
Patterns for Migration of SOA Based
Applications to Microservices Architecture

Vinay Raj∗ and Ravichandra Sadam

National Institute of Technology Warangal, Telangana, India
E-mail: rvinay1@student.nitw.ac.in
∗Corresponding Author

Received 10 August 2020; Accepted 08 January 2021;
Publication 06 July 2021

Abstract

Service oriented architecture (SOA) has been widely used in the design of
enterprise applications over the last two decades. Though SOA has become
popular in the integration of multiple applications using the enterprise service
bus, there are few challenges related to delivery, deployment, governance,
and interoperability of services. To overcome the design and maintenance
challenges in SOA, a new architecture of microservices has emerged with
loose coupling, independent deployment, and scalability as its key features.
With the advent of microservices, software architects have started to migrate
legacy systems to microservice architecture. However, many challenges arise
during the migration of SOA to microservices, including the decomposition
of SOA to microservice, the testing of microservices designed using different
programming languages, and the monitoring the microservices. In this paper,
we aim to provide patterns for the most recurring problems highlighted
in the literature i.e, the decomposition of SOA services, the size of each
microservice, and the detection of anomalies in microservices. The suggested
patterns are combined with our experience in the migration of SOA-based
applications to the microservices architecture, and we have also used these
patterns in the migration of other SOA applications. We evaluated these
patterns with the help of a standard web-based application.

Journal of Web Engineering, Vol. 20 5, 1229–1246.
doi: 10.13052/jwe1540-9589.2051
© 2021 River Publishers

1230 V. Raj and R. Sadam

Keywords: Distributed systems, service oriented architecture, microser-
vices, migration, migration patterns.

1 Introduction

Distributed systems have become more popular over the last two decades as
the demand for independent design and deployment of web applications has
increased [1]. Today’s world demands the timely delivery of business needs
and all that needs to be online. Distributed systems play a key role in the
accelerated delivery of services with continuous integration and continuous
development. Service oriented architecture (SOA) is the architectural style
of distributed applications with service as the main design component. SOA
is primarily used for the integration of various components with the mid-
dleware feature using Enterprise Service Bus (ESB) [2]. It follows several
design principles such as loose coupling, interoperability, statelessness, etc.
SOA gained more popularity with its implementation mechanism called web
services. SOA is the concept and web services are the implementation of the
concept [3].

A web service is a software program that can be accessed and discovered
based on web-based protocols such as HTTP and REST. Web services use
XML (WSDL) to access information and share messages between different
services. The typical web service architecture consists of three components,
namely a service provider, a service requester, and a service registry, which
maintains all the web services. Service provider and requester are web
services where the latter requests for information and the former responds
with the information. Nevertheless, the use of XML based WSDL documents
makes the application complex, and security problems occur with these APIs.
RESTful web services do have a range of problems, including reusability
and composition issues. In addition, SOA applications are less scalable, as
the components are highly dependent on each other. The use of ESB makes
the services tightly coupled with middleware and ESB becomes a single
point of failure. Also, SOA services are deployed as a single archive file
and are often hosted on a single server. With the increase in user require-
ments, the same archive files are deployed several times in a limited period
of time. Many SOA services are becoming increasingly monolithic in size
with ever-changing business requirements [4]. Monolithic services make the
application complex and difficult to manage. Hardware infrastructure costs
also increase if the application needs to be scaled whenever the input load
increases. In the recent past, a new design style for distributed applications

Patterns for Migration of SOA Based Applications to Microservices 1231

has emerged that overcomes all the challenges of service oriented architecture
based applications.

Microservices is a new style of designing enterprise applications which
is based on SOA principles with additional features. It is a way of designing
applications where each component is designed using a lightweight protocol
and deployed independently [5]. Microservices uses the REST communi-
cation protocol and the JSON data exchange format for the exchange of
messages between services. It follows the concept of the Single Responsibil-
ity Principle (SRP) where only one business function should be performed by
each service. Continuous Integration (CI) and Continuous Delivery (CD) are
the two core principles of microservice architecture. Applications designed
with microservices are loosely coupled, scalable, and designed indepen-
dently. Microservices are well suited to the cloud environment as containers
are used for deployment of the applications. The main advantage of using
microservices over other architectural styles is that only the required service
is deployed independently without having an impact on the other services of
the application [6]. The use of containers renders the services auto-scalable.
Each service has its own database and configuration environment for the
processing of the business requests. Moreover, applications are migrating
towards cloud [24] and because of the diverse benefits, companies have
started migrating their existing legacy applications to microservices architec-
ture. Netflix, Amazon, and Google have started developing their applications
with this new style [7].

As SOA services are becoming complex and difficult to manage, it is
important to migrate these applications to the microservices architecture. The
migration of the legacy application to new architecture poses many design
challenges as the entire systems need to be updated [8] [23]. Similarly, migra-
tion of SOA-based application to microservices also exhibits challenges,
including identification of candidate microservices from legacy source code,
setting up a configuration environment for newly developed microservices,
testing of services built with different programming languages, integration of
polyglot services, debugging, and monitoring of migrated services [9].

In software engineering, patterns are used to solve the commonly occur-
ring problems that occur during the SDLC phases of the application [10].
Design patterns provide the best solutions for the challenges with practical
applicability for all business requirement scenarios. Patterns provide a com-
mon vocabulary which helps in reducing the complexity of the application.
They act as a framework for presenting tested solutions to issues that are
suitable in any given context. Every pattern has few sections with which the

1232 V. Raj and R. Sadam

solution provided is understood. This includes the criteria, context, problem,
solution, challenges, and the illustration or a diagram of the solution. In
addition, migration patterns can also be used to support issues that occur
during the migration from one architecture to another [11]. There are many
gains from the exploitation of design patterns during the design phase of
microservices. There are broader advantages of using migration patterns
during migration, as it is the new architectural style [12].

There are very few or no design patterns defined for the problems in the
design of microservices in the literature [13]. We consider the stated problems
and present the patterns that help with the migration process to microservices.
The detailed information on the problems, solutions, and the challenges for
the problems are presented in Section 4. We use graph theory concepts to
represent the applications as service graph along with an internal task graph.
Using graph theory offers a simple and better approach to the migration
challenges.

The remaining paper is structured as follows. Related works done to
provide solutions to the defined problems are addressed in Section 2. The
introduction of the service graph and task graph is discussed in Section 3.
The proposed patterns are presented in Section 4 and the evaluation of the
patterns is provided in Section 5. Section 6 concludes the paper.

2 Related Work

The use of design patterns in the migration of architectures is less explored.
Few researchers have contributed the patterns related to the migration of
monolithic applications in the literature which are discussed here. Lessons
learned while migrating legacy monolithic applications using the patterns are
reported in [14]. Several patterns for migration of monolithic applications
to microservices and how each pattern benefits the migration process are
addressed in [15]. The migration patterns needed for complete migration and
its related challenges are presented in [16]. The patterns for rearchitecting the
existing legacy applications are also discussed. The pattern for the decom-
position of the monolithic application is provided, but we are considering
patterns for migration and decomposition of monolithic SOA services. A new
pattern called strangler pattern is introduced that adds new microservices
to the monolithic code [17]. In the long run, the monolithic services will
gradually be replaced with microservices.

Patterns for migration of SOA applications to microservices are pro-
posed [18], but these patterns do not support the independent development

Patterns for Migration of SOA Based Applications to Microservices 1233

and deployment of services. Under these scenarios, ESB is still used for
communication between services. Legacy software modernization using
microservices is proposed with the help of patterns [19] however, the
approach is not appropriate for migrating service oriented applications.

To the best of our knowledge, no research or very little work has been
performed in the literature on the migration of SOA-based applications to
microservices architecture. The definition of service graph along with the task
graph needed for the extraction of microservices is discussed in the following
section.

3 Preliminaries

We define a formal model called service graph which resembles any service
based application. By considering the inputs and outputs from the APIs of
the application, we create a service graph. We use this service graph to
demonstrate the implementation of the patterns.

3.1 Service Graph

Service graph (SG) is a standard graph created for the visual analysis of
communication and dependence between the services of an SOA application.
The generalized form of any SOA-based application as a service graph is
shown in Figure 1.

3.1.1 Service definition
Let a graph G(V,E) be a service graph with n nodes, where the nodes of the
graph represent a set of services in the application, and edges between the
nodes represent the interactions or dependency each service has with other
services in the application. Let V = {s1,s2,s3,. . . } be the nodes of the service
graph where s1,s2,s3,. . . are services and E = {(s1,s2), (s1,s3), (s2,s4),}
be the edges between the nodes which represent the dependency between the
services. A service can be represented as a set of coordinating and interacting
processes as defined in Equation (1).

Si =< P1
i, P2

i, P3
i, · · · · · · , Pn

i,Λ > (1)

where Si is the logical service instance, Pk
i indicates kth process imple-

menting logical service functionality fi through the programmatic interface
Ii and Λ represents network communication function between individual
processes [20]. As each service is a set of processes, the dependency among

1234 V. Raj and R. Sadam

s1

s3 s5 s7 · · · · · ·

sn−1

sn

s2

s4 s6 s8 · · ·· · ·
Figure 1 Formal Representation of SOA application.

the processes inside each service is represented as task graph discussed in
next section.

3.2 Task Graph

Task graph is a directed acyclic graph where each node represents the process
and edge between the node represents the dependency of the node on the other
node. Each service in SOA may contain one or more processes performing
various tasks and we therefore generate a task graph for the processes in each
service. The task graph represents an application with a directed acyclic graph
G(V, E) where V is a set of nodes, where each node represents a process and
where E is a collection of arcs between the communicating processes. The
service graph with the task graphs within each SOA service is represented
as shown in Figure 2 where S1,S2,S3,. . . are services and p1,p2,p3,. . . are
processes inside each service.

4 Migration Patterns

Migration to the microservice architecture has broader benefits when com-
pared with SOA, including scalability and independent deployment. Since
few SOA services appear to be monolithic in nature, it is difficult to man-
age and the complexity of the application increases. The need to move

Patterns for Migration of SOA Based Applications to Microservices 1235

p1

p2

p3

p4

p1 p2

p1

S1

S2

S3

. . .

. . .

Figure 2 Service graphs containing task graphs.

to microservices has therefore gained attention in the recent past. Sev-
eral problems emerge during the migration of SOA-based applications to
microservices as defined in section 1. We, therefore, present patterns to help
with easy migration to microservices.

4.1 Pattern 1: Decomposition of an SOA Service to
Microservices

This pattern is used to address the recurring challenge faced by software
architects while migrating legacy SOA based applications to microservices.

Requirement: There is a complex SOA based application and the software
architects plan to migrate the application to the microservices architecture
which will reduce the scalability issues and increase application perfor-
mance. Also, the effort required for migration should be reduced. There
are few monolithic services in the application and few basic services that
can be called microservices. The presence of monolithic services makes the
application complex and the best approach is to migrate the application to
microservices.

1236 V. Raj and R. Sadam

Problem: How to split the monolithic services in the SOA based application
to microservices? How to extract the microservices from the SOA services?

Solution: Graph theory has been widely used to solve many complex prob-
lems since it is easy to represent the components and their dependencies as
a graph. Service graph, along with its internal task graphs, is a formal repre-
sentation of every SOA application and it helps in identifying the monolithic
services.

The architecture of microservices follows the single responsibility prin-
ciple and states that each service should perform only one business function.
SOA based applications can contain few services that perform only one task
and these services may be regarded as microservices directly. This reduces the
migration effort as we do not need to consider all the services for migration
to microservices.

Further, identification of monolithic services or the services which need
to be migrated to microservices should be considered for the extraction of
microservices. Using graph properties, from the service graph, find out the
order of each task graph and the service with the order as one can be directly
considered as microservices and services with order more than one should be
treated as monolithic services. Only such monolithic applications should be
considered for the extraction of microservices.

Using the graph partition method [22], we can break the monolithic
services into microservices and the independent task graph nodes represent
the microservices. We use the service graph to identify complex services and
generate microservices.

Challenges: Representing the SOA framework as a service graph is difficult
for large enterprise applications, as it includes a large number of services and
tools required for generating such large graphs is challenging.

4.2 Pattern 2: Size of Each Microservice

This pattern is used when designing the microservices or extracting from
service oriented based applications.

Requirement: There is a complex SOA based application and the archi-
tects want to migrate the application to microservices architecture. During
migration, the SOA services are partitioned to generate the microservices.
Yet one of the main issues faced by software architects, microservices devel-
opers, and practitioners is what the size of each microservice will be. By
definition, microservices are small, independent, and scalable services that

Patterns for Migration of SOA Based Applications to Microservices 1237

are deployed using cloud-based technologies. So, the question is how small
each microservice should be.

Problem: What should be the size of each microservice? On what basis can
we measure the size of the microservices?

Solution: SOA based applications have feature level services and microser-
vices have task level services. Every service in the SOA application consists
of many tasks that perform the business requirements. Microservices follow
single responsibility principle that requires each service to perform only one
business function. We, therefore, use the service graph representation of
the SOA based application and consider each task in the task graph to be
microservices.

In this case, the size of the microservice is not a measurable metric. When
a specific service performs only one operation, it may be considered as a
microservice and the size of the service is not considered.

Challenges: While microservices perform a single task, there can be few ser-
vices that perform multiple computations to meet the business requirements.
These microservices can increase the complexity of the application.

4.3 Pattern 3: Bug Detection in Complex Microservices
Application

This pattern is used to monitor and find bugs after migrating SOA-based
applications to the microservice architecture.

Requirement: An SOA based application is migrated to microservices archi-
tecture with the help of Pattern 1 and Pattern 2. When the number of services
increases in microservices based application, it is difficult to detect the bug
if it happens. Among those multiple microservices, it is difficult to trace the
bug and recognize the service that causes the bug in the entire application.

Problem: How to trace the service which is responsible for the bug? How
to identify the location of the bug among all available microservices in the
application?

Solution: Business requirements are specified prior to the design phase of the
software development life cycle. The workflow of the business requirements
is defined through the use of UML diagrams in the software requirement
specifications document. Nonetheless, despite the nature of the specification,
it is difficult to establish a connection between the business requirements

1238 V. Raj and R. Sadam

and the services that execute the requirements. As a result, the service graph
model allows us to map the criteria and the services that fulfill them.

Using the service graph representation, each workflow of the business
requirements is mapped with the nodes in the graph where each node has
a service number. We need to define the workflow of each requirement and
store the sequence of services it passes to fulfill the business request. Each
sequence of service numbers is stored in the database and anytime a particular
service fails, we need to check for all the sequences in which the service is
involved. If a particular business request has failed, we get the corresponding
sequence of the business requirement and trace only in the services involved
in the sequence.

Challenges: If the application is complex, it is difficult to create a service
graph and store all the sequences in the database. Also, often a specific
service can be involved in several sequences, so it is difficult to determine
the appropriate sequence for a given bug.

5 Evaluation

We use a standard web-based application, Vehicle Management System
(VMS) [21] built based on SOA principles to test the proposed patterns.
This application is used to select, customize, and purchase vehicles and its
parts using a web interface. This VMS web application is implemented and
we created a service graph (SG SOA) using the API documents as shown
in Figure 3. There are eight services in the application and each service
performs specific business tasks. Using the concept of task graph, the pro-
cesses within each service are depicted as a task graph along with the edges
between the processes. Using our earlier work of extracting microservices
from SOA based applications [22], we have created the service graph for
microservices as shown in Figure 4. The details of the services of both SOA
and microservices based application along with the representations in service
graphs are presented in Table 1. SG SOA indicates the service graph of SOA
based application and SG MSA indicates the service graph of microservices
based application. Both SG SOA and SG MSA are used in the validation of
the proposed patterns discussed in the below sections.

5.1 Pattern 1

From the given SOA based application, we need to extract the microservices
by decomposing the monolithic services of SOA. There are eight services in

Patterns for Migration of SOA Based Applications to Microservices 1239

p1
1

p1
3

p1
2

p1
4

p1
6

p1
8

p1
7

p1
5 p2

5

p2
7

p2
6

p3
6

S1

S2

S3

S4

S5

S6

S8

S7

Figure 3 SG SOA: Service graph representation of SOA based vehicle management system.

Table 1 Details of services of both SOA and Microservices based applications
Notation in Notation in
SG SOA SOA Services Microservices SG MSA

S1 Config Service Config Service ms1

S2 Part Service Part Service ms2

S3 Product Service Product Service ms3

S4 Compare Service Compare Service ms4

S5 Incentives & Pricing Service
Incentives Service ms5
Pricing Service ms6

S6

Dealer & Inventory Service
Dealer Service ms7
Dealer Locator Service ms8
Inventory Service ms9

S7 Lead service
Get-A-Quote Service ms10
Lead Processor Service ms11

S8 User Interface Client User Interface Client ms12

1240 V. Raj and R. Sadam

ms1

ms2

ms4 ms6 ms8

ms10

ms12

ms3

ms5 ms7 ms9

ms11

Figure 4 SG MSA: Service graph representation of microservices based web application.

the application and they are named as S1, S2, S3, S8 in the service graph
and each service has an internal task graph. Applying the pattern, the degree
of each graph indicates the number of nodes in the graph. So, we need to
calculate the order for each subgraph. Using the service graph information,
order of S1, |S1| = 1, as we have only one node in the service S1. Similarly,
for all other services, |S2| = 1, |S3| = 1, |S4| = 1, |S5| = 2, |S6| = 3,
|S7| = 2, and |S8| = 1.

Now, we need to consider only the services with order greater than
one, so we have three services S5, S6, and S7 which should be migrated
to microservices. Using the graph partition approach, we can break the
monolithic services to generate the microservices. The service graph provides
an overview of the services and their interaction with other services and helps
in easy migration for software architects.

5.2 Pattern 2

The size of the microservices is immeasurable. Designing the service graph
along with task graphs helps us in identifying the size of the microservice.
By the definition of microservices, each service should perform only one
business task and there is no specific metric to determine the size of the

Patterns for Migration of SOA Based Applications to Microservices 1241

Table 2 Mapping of business requests with workflows
Business Requests Sequence of Services

BR1 ms12 −ms1 −ms3 −ms2 −ms6 −ms5 −ms9

BR2 ms12 −ms9 −ms3 −ms2 −ms4

BR3 ms12 −ms9 −ms3 −ms2 −ms6 −ms5 −ms4

BR4 ms12 −ms8 −ms9

BR5 ms12 −ms9 −ms10 −ms11 −ms8 −ms7

BR6 ms12 −ms1 −ms7 −ms8

BR7 ms12 −ms1 −ms5 −ms6

microservice. As a consequence, nodes in the task graph itself represent the
microservices and each service performs only one task.

5.3 Pattern 3

In the complex application of microservices, if a service fails or a bug occurs,
we need to trace the route cause of the failure. The applications designed
using microservices generally have a complex network and it is difficult to
trace and monitor the applications.

For the chosen application, the business requests should be stored in
database. From the service graph given in Figure 4, we extract the sequence
of the services in the order of execution and map with the business request
number. We have studied the chosen application and few of the requests are
considered. The possible business requests of the given application are stored
as shown in Table 2.

From the logs and monitoring data, if any service fails, the root cause of
the failure for the particular business request can be traced. For example, if the
service ms7 fails, it is involved in business requests 5 and 6. We, therefore,
need to analyze the error with the business requests. Business request 5 is to
get the quote, generate the lead and select the proper dealer for the vehicle and
business request 6 is to configure the dealer along with the dealer’s location.
Based on the business request and the error, the bug can be easily traced and
the problem can be quickly resolved.

6 Conclusion

Patterns help in solving the issues faced during the software development
life cycle with better solutions. The migration of an application from one

1242 V. Raj and R. Sadam

architecture to another produces many challenges as the entire system gets
updated. Similarly, migration of the existing SOA application to microser-
vices also presents many challenges at different phases of migration and
design. To address the most common recurring issues, we propose patterns
that helps with easy migration. The problems addressed are identified in a
literature study on the migration of legacy applications to microservices. The
solutions provided are presented with our experience in migrating SOA based
applications to microservices. The proposed patterns are best illustrated and
evaluated using a standard case study application. However, the proposed
patterns needs to be validated by applying on large enterprise applications. In
the future, we are planning to develop new migration patterns and to validate
them with case studies.

References

[1] T. Salah, M.J. Zemerly, C.Y. Yeun, M. Al-Qutayri, and Y. Al-Hammadi.
The evolution of distributed systems towards microservices architec-
ture. In International Conference for Internet Technology and Secured
Transactions (ICITST), pp. 318–325, IEEE 2016.

[2] L. Garces-Erice. Building an enterprise service bus for real-time SOA:
A messaging middleware stack. In 33rd Annual IEEE International
Computer Software and Applications Conference. Vol. 2, pp. 79–84,
2009.

[3] V. Raj, and S. Ravichandra. Microservices: A perfect SOA based solu-
tion for Enterprise Applications compared to Web Services. In 3rd IEEE
International Conference on Recent Trends in Electronics, Information
& Communication Technology (RTEICT), pp. 1531–1536, 2018.

[4] N. Dragoni, S. Giallorenzo, A.L. Lafuente, M. Mazzara, F. Montesi, R.
Mustafin, and L. Safina. Microservices: yesterday, today, and tomorrow.
In Present and ulterior software engineering. Springer, Cham. pp. 195–
216, 2017.

[5] J. Thönes. Microservices. In IEEE software, 32(1), pp. 116–116, 2015.
[6] K. Brown and B. Woolf. Implementation patterns for microservices

architectures. In Proceedings of the 23rd Conference on Pattern Lan-
guages of Programs, pp. 1–35, 2016.

[7] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R.
Casallas, S. Gil. Evaluating the monolithic and the microservice archi-
tecture pattern to deploy web applications in the cloud. In 10th
Computing Colombian Conference (10CCC), pp. 583–590, IEEE 2015.

Patterns for Migration of SOA Based Applications to Microservices 1243

[8] B. Boehm and R. Turner. Management challenges to implementing
agile processes in traditional development organizations. IEEE software,
22(5), pp. 30–39. 2005.

[9] S. Tyszberowicz, R. Heinrich, B.Liu, and Z. Liu. Identifying microser-
vices using functional decomposition. In International Symposium on
Dependable Software Engineering: Theories, Tools, and Applications,
(pp. 50–65). Springer, Cham. 2018.

[10] J. Zalewski. Real-time software architectures and design patterns: Fun-
damental concepts and their consequences. Annual Reviews in Control,
25, pp. 133–146. 2001.

[11] F. Lakhani. and M.J. Pont. Using design patterns to support migration
between different system architectures. In 5th International Conference
on System of Systems Engineering, (pp. 1–6). IEEE. 2010.

[12] J. Soldani, D.A. Tamburri, and W.J. Van Den Heuvel. The pains and
gains of microservices: A systematic grey literature review. Journal of
Systems and Software, 146, pp. 215–232, 2018.

[13] S. Hassan and R. Bahsoon. Microservices and their design trade-offs:
A self-adaptive roadmap. In IEEE International Conference on Services
Computing (SCC), pp. 813–818, 2016.

[14] A. Balalaie, A. Heydarnoori, and P. Jamshidi. Migrating to cloud-native
architectures using microservices: an experience report. In European
Conference on Service-Oriented and Cloud Computing, pp. 201–215.
Springer, Cham. 2015.

[15] A. Balalaie, A. Heydarnoori, and P. Jamshidi. Microservices architec-
ture enables devops: Migration to a cloud-native architecture. IEEE
Software, 33(3), pp. 42–52. 2016.

[16] A. Balalaie, A. Heydarnoori, P. Jamshidi, D.A. Tamburri, and T. Lynn.
Microservices migration patterns. Software: Practice and Experience,
48(11), pp. 2019–2042. 2018.

[17] D. Taibi, V. Lenarduzzi, and C. Pahl. Processes, motivations, and issues
for migrating to microservices architectures: An empirical investigation.
IEEE Cloud Computing, 4(5), pp. 22–32. 2017.

[18] Leymann, F., Fehling, C., Wagner, S. and Wettinger, J. Native cloud
applications: Why virtual machines images and containers miss. In
Proceedings of the 6th International Conference on Cloud Computing,
pp. 7–15. SciTePress. 2016.

[19] H. Knoche, and W. Hasselbring. Using microservices for legacy soft-
ware modernization. IEEE Software, 35(3), pp. 44–49. 2018.

1244 V. Raj and R. Sadam

[20] A. Yanchuk, A. Ivanyukovich, and M. Marchese. Towards a mathe-
matical foundation for service-oriented applications design. Journal of
Software 1(1):32–9. 2006.

[21] P. Bhallamudi, S. Tilley, and A. Sinha. Migrating a Web-based appli-
cation to a service-based system-an experience report. In 11th IEEE
International Symposium on Web Systems Evolution pp. 71–74. IEEE.
2009.

[22] V. Raj, and S. Ravichandra. A service graph based extraction of
microservices from monolithic services of SOA. Software: Practice and
Experience. 2020;.

[23] Tajamolian M, Ghasemzadeh M. A Versioning Approach to VM
Live Migration. International Journal of Engineering. 2018 Nov
1;31(11):1838-45.

[24] Jeyanthi N, Shabeeb H, Durai MS, Thandeeswaran R. Reputation based
Service for Cloud User Environment. International Journal of Engineer-
ing (IJE) Transactions B: Applications. 2014 Aug 1;27(8):1179–84.

Biographies

Vinay Raj has received his Masters degree from BITS-Pilani, India in the
year 2016. He is currently Ph.D. student in the Department of Computer
Science and Engineering of National Institute of Technology Warangal
(NITW), India. He has previously worked in TATA Consultancy Services
(TCS), Hyderabad as Developer and Analyst in SOA projects. He has
published one conference paper in the area of microservices. His research
interests include Service Oriented Architecture, Microservices and Software
Engineering.

Patterns for Migration of SOA Based Applications to Microservices 1245

Ravichandra Sadam has received his Ph.D. in computer science from
National Institute of Technology (NIT) Warangal, India in the year 2015.
He is currently an associate professor in the department of computer science
and engineering , National Institute of Technology (NIT) Warangal, Telan-
gana, India. His research interests include Software Engineering, Software
Architecture, Design Patterns and Service Oriented Architecture. He is a
member of IEEE and ISTE.

	Introduction
	Related Work
	Preliminaries
	Service Graph
	Service definition

	Task Graph

	Migration Patterns
	Pattern 1: Decomposition of an SOA Service to Microservices
	Pattern 2: Size of Each Microservice
	Pattern 3: Bug Detection in Complex Microservices Application

	Evaluation
	Pattern 1
	Pattern 2
	Pattern 3

	Conclusion

