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Abstract

Event-related potential (ERP) is a distinctive pattern of brain activity that
is elicited by the brain’s sensitivity and cognition whereas P300 evoked
potential changes in cognitive functions. Since P300 wave is a cognitive
response across multiple brain channels correlated between the measured
electroencephalogram (EEG) and deviant stimulus in a specific period, it
requires a suitable signal processing application for interpretation. Moreover,
multiple steps of data processing under neuroscience criteria make the P300
reflection difficult to analyze by common methods. Therefore, this study
proposes the processing model for brainwave applications based on P300
peak signal detection in multiple brain channels. This study applies 64 chan-
nels ERP datasets throughout bandpass filter in fast Fourier transform (FFT)
with the specific ranges of signal processing while ERP averaging is applied
as a feature extraction method. Furthermore, the experimental metadata is
applied with the filtered P300 peak signals in channel classification via a
machine learning method, the Decision Tree. The experimental results indi-
cate the accurate mental reflection of P300 evoked potential in different brain
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channels with high classification accuracy relying on the contrast condition
throughout the original data source averaged across the individual electrodes.

Keywords: Event-related potential, ERP, P300, signal processing, band-
pass filter, fast fourier transform, feature extraction, classification, machine
learning, decision tree.

1 Introduction

Event-related potential or ERP waveforms are the brain’s response directly
resulting from the sensory and cognitive events. In general, it is the same
type of electrical physiological response to the stimuli, called stereotyped.
This method elicits brain functions without having the body invasion. It is
based on neuroscience research on the processes of cognition, emotion, and
sensitivity [1–4]. ERPs can be elicited via electroencephalogram or EEG
recording. The equal measurement of a signal of ERP is an event-related
field (ERF), which is done by recording magnetic fields in the brain, called
magnetoencephalography or MEG [5]. Besides, there are sub-types of ERPs
which are called evoked potential. It is separated by the responsive time
after stimuli. Each evoked potential can be detected in a specific range.
Therefore, applying appropriate tools and specific methods for each evoked
potential is necessary. P300 or P3 is an evoked potential, a subsection of
the ERP component that is presented in the decision-making process. It
is considered as the external potential that arises due to the experience
linking, not the physical properties of stimulation. However, P300 is thought
to reflect the processes involved in evaluating stimulation or classification,
called cognitive performance or cognition. Identifying P300 evoked poten-
tial determines the learning ability of humans [6]. Generally, it can be
interpreted by the oddball paradigm, the psychology research experimental
design in which the low probability target list is mixed with the highly
unlikely target or standard when recorded by EEG method. ERP techniques
have been used to study knowledge and the basis for extensive work on
P300 in the past decade. While the neurological precursors of this ERP
component are still vague, the repeatability and adaptation of these signals
make them a common option for psychological testing in both clinics and
laboratories.

Clinical and scientific research often relies on P300 measurements to
determine the potential of relevant events, especially in decision-making.
Since intellectual disabilities are often associated with modifications in the
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P300 evoked potential, it can be used as a measure of the effectiveness of
various treatments in cognitive function. There are multiple uses for P300
in clinical cases [7]. Its surface has a positive deflection of voltage with
latency, delayed between stimulation and response. It is about 250 and 400
milliseconds for adults aged between 20 and 70 years old [8, 9]. The signal
is most strongly measured by the parietal lobe electrodes. The presence,
size, topography, and time of this signal are often used in clinical cases as
a measure of cognitive function in the decision-making process.

Furthermore, P300 is mainly required in the brain–computer interface
(BCI) application [10–12] because this waveform can be continuously
detected and taken out in response to precise stimuli. The P300 wave-
form can appear in almost all subjects with slightly different measurement
techniques, which may engage in reducing the complexity. The interface
design collaborated with P300 reflection increases the usability of system
interaction. The speed of the interface depends on how the signal is detected
even in the presence of noise. Noise is the negative amplitude whereas
the characteristic of the P300 is the positive amplitude of the waveform.
Moreover, it has to average the multiple recordings or separate trials into
a single trial to interpret the correct ERPs. This processing step and other
post-recording steps determine the overall speed and correction of the
interface [13].

Although the applications for monitoring and measuring the P300 are
continuously developed and diverse, the clinical application underlying neu-
rophysiology and signal processing is too complex [14]. Commercial EEG
measurements are typically designed to record nerve impulses or brain signals
through electrodes. Basic tools are presented at a low price that serves reliable
quality and performance. Since human brainwaves are highly complex and
can be interpreted in many ways, there are no tools or methods that have
been agreed upon or identified as academic and medical standards. The
organization and the company have designed the EEG measuring instrument
according to the requirements and unique formats. However, there is still a
lack of control systems or software to access brainwaves in different ways.
Fortunately, commercial devices are offered in a format that can be applied
extensively. Many software packages can be adapted to use with the same
device type. Therefore, researchers and developers have to design a method
or software, allowing them to create and distribute new research.

Besides MATLAB, which is a general tool for signal and data analysis,
OriginLab, GNU Octave, and SciPy are the most popular simulating sys-
tems for data analysis. OriginLab and GNU Octave are designed for signal
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processing through a unique interface, while SciPy is designed as a Python-
based application, which causes some interactive limitations, especially the
brainwave analysis. The specific tools used to mainly analyze brain waves in
the form of EEG and ERP are more appropriate. EEGLAB was designed as
a plugin MATLAB. It is considered as the most popular application for brain
signal processing due to its various features that meet the requirements in both
research publication and medical analysis. EEGLAB provides a one-time
collection process along with EEG data averaging for a particular channel of
the brain. This plugin relies on a rich array of channels. It also has the function
of data visualization. The data visualization consists of scalp map scrolling,
dipole model planning, and multiple image plotting as the main functions.
Besides, it also supports the preprocessing features that comprise the artifacts
rejecting, filtering, selecting, and averaging. The existing functions of inde-
pendent component analysis (ICA) and time domain with frequency decay
consist of channels and cross-linking elements. Apart from general features
for EEG analysis, it is encouraged by the bootstrap statistical methods based
on data sampling. The EEGLAB function is divided into three layers: the
upper layer, middle layer, and user interface. The top layer functions allow
users to interact with the data processing through the graphical user interface
(GUI) without the knowledge in command syntax of MATLAB. The mid-
layer function allows users to customize and repeat data processing by using
command history. The user interface functions allow the user to customize
the operation of EEGLAB. It has an extensive function to support and tutorial
information. Nevertheless, this application lacks features that can be accessed
with particular brain functions like evoked potential.

The ERPLAB outperforms in ERPs detection. It is an integrated tool-
box that is exclusively developed for MATLAB applications [15]. It is
widely used in research works that are relevant to human brain signal
processing. Nonetheless, ERPLAB interfaces are included in the GUI of
EEGLAB. It means that both ERPLAB and EEGLAB can be active in the
MATLAB programming environment. This toolbox is extensively used in
engineering and science research based on neuroscience due to the complete
functions to interpret several evoked potentials. In particular, it has many
features that are easy to write simple scripts for beginners, yet it has a
more complex function in creating new data processing for advanced users.
However, it requires a specific format and steps to implement the research
works. As ERP is presented as time-locked signals, knowledge of time-
related events and brain activity meanings are necessary for assessing the
unique functions of the brain. Although it can be applied for many kinds
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of ERP analysis, users have to be familiar with the features of the evoked
potential.

Since P300 evoked potential is a special peak signal in ERP, users
and researchers must know about signal processing under the regulations
of neuroscience. This study proposes a model for processing P300 evoked
potential focused on fast, simple, and accurate processes. The preprocessing
of ERP experiment depends on the psychological method which has to be
manipulated by an expert in psychology for avoiding ethical problems. This
study applied the open-source datasets from the expert psychologist, Assoc.
Prof. Daniel Baker, a senior lecturer at York Biomedical Research Institute
(YBRI), the University of York, England [16]. The signal processing relies
on fast Fourier transform (FFT) bandpass filtering which is adapted as a raw
signal filter. Afterward, trial averaging will be filtered waves to understand
the responsive reflection of each channel. Finally, a machine learning method,
Decision Tree, will be used to classify the P300 peak signal position on the
scalp. The P300 values are presented in a simple format so that different
clinical staff can recognize the location of peak signal on scalps and analyze
various medical effects accurately.

2 Literature Review

Although the application design can be done based on signal analysis, other
relevant theories can improve the accuracy and efficiency of the proposed
method. Several theories related to this study are presented as follows.

2.1 Categories of Event-Related Potential

ERP waveforms in the human brain can be divided into two types: early
and late waves. The early wave or component occurs at the highest point
within the first 100 milliseconds after the stimulation. It is called sensory
or exogenous as a physical parameter, which has a stimulating effect on
brain wave activity. On the other hand, the late waves generated the later
reflection as the characteristics that demonstrate the evaluation of stimuli. It
is called cognitive or endogenous. The format of the ERP waveforms can be
determined from latency and potential (amplitude) in Figure 1.

According to Figure 1, N refers to the negative component, while P is
the positive peak signal in microvolt. ERP waveforms can be divided into
subsections following the latency (time-lapse in millisecond) of peak signal
after stimulus activation, called evoked potential, presented as follows.
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Figure 1 Sample of ERP waveforms.

2.1.1 P50 wave
This is the earliest event-related potential that occurs at 50 milliseconds
after stimuli activation. It has been adapted as a paradigm test of sensory
gating, which is an ability to attend to respond or ignore redundant external
information for preventing the information overflow issues [17]. P50 appears
at the positive peak from 40 to 75 milliseconds [18]. Normally, P50 can be
interpreted via the paired click and steady-state paradigm [9].

2.1.2 N100 wave
N100 or N1 wave is activated when an unexpected stimulus is presented. This
negative deflecting peak signal occurs from 90 to 200 milliseconds after the
stimuli. It is considered as the matching process, which paired the experience
with new knowledge. It is also called vertex potential due to the maximum
amplitude over Cz or central sulcus of brain position [19].

2.1.3 P200 wave
P200 or P2 amplitude refers to the positive peak signal deflected from the
baseline between 100 and 250 milliseconds after activating the stimulus. The
latest research work demonstrates that the N1 and P2 wave has a relevant
component that reflects the sensitivity of human behavior [9].

2.1.4 N200
N200 or N2 wave is a negative deflection peak signal that appears approx-
imately at 200 milliseconds after stimuli. Besides, there are three sub-
components, including N2a, N2b, and N2c. N2a or Mismatch Negativity



A Novel Processing Model for P300 Brainwaves Detection 2551

(MMN) can be obtained via an auditory paradigm for observing the dis-
criminable change [20, 21]. MMN represents the brain’s automatic process
involved in the encoding of the stimulus difference or change in the sim-
ulation. N2b slightly appears after N2a, which changes the physical task
performance in human. N2c is a common N2 that is used only for different
stimulus classification.

2.1.5 N300
This peak signal is expected to appear in the collapse time between N200 and
N300. Previous research stated that it is an ongoing process in the context of
semantic congruity [9].

2.1.6 P300
P300 or P3 wave is the major component for interpreting cognitive perfor-
mance or learning ability in the human brain. Since it was found by Sutton
et al. in 1965 [8], it has been applying in the field of ERP. Generally, auditory
stimulation is used for this peak signal. The latency range after stimuli is set
between 250 and 400 milliseconds for adults aged between 20 and 70 years
old [8, 9]. This stimulus evaluation time reflects the stimulus, whether short
or long latency for assessing the cognitive function [22]. Normally, an oddball
paradigm, a psychological task, is used to investigate this kind of potential.
It presents the sequences of the repetitive stimulus that is interrupted by
the deviant stimulus, which is slightly lower and higher than the standard
stimulus. To observe how the human brain attends and learns the new infor-
mation, P300 is the most optimal amplitude dedicated to the interpretation of
cognitive performance [23].

2.1.7 N400
N400 is part of the responsiveness in word processing along with other mean-
ingful information such as language signs and understandable pictures [24].
It can appear from 300 to 600 milliseconds after the stimuli [25].

2.1.8 P600
This is the domain of language processing which occurs when the human
brain responds to the syntactic violation and structure [5]. It performs gram-
matical errors and syntactic anomalies [26]. It can be elicited by either
hearing or reading at 600 milliseconds after the presentation of a stimulus,
approximately.
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2.2 Event-Related Potential Processing

There are many ways to deal with EEG signal filtering [27]. Generally, there
is no algorithm to manipulate poor quality recorded data; proper recording is
mandatorily performed at first measurement. EEG with eight channels is the
minimum requirement for optimal channel configuration [28]. However, the
implementation of more channels is not entirely solving the signal recording
issue. The ERPs-based system consists of three stages of processing, which
include preprocessing, feature extraction, and channel classification of P300
evoked potential.

2.2.1 Preprocessing
Preprocessing can be achieved after obtaining the raw data and before extract-
ing brain signal features. It refers to a key step to leave the entire significant
information while amplifying EEG signals and simplifying subsequent pro-
cessing operations [29]. The performance of classifiers depends on the stage
of efficient data preprocessing. Signal strengthening can be performed by
improving the signal-to-noise ratio (SNR) for the signal quality. The presence
of background noise can interrupt the interesting brain patterns into the rest
of the signal, which is challenging to detect P300 response and eventually
results in a bad or small SNR. On the contrary, a high SNR of the input EEG
signal can quickly generate P300 detection and classification.

The bandpass filter is used to eliminate the direct current (DC) bias and
high-frequency noise for realizing the high SNR. Researchers sometimes
integrate transformation and filtering techniques for removing and abating
signal components that are unnecessary for the application [30, 31]. As
analog computer (AC) current is generally at 50–60 Hz, which depends on
the particular living zone of the globe. The power line effect on EEG can be
removed by a notch filter at 50–60 Hz, exact classes of artifacts generate at
known frequencies, and cognitive activity usually limits itself in the 3–40 Hz
range during the filter setup.

2.2.2 Signal processing
Since ERP appears in the form of time-locked frequency, discrete wavelet
transforms (DWT) are one of the most commonly used methods for long-
term ERP feature extraction. However, the high-pass filter and the cascade of
low-pass filters followed by a high-pass filter are the roles of the wavelet. Due
to the requirement of P300 detection, bandpass filtering with trial averaging
offers more accurate results than DWT in ERPs interpretation. FFT is a robust
algorithm to convert signals from time domains into a frequency domain [32].
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It is considered the most critical numerical algorithm [33, 34]. Its popularity
is proven in variety of areas such as communication, applications, signal
processing, and biomedical engineering [35]. This algorithm provides the
basis of signal processing to avoid unwanted or disturbing signals. Signals
and noise from recording ERP can be plotted in the form of power-spectrum
frequency [36]. However, it can be used to analyze signal records in terms of
time series [37].

FFT is considered the best bandpass filter in ERP processing [38]. This
method reduces redundancy and calculation time with less complexity. This
technique offers an easier and faster process when compared to other pop-
ular algorithms such as the discrete Fourier transform [39]. In MATLAB
applications, the FFT expression is represented by general parameter calcu-
lations [40]. It can provide high accuracy and flexibility, which is suitable
for use with application bases [41]. Many research also suggested that
0.1–15 Hz is the most suitable range for bandpass filtering P300 evoked
potential [41, 42]. Thus, it is necessary to use a simple bandpass filter to
maintain this frequency [43].

2.2.3 Feature extraction
ERP responses have many factors that are smaller than the magnitude of the
background in EEG. Accordingly, signal processing methods are used for the
identification and characterization of these event-related brain responses to
enhance their SNR ratio. All methods have to repeat the interesting events
according to the specified range of times. Scalp recordings are divided into
epochs, which are in the center of all epoch events. All are average to a single
waveform, called time-domain averaging [44, 45]. The received waveform
indicates the average scalp potential as a function of time relative to the onset
of the event. Latency and morphology are stationary, which is used for the
stable ERP process. It will not be affected by the averaging procedure, which
results in the bandpass filtering on the scalp channels. It can calculate the
cut-off frequencies and signal powers as well as providing accurate filtered
data.

2.2.4 Channel classification
Many approaches can be used to extract the features of brain signals. The
channel classification is related to P300 evoked potential detection. A classi-
fication step is a process to identify the affected channels. The classifier can
be applied as either an unsupervised or supervised algorithm. The feature
vectors are labeled as target and non-target before classifying the P300,
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especially in BCI cases [31]. On the other hand, the feature vectors con-
sistent with known stimuli are applied to an unsupervised classifier during
the classification process. The trained classifier distinguishes the best brain
response that resembles a target stimulus from the non-target stimulus. The
classifier can detect the letter with a maximum probability in the case of a
P300 Speller [46].

In feature extraction, numerous methods have been employed through
several algorithms such as DWT [11], principal component analysis [47],
and ICA [48, 49]. The extracted features are used as input for P300 evoked
potential identification and classification by using the signal processing appli-
cation with different classification techniques. Linear discriminant analysis
(LDA) is a pattern classification method, which is used in many ERP stud-
ies [50]. Stepwise linear discriminant analysis (SWDA) was developed from
the LDA classification method by applying only particular features. SWDA
was used to classify the ERP by applying individual averages as a 6 × 6
matrix paradigm [13]. Also, there are some classification methods employing
machine learning techniques for P300 detection, such as a support vector
machine (SVM) [51]. SVM is beneficial for small data size to provide high
throughput at a high transfer rate. Nevertheless, LDA outperforms SVM clas-
sifiers if the size of input data is significant in P300 detection [52]. Besides,
many BCI groups have trained their study with other classifiers such as
linear support vector machine (LSVM), Pearson’s correlation method (PCM),
Gaussian support vector machine (GSVM), and Bayesian linear discriminant
analysis (BLDA) [53]. A comprehensive comparison of all different features
extraction and classification techniques.

Generally, P300 waveform is used for the application in BCI [54]. The
optimization of performance in detection methods is associated with the
accuracy and several details including speed and resource consumption. It
found that the speed of P300 detection depends on a suitable signal pro-
cessing, which is the feature extraction method. Discrete wavelet transform
(DWT) with 6 × 6 targets and 36 feature vectors provides 7.8 bits per
minute and 80% accuracy. Also, it provides 2.3 bits per minute and up to
90% accuracy [55, 56]. Meanwhile, the Genetic algorithm consumes high
resources and achieves 34–90% accuracy [57]. Also, BLDA uses a feature
vector that is labeled to the class of probability and provides 7 bits per minute
with 95% accuracy [58]. The linear discriminant analysis offers almost 100%
accuracy in able-bodied subjects and 100% for disabled subjects with 15.9
and 29.3 bits per minute [59, 60]. Besides, the SVM offers faster processing
with 96.5% accuracy [61]. Moreover, the data transfer rate takes up to 84.5%
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accuracy with 84.7 bits per minute [62]. Last but not least, the maximum
likelihood applies the thresholds for classes setting that provide 90% accuracy
with 4.19 bits per minute [63]. Regarding the performance comparison in
previous work [54], these classification methods were applied to the same
dataset where the overall classification performance is different in each case
of resources. However, each type of evoked potential can appear and relate to
different brain channels. It results in the detection of ERP evoked potential
with different rules. P300 is a positive voltage peak between 2 and 5 µV [64].
Since there are specific ranges of frequency to detect P300 evoke potential,
decision-making rules can manage to get the P300 peak signal classification
properly. Therefore, Decision Tree, one of the popular classification meth-
ods offers the classification result can also be used to identify or predict
the unknown class label throughout many types of training methods for
decision-making under specific rules [65].

3 Methodology

The procedure of this process relies on the conceptual diagram, shown in
Figure 2.

This operation begins with preprocessing that includes raw data and meta-
data perceiving. The applied dataset will be filtered in the signal processing
step. A component of P300 evoked potential will be specified in the feature
extraction process. At last, the classification algorithms will be performed as
P300 peak signal and brain channel classification.

3.1 Preprocessing

Normally, a psychological expert is required for data collection in preprocess-
ing to avoid ethical problems. This study applies the open-source ERP dataset
collected via contrast discrimination for research implementation [16, 66].
ERP raw data were recorded via the WaveGuard cap and ANT Neuroscan
EEG system collaborated with 64 electrodes arranged in a 10/20 system. The

Figure 2 System procedures.
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Table 1 Sample of raw dataset
Time Signals (µV)
(ms) Fp1 Fpz Fp2 F7 F3 Fz F4 : PO8
1 −16620.8 −19731.6 −14382.7 3720.683 2290.548 −14409.9 −2767.49 : 9042.124
2 −16616.8 −19730.0 −14375.7 3718.292 2290.732 −14407.2 −2765.19 : 9041.370
3 −16611.4 −19724.8 −14366.2 3715.497 2290.235 −14404.2 −2762.66 : 9040.561
4 −16608.1 −19722.3 −14360.3 3720.003 2294.594 −14400.0 −2761.48 : 9039.200
5 −16599.8 −19719.3 −14353.6 3723.993 2295.513 −14400.8 −2763.72 : 9038.280
6 −16606.2 −19721.7 −14349.6 3725.262 2294.171 −14404.3 −2765.87 : 9038.501
7 −16615.2 −19731.5 −14355.8 3724.527 2292.902 −14410.3 −2769.61 : 9041.646
8 −16611.9 −19727.9 −14361.3 3724.269 2293.104 −14412.6 −2765.29 : 9040.304
9 −16610.8 −19729.1 −14375.2 3724.196 2293.969 −14415.4 −2763.58 : 9040.708
10 −16610.2 −19729.1 −14379.4 3725.244 2292.148 −14417.6 −2763.15 : 9038.299
: : : : : : : : : :
19998 −16928.0 −19444.9 −14784.7 3843.289 2279.496 −14065.4 −3000.79 : 9135.711
19999 −16924.5 −19440.4 −14782.8 3840.751 2283.817 −14060.4 −2999.13 : 9135.178
20000 −16921.6 −19436.5 −14778.6 3837.956 2282.677 −14053.6 −2995.68 : 9132.823

ground electrode was set to AFz as normally. Data were sampled at 1 kHz
using the ASALab software. Stimuli were applied and demonstrated via
VIEWPixx 3D display, running in 16-bit luminance resolution with a mean
luminance of 51 cd/m2 and 120 Hz refresh rate throughout the Psychophysics
Toolbox in MATLAB application. The display was gamma-corrected using
a Minolta LS110 photometer. The data were fitting with 4-parameters with
stimulus intensities transformation using the linear inverse function. Samples
were in sitting status in a dark room, 57 cm far from the display. The partic-
ipants followed the instruction and used a mouse to indicate their responses
regarding the display. The task was run in five blocks that last for an 8-
minute trial throughout 200 trials per target contrast. However, 20 trials with
20,000 milliseconds were used in this study. The sample of the raw dataset is
presented in Table 1.

There are pre-frontal (Fp), frontal (F), temporal (T), parietal (P), occipital
(O), and central (C). Also, Z (zero) denotes an electrode placed on the midline
sagittal plane of the skull including FpZ, Fz, Cz, and Oz. It is usually often
defined as grounds or references. Besides, the triggers had been turned out to
be zeros and removed in this study due to the rare trigger events during EEG
detection.

3.2 Signal Processing

In neuroscience, the human brain signal has bandpass responsiveness prop-
erties [67]. It performs frequency passes within a specific range. Generally,
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it can limit the bandwidth of output signals during the process. The recorded
human brain signals will be optimized in cutoff frequencies. It can provide the
cutoff frequency by using attenuation values. Analog signals from ERPs are
properly filtered through this filter, and provide an output in the digital signal.
Since P300 evoked potential can be found in the range of 0.1–15 Hz, low-
pass and high-pass filters in discrete wavelet transforms are not appropriate
for this study. Therefore, this study applies a bandpass filter in FFT to pass
the required frequency. The formula of the FFT bandpass filter is shown in
Equation (1).

Xk =
N−1∑
n=0

xne
−i2πkn/N (1)

Where xn is signal data that is normally presented as complex numbers.
ei2π/N is a primitive N th root of 1. n denotes the number of signal data.
However, there are used NlogN for each signal for N size. The bandpass filter
can be calculated by Equation (2).

xt = Re{st}ei2πfct (2)

xn is the raw signal. fc is the frequency whereas st stands for bandpass
signal. The value is swapped ±fc to make st as a real number, shown as
Equation (3)

xn = (st)cos(2πfct) (3)

Thus, the bandpass filtered signal can be used in the FFT formula with a
specific range. The sample of the filtered signal is shown in Figure 3.

According to Figure 3, the filtered signals are capped to the specific range
which has to be averaged altogether in the feature extraction process.

3.3 Feature Extraction

There are 20,000 milliseconds per single trial for the applied datasets.
Consequently, this study has to separate each filtered signal into 20 trials.
Averaging process is performed crossing the split group for various channels.
Afterward, the averaged signals will be cut off from 20,000 milliseconds to
1000 milliseconds.

To perform the signal averaging in MATLAB, it has to be converted as
the mean of matrix rows. All trials will turn into a single trial and one column
per channel. Subsequently, the new records are ready for implementation in
the channel classification step.
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Figure 3 Sample of signal processing.

3.4 Channel Classification

P300 evoked response potential can be specified in the frequencies range
of positive voltage peak 2–5 µV. It has to begin at 250 milliseconds to 400
milliseconds after the post-stimulus. The Decision Tree for decision-making
rules can overwhelm the P300 peak signal classification. It requires a training
set to predict various unseen examples [68]. Its limitation would be poor
accuracy if the training set used to train a new model is too small [69]. It
is a top-down tree diagram, which is based on entropy. Entropy measures
sample attribute purity, shown in Equation (4).

Entropy(S) =
n∑
i=1

−Pi log2Pi (4)

Where S is a sample of training attributes. Pi is a proportion of attribute
S. Entropy expects the number of bits for attribute classification. It defines
the optimal decision attribute by observing all instances within the recursion.
Additionally, Information Gain or IG is used for splitting instances [70],
shown in Equation (5)

Gain(S,A) = Entropy(S)−
∑

Values(A)

|Sv|
|S|

(5)

Gain(S,A) is IG of attribute A and instances S.Values(A) stands for
the set of proportion A. Sv is a subset of instances S for attribute A with
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Table 2 Classification rules
No. Descriptions
Rule 1 Maximum absolute value <2 µV
Rule 2 Maximum absolute value >5 µV

value v. It expects entropy reduction by sorting attribute A. This algorithm
implements a training set and provides a classification model for a P300
classification by identifying maximum absolute value over multiple channels.
Identifying peak signals demonstrate the change in the specific period. The
maximum absolute value is used for finding the most significant responsi-
bility for each detected peak signal. The classification rules of the Decision
Tree are implemented to define the channel that the maximum absolute value
belongs to. It is presented in Table 2.

Precisely, the maximum absolute values will be limited in this amplitude
range. The peak signals out of this cap will be dropped during the classifica-
tion process. Finally, the results will yield the detected P300 peak signal along
with the responsive channels relying on electrode positions in metadata.

4 Experimental Results

4.1 Data Processing

The dataset has to be prepared in the specific format as Table 1. The several
records of each sample contain 20,000 milliseconds of frequency ranges. The
results of one sample throughout the fast Fourier transform bandpass filtering
are shown in Table 3.

The filtered signals for each channel will be split into 20 separate trials
before averaging into a single trial in Table 4.

Consequently, the averaged will be combined with metadata (brain
channels) to define the peak signal along with maximum absolute values,
presented in Figure 4.

The absolute values of peak signal values will be used in the classification
step to define whether it is P300 evoked potential or common attention. The
Decision Tree is performed to classify the P300 peak signal as the specific
criteria, declared in Table 2. Twenty samples with 20 trials were used as the
training set in the machine learning process. The results of the confusion
matrix of the proposed method are represented in Table 5.

This classification applies 10-fold cross-validation with an 80/20 ratio of
the training set and testing set for performance prediction. There are 1280



2560 W. Srimaharaj and R. Chaisricharoen

Table 3 Filtered signals of one sample
Time Signals (µV)

(ms) Fp1 Fpz Fp2 F7 F3 Fz F4 : PO8

1 2.422815 −1.25422 2.212070 −0.53447 0.146128 −1.95701 1.594086 : −0.79539

2 5.897450 −4.29197 6.815477 −1.84224 0.261544 −5.63397 4.136063 : −1.83262

3 8.474314 −6.47500 10.27934 −2.75953 0.359991 −8.32226 5.957122 : −2.58841

4 9.840415 −7.55465 12.19317 −3.18525 0.435765 −9.71388 6.859584 : −2.97716

5 10.04588 −7.62819 12.59587 −3.16327 0.483357 −9.90225 6.923533 : −3.02333

6 9.450054 −7.06883 11.91041 −2.85337 0.498673 −9.30857 6.449523 : −2.84195

7 8.562402 −6.35883 10.75372 −2.46343 0.481441 −8.49499 5.825859 : −2.58856

8 7.847555 −5.89834 9.704513 −2.17154 0.437293 −7.94581 5.377946 : −2.40005

9 7.573540 −5.86877 9.120838 −2.06891 0.377891 −7.90541 5.260952 : −2.35012

10 7.757721 −6.20083 9.070525 −2.14361 0.318439 −8.33163 5.434660 : −2.43509

11 8.219567 −6.64968 9.384833 −2.30693 0.273317 −8.96983 5.721734 : −2.59232

12 8.703793 −6.93363 9.794112 −2.44650 0.251753 −9.50210 5.915172 : −2.73948

13 9.011781 −6.86941 10.07566 −2.48076 0.255623 −9.69890 5.882872 : −2.81559

14 9.083233 −6.44520 10.14873 −2.39183 0.280522 −9.50749 5.623658 : −2.80597

15 8.999242 −5.80612 10.08414 −2.22538 0.319543 −9.04741 5.255325 : −2.74227

16 8.917109 −5.16891 10.03893 −2.06206 0.367718 −8.52784 4.947778 : −2.68083

17 8.977286 −4.71336 10.15932 −1.97664 0.424590 −8.13593 4.838058 : −2.67186

18 9.230970 −4.50402 10.50337 −2.00494 0.493303 −7.95239 4.968686 : −2.73489

19 9.621192 −4.47622 11.01854 −2.13225 0.576501 −7.93129 5.275865 : −2.85116

20 10.02062 −4.48654 11.57761 −2.30612 0.671250 −7.94596 5.628164 : −2.97506

: : : : : : : : : :

19998 −7.18038 7.317671 −10.4446 3.338407 −0.22461 8.325825 −5.75603 : 2.149539

19999 −4.74161 5.141995 −7.23109 2.311607 −0.10748 5.711787 −3.83948 : 1.388955

20000 −1.35372 2.105217 −2.76663 0.941538 0.02019 2.076195 −1.23960 : 0.348376

instances (64 channels for each sample). The scatter plot of classified results
is presented in Figure 5.

According to Figure 5, four instances were presented as actual yes, which
were errors. Corresponding to the reliable classification method, the prepared
dataset was classified through the proposed method, and compared with
results of other popular methods including Neural Network, Naı̈ve Bayes,
and K-nearest Neighbor; shown in Table 6.

It indicates that the Decision Tree outperforms in this experiment.
Although Neural Network provides the same accuracy as Decision Tree, it
has lower recall and higher execution time. Therefore, the Decision Tree is
the most suitable classification method for this study.

4.2 Results and Discussion

The results of two samples which reflected P300 evoked potential, sample
no.17 and no.19 are presented in Tables 7 and 8. The classified detection
status is presented by ‘Yes’ and ‘No.’
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Table 4 Averaged ERPs of one sample
Time Signals (µV)
(ms) Fp1 Fpz Fp2 F7 F3 Fz F4 : PO8

1 0.053941 −0.04182 0.100714 −0.01108 0.051265 −0.06198 0.112290 : −0.07872
2 0.256380 −0.15944 0.376365 −0.08680 0.066727 −0.23168 0.228535 : −0.13144
3 0.411526 −0.24466 0.584655 −0.13800 0.084036 −0.35410 0.308060 : −0.17013
4 0.499925 −0.28845 0.700274 −0.16040 0.102062 −0.41367 0.345862 : −0.18893
5 0.520789 −0.29523 0.725962 −0.15843 0.119193 −0.41465 0.349117 : −0.18824
6 0.489713 −0.28025 0.688229 −0.14294 0.133370 −0.37819 0.333028 : −0.17424
7 0.431382 −0.26282 0.625154 −0.12658 0.142488 −0.33335 0.314189 : −0.15619
8 0.370573 −0.25850 0.571597 −0.11880 0.145045 −0.30591 0.304310 : −0.14289
9 0.324963 −0.27331 0.547755 −0.12240 0.140744 −0.30952 0.306798 : −0.13951
10 0.302031 −0.30235 0.555094 −0.13304 0.130696 −0.34246 0.317274 : −0.14621
11 0.300287 −0.33313 0.580248 −0.14179 0.117066 −0.39079 0.327359 : −0.15891
12 0.313295 −0.35174 0.604140 −0.13966 0.102279 −0.43591 0.329699 : −0.17161
13 0.334137 −0.34917 0.611795 −0.12207 0.088149 −0.46291 0.321845 : −0.17930
14 0.358305 −0.32480 0.598610 −0.09125 0.075366 −0.46612 0.307351 : −0.18003
15 0.384231 −0.28590 0.570993 −0.05575 0.063599 −0.44983 0.293849 : −0.17544
16 0.411984 −0.24374 0.542024 −0.02712 0.052156 −0.42452 0.289261 : −0.16965
17 0.441432 −0.20820 0.524855 −0.01527 0.040826 −0.40093 0.298090 : −0.16712
18 0.471144 −0.18379 0.527159 −0.02459 0.030441 −0.38489 0.319509 : −0.17057
19 0.498540 −0.16856 0.548878 −0.05229 0.022804 −0.37547 0.347994 : −0.17984
20 0.520955 −0.15640 0.583649 −0.08975 0.019978 −0.36673 0.375991 : −0.19212
: : : : : : : : : :
998 −0.48809 0.294802 −0.63622 0.226379 0.023635 0.429710 −0.26051 : 0.061062
999 −0.35300 0.207059 −0.45559 0.161241 0.029111 0.307681 −0.15577 : 0.027110
1000 −0.16197 0.088312 −0.19493 0.077010 0.038490 0.138992 −0.02378 : −0.02219

Figure 4 Maximum absolute value of peak signal over brain channels.
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Table 5 Confusion matrix of decision tree

Actual Actual Class Class
P300 Detected No Yes Precision Recall TP Rate FP Rate

No 1274 0 99.75% 100.00% 100.00% 66.75%

Yes 4 2 100.00% 33.33% 33.33% 0.00%

Weighted Avg. 99.75% 99.75% 99.75% 66.45%

Figure 5 Scatter plot of classified results.

Table 6 Comparison of classification results

Algorithms Accuracy (%) Precision Recall Execution Time (s)

Decision Tree 99.6875 0.997 1.00 0.03

Neural Network 99.6875 0.997 0.997 21.97

Naı̈ve Bayes 99.0625 0.997 0.991 0.01

K-Nearest Neighbor 99.5313 0.995 0.995 0.01

According to Tables 7 and 8, Fpz reflected P300 evoked potential in this
study. There is only one channel that presented the cognitive performance
with high classification accuracy in this experiment. The classification accu-
racy relies on the contrast condition throughout the sensor space and source
space conducted in the original EEG data collection experiment [−66]. The
classifier accuracy was conducted to average across the individual electrodes
which are marked as significant clusters that can be used by clinical staff can
apply the results to indicate the learning ability in several medical cases.
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Table 7 Classification results of sample No.17
Electrode P300 Detected
Fp1 No
Fpz Yes
Fp2 No
F7 No
F3 No
Fz No
F4 No
F8 No
: :
PO8 No

Table 8 Classification results of sample No.19
Electrode P300 Detected
Fp1 No
Fpz Yes
Fp2 No
F7 No
F3 No
Fz No
F4 No
F8 No
: :
PO8 No

5 Conclusion

Although the general tools of ERPs provide adequate results, it requires
specific knowledge-based neuroscience for interpretation which is difficult
for common clinical staff. An implementation of the proposed processing
model provides a simpler and faster process that can be used to assess and
identify the cognitive performance of the human brain via P300 evoked
potential detection for every clinical staff. Bandpass filter in fast Fourier
transform offers appropriate signal processing while ERP averaging accu-
rate the trial investigations in the feature extraction process. Finally, the
Decision Tree associated yields the results with high classification accuracy
for multiple brain channels that P300 evoked potential appears. In addition,
it can be further developed and applied in several applications, especially
bioinformatics and neuroscience.
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However, P300 only happened in some channels during the experi-
ments [54]. It might be affected by the different stimulus for target or
non-target type or varied by individual health [71]. There are no standard
or complete applications to define the full features of this waveform [72].
Therefore, studying P300 evoked potential properties and its application have
to be developed continuously.
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