/WEB-INF/taglib.tld" prefix="oohdmjava2" %> 
 
<html> 
 <head> 
  <title> <oohdmjava2:parameter name="TitleContents"/> 
  </title> 
 </head> 
 <body> 
  ********************** OOHDM-Java2 *************************** 
  <br> 
  <a href="main">Home</a> 
  <br><br> 
   <table border="1" height="85%" width="100%" cellspacing="0" border="0"> 
       <tr> 
        <td valign="top"><oohdmjava2:parameter name="BodyContents"/> 
         </td> 
       </tr> 
       . . . 
</html> 

9.2 Creation of CD Base Node 

The following code illustrates the creation of the CD base node in the CD store application. 
. . . 
/** 
 * Base Node CD. 
 */ 
public abstract class CDNodeCreator extends NodeCreator 
{ 
      . . . 
 /** 
      * Implementation of the creatNode method of the superclass. 
      */ 
 public NavigationalNode createNode(HttpServletRequest request, 
        WebController webController) 
        throws NodeCreatorException 
 { 
  //get the CD ID in the request object 
       
  . . . 
  //get the conceptual Object 
 /*call the method of superclass. This method calls the Navigational View passed as parameter 

(CatalogJNDINames.CATALOG_EJBHOME)*/ 
  FullCD cd = (FullCD) 
   this.getConceptualObject(request, ConceptualObjectNames.CD, 
                 new ID(cdID), 
                 CatalogJNDINames.CATALOGO_EJBHOME); 
   
  //instantiate the navigational node 
  NavigationalNode node = new NavigationalNode(); 



 

 

58     A software architecture for structuring complex Web applications 

 

  //add the attributes 
  node.addComponent(new Attribute(AttributeIDs.CD_NAME_ID, cd.getName())); 
  node.addComponent(new Attribute(AttributeIDs.CD_DESCRIPTION_ID, 
                         cd.getDescription()));  
   
   
   
   
  //index of artists pointing to ArtistByCD context 
  try 
  { 
   //access the Navigational Manager to get index 
   node.addComponent(this.navManager.getIndex(request, 
                                   IndexIDs.ARTIST_BY_CD_ID)); 
 
  } 
  catch(IndexException ex) 
  { ... } 
  //anchor to add to shopping cart 
  Anchor anchor = new Anchor(AnchorIDs.ADD_ITEM_CART_ID); 
  anchor.setText("Add to Shopping Cart"); 
  anchor.setURL(URLs.ADD_ITEM_CART); 
  anchor.addParameter(HttpParameterNames.CDID, cd.getCDID().toString()); 
  node.addComponent(anchor); 
  return node; 
   
 } 
} 

9.3 XML Mappings Specifications 

To illustrate the XML configuration files, we present part of some of these files in the CD store 
application. 

Urlmappings.xml: 
 
<?xml version='1.0'?> 
 
<!DOCTYPE url_mappings  
 SYSTEM "http://localhost:8000/cdstore/dtds/urlmappings.dtd"> 
 
<url_mappings> 
 <!-- Main Page --> 
 <url_mapping path = "/main" interface = "MAIN"/> 
 
 <!-- *************** Contexts ****** --> 
   
    . . .  
 <!-- CDs By Kind--> 
 <url_mapping path = "/cdbykindcontext" interface = "CD_BY_KIND_CONTEXT"/> 
    . . . 
 <!-- *********** Indexes ***--> 
 . . . 
 <!-- hierarchical index Kind:CD --> 
 <url_mapping path = "/kindcdhierarchicalindex"  interface = "KIND_CD_HIERARCHICAL_INDEX"/> 
  
 <!-- *********** Events ****--> 
 <!-- AddItemEvent --> 
 <url_mapping path = "/additemcart" interface = "CART_CONTEXT">  
<request_handler class= 
"pucrio.inf.oohdmjava2.cdstore.web.requesthandlers.cart.AddItemRequestHandler"/>  
 </url_mapping> 
 . . . 
 <!-- new user (client) form --> 
 <url_mapping path = "/enteruserdata" interface = "ENTER_USER_DATA"/>  



 

 

 M. Jacyntho, D. Schwabe and G. Rossi    59

 <!-- NewUserEvent - Trigged by the new user form submit--> 
 <url_mapping path = "/createnewuseraccount"  
      interface = "NEW_USER_ACCOUNT_CREATED"> 
  <request_handler class= 
"pucrio.inf.oohdmjava2.cdstore.web.requesthandlers.client.account. CreateUserRequestHandler"/>  
 </url_mapping> 
 . . . 
</url_mappings>  
 
 interfaces.xml: 
 
<?xml version='1.0'?> 
 
<!DOCTYPE interfaces  
 SYSTEM "http://localhost:8000/cdstore/dtds/interfaces.dtd"> 
 
<interfaces> 
 <interface name="MAIN" template="/main.html"/> 
 
 <!-- ******** Contexts *****--> 
 . . . 
 <interface name="CD_BY_KIND_CONTEXT" template="/template.jsp"> 
  <parameter name="TitleContents"  
   value="CDs by Kind." as_is="yes"/> 
  <parameter name="BodyContents"  
   value="/cdByKindContext.jsp" as_is="no"/> 
  <parameter name="FooterContents"  
value="OOHDM-JAVA2 CD Store - Context: CDs By Kind." as_is="yes"/> 
 </interface> 
 . . . 
 <!-- ********** Indexes ***--> 
 <interface name="ARTIST_ALPHA_SIMPLE_INDEX" template="/template.jsp"> 
 <parameter name="TitleContents"  
        value="All artists ordered by name." as_is="yes"/> 
 <parameter name="BodyContents"                                
                       value="/artistAlphaSimpleIndex.jsp" as_is="no"/> 
  <parameter name="FooterContents"  
   value="OOHDM-JAVA2 CD Store - Index: All artists  
   ordered by name." as_is="yes"/> 
 </interface> 
 . . . 
 <!-- *************Events *****--> 
 <interface name="ENTER_USER_DATA" template="/template.jsp"> 
  <parameter name="TitleContents"  
   value="New User Form." as_is="yes"/> 
  <parameter name="BodyContents"  
   value="/enterUserData.jsp" as_is="no"/> 
  <parameter name="FooterContents"  
   value="OOHDM-JAVA2 CD Store - New User Form."  as_is="yes"/> 
 </interface> 
 . . . 
/interfaces>  
 
eventmappings.xml: 
 
<?xml version='1.0'?> 
 
<!DOCTYPE event_mappings  
 SYSTEM "http://localhost:8000/cdstore/dtds/eventmappings.dtd"> 
 
<event_mappings> 
 <!-- ********Cart - Stateful Session Bean * --> 
 <!-- AddItemEvent --> 
 <event_mapping event_class="pucrio.inf.oohdmjava2.cdstore.event.cart.AddItemEvent" handler_class= 
"pucrio.inf.oohdmjava2.cdstore.ejb.eventHandlers.cart.AddItemEventHandler"/> 



 

 

60     A software architecture for structuring complex Web applications 

 

 . . . 
 <!-- ********** Order - Entity Bean ********* --> 
 <!-- NewOrderEvent--> 
 
</event_mappings> 
 
contextmappings.xml: 
 
<?xml version='1.0'?><!DOCTYPE context_mappings  
 SYSTEM "http://localhost:8000/cdstore/dtds/contextmappings.dtd"> 
 
<context_mappings> 
 . . . 
 <!-- Context: CD by Kind --> 
 <context_mapping context_id = "cdByKindContext" navigation_type = "SI" 

context_class="pucrio.inf.oohdmjava2.cdstore.web.navigational.cd.contexts.bykind.CDByKindContext"> 
  <simple url_path = "/cdbykindcontext" 
      node_creator_class="pucrio.inf.oohdmjava2.cdstore.web.navigational.cd. contexts.bykind.CDByKindNodeCreator"/> 
 </context_mapping>  
 . . . 
</context_mappings> 
 

 


