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Abstract

Aiming at the problems such as the large amount of data in transmission
and difficulties in hardware implementation, an optimized algorithm is put
forward to generate QC-LDPC measurement matrix based on limited geom-
etry in compressed sensing, which can eliminate the short girth of 4 in
Tanner graph through the design of basis matrix. Because of the quasi-
cyclic characteristics, it can be realized by shift register so as to reduce the
complexity of coding. The simulation results indicate that QC-LDPC matrix
is superior to traditional measurement matrices by using the same OMP
algorithm, and there are good improvements in the aspects of PSNR, SSIM,
NMSE and runtime, which are conductive to the application of compressed
sensing theory in real-time data transmission.
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1 Introduction

The compressed sensing theory breaks the traditional sampling limitation
and realizes the change of signal sampling, that is, only a small amount of
sampling data can keep the information of the original signal, and the original
signal can also be reconstructed accurately through these sampled data [1].

In the process of compressed sensing, signal recovery is a linear pro-
gramming problem. Since the number of samples is much less than the
length of the original signal, the linear programming problem is that the
number of equations is less than the number of solutions, which are the-
oretically innumerable [2]. Based on these problems, Candes proposed the
famous restricted isometry property (RIP) criterion in 2006, which pro-
vides sufficient conditions for the existence of the determined solutions
of the underdetermined equations. However, it is not practical to use RIP
criterion to construct the measurement matrix due to the high complexity.
The basis for constructing the measurement matrix is to consider whether
the matrix can satisfy the correlation property or RIP criterion with high
probability [3].

At present, the measurement matrices can be divided into three categories
as follows:

1. Randomly generated matrix, such as gauss random matrix, Bernoulli
random matrix, etc., the elements of which are independently subject to
a particular distribution and satisfy m = O(k log(n/k)) [4].

2. Generated by transformation of orthogonal matrix, such as Fourier
matrix, part Hadamard matrix, etc., which has a fast transformation
algorithm, and its common feature is to select m rows from an n × n
orthogonal matrix randomly, and carry out normalization on the new
matrix [5].

3. Generated by binary matrix, such as toplitz matrix and random sparse
matrix, which is characterized by fixed construction mode [6].

The above matrix is not simple enough, the so-called simple refers to
the matrix is highly sparse and its element is binarization. The theoretical
measurement matrix is not actual to be implemented in hardware. In order to
make it be applied to our real life more generally, the research should focus
on the following problems:

(1) Sparsity
In the existing measurement matrix, such as random gaussian matrix, whose
most orthogonal vector elements are not relevant [7], the sparse signal can be
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reconstructed from the measured values for high probability when it meets
RIP criterion, but it has large density, which would lead to large amount of
calculation in the process of recovery and cost more time, at the same time
it would take up a lot of storage space, thus is not conducive to practical
application [8].

(2) Hardware implementation
The hardware implementation of measurement matrix is also an important
aspect of compressed sensing theory. The random matrix has a strong ran-
domness in structure, that makes it hard to be realized in hardware [9]. On
the other hand, the cyclic characteristics of toplitz matrix and cyclic matrix
are easy for hardware implemention, but their effect in compressed sensing
are relatively poor.

(3) Irrelevance
The measurement matrix should also meet the strict RIP criterion or irrel-
evancy, and have strong orthogonality [10]. Therefore, people prefer to
the matrix with small computational load and easy to be implemented in
hardware as the measurement matrix, so that the recovered signal can be
better.

In recent years, low-density-parity-check (LDPC) codes have been
applied to the signal recovery in compressed sensing theory. Due to the high
sparsity of LDPC matrix, it is conducive to hardware implementation. As
a measurement matrix, it has the advantages of binarity, high sparsity and
good orthotropy [11]. But it should be noted that the girth of 4 should be
avoided in the LDPC matrix. If it is in the matrix, the correlation between the
two columns is increased, which is not conducive to the signal sampling. For
these problems, it is proposed an improved method to generate quasi-cyslic
low-density-parity-check (QC-LDPC) codes measurement matrix which is
constructed in finite geometry. Based on the optimal design of the basis
matrix, some short girths of QC-LDPC codes can be eliminated, and the
decoding threshold can be improved, so that the performance of QC-LDPC
codes can be optimized. The complexity of the construction process is low,
and it has the characteristics of quasi-cyclic, which can not only save the
storage space of the check matrix, but also reduce the complexity of coding
and decoding so as to be suitable for the design of integrated circuits.
At the same time, the coding process can be realized by shift register,
which can greatly save the cost and be in line with the requirements of
application.
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2 Methodology and Related Works

2.1 Compressed Sensing of Signals

Let {ψi}Ni=1 is a basis of N dimensional real vector space RN , then for any
dimension signal x ∈ RN×1, there is a set of coefficients {xi}Ni=1 that:

x =

N∑
i=1

xiψi = Ψθ (1)

Here, Ψ = (ψ1, ψ2, · · · , ψN ) ∈ RN×N , θ = (θ1, θ2, · · · , θN )T , θi =
〈x, ψi〉.
Definition 1: For the signal x = (x1, x2, . . . , xn)T ∈ RN , if there is a group
of basis Ψ, which can get x = Ψθ, there are k non-zero component at most,
and k < N , namely,

‖θ‖0 ≤ k (2)

then θ is called a k-sparse signal.

Definition 2: For the signal x = (x1, x2, . . . , xn)T ∈ RN , if a basis Ψ
satisfies x = Ψθ, and most components of θ are close to 0, then x is called a
compressible signal.

Definition 3: For a vector θ = (θ1, θ2, . . . , θN )T ∈ RN , the components of
an N-dimensional vector θ′ ∈ RN are the same as θ in the k positions with the
largest amplitude, and zeros in the other positions, it is defined θ′ the optimal
k term approximation.

The measurement matrix Φ is represented as Φ = (φ1, φ2, . . . , φN), and
φk = (ϕ1,k, ϕ2,k, . . . , ϕN,k)

T , k = 1, 2, . . . , N , so the measurement vector y
can be expressed as

y = Φx = ΦΨθ = Θθ (3)

where Θ is the compressed sensing matrix whose row M is far less than
column N when it meets the RIP criterion.

The non-correlation between Ψand Φ is represented as

µ(Φ,Ψ) =
√
N max

1≤k,j≤N
|〈φk, ψj〉| (4)

The range is 1 ≤ µ(Φ,Ψ) ≤
√
N . For certain Ψ, Φ∗ is the optimal mea-

surement matrix when it can obtain the smallest value of µ(Φ,Ψ). Therefore,
there exists

µ(Φ∗,Ψ)= min

{√
N max

1≤k,j≤N
|〈φk, ψj〉|

}
(5)

where Φ should satisfy ΦTΦ = I .
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Figure 1 Tanner graph of LDPC codes (6,2,3).

2.2 LDPC Codes

The LDPC codes are often called the Gallager codes or the regular LDPC
codes which refers to the linear block codes on a binary field. In the check
matrix of the codes, each column has λ non-zero elements, and each row has
ρ non-zero elements, that is, each bit in the codes participates in λ check
constraint, and each check constraint involves ρ bits. ρ and λ are much less
than the number of rows M and columes N respectively, that is, it is a sparse
matrix.

LDPC codes can be graphically represented as Tanner graph. Regular
LDPC codes (6,2,3) is shown in Figure 1. In the figure, there are variable
nodes {v1, v2, . . . , v6} and check nodes {c1, c2, c3, c4} with attachments
between the two sets, but none insides them.

There are many closed loops in the Tanner graph of LDPC codes, among
which the shortest loop is called the girth. In the Tanner graph of the above
example, the girth is 6. The girth size and closed loop distribution would
effect the performance of LDPC codes to a large degree.

Given the check matrix of the regular codes (λ, ρ), if the rows are linearly
independent, the code rate is 1−λ/ρ. Otherwise, the code rate is greater than
1− λ/ρ. Namely, the minimum code rate of regular LDPC code is:

R = (N −M)/N = 1− λ/ρ (6)

For regular LDPC codes, the average values of row weight and column
weight of the check matrix remain unchanged, so the number of “1” in the
check matrix is λ · N . It increases linearly with the code length, while the
elements of the check matrix grow as a square. Therefore, the check matrix
is a very sparse matrix when the code length is very long [12]. Gallager
demonstrated that regular codes had good hamming distance characteristics
when λ ≥ 3. The regular LDPC code is usually represented by (N,λ, ρ),
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where N represents the code length, λ represents the column weight, and ρ
represents the row weight.

For irregular LDPC codes, the number of “1” in each row and column
of the check matrix are not exactly the same, correspondingly, the degrees
of each variable nodes and check nodes in the Tanner graph are also not
same. The edge of the degree distribution is usually expressed in sequence
{λ1, λ2, . . . λdl} and {ρ1, ρ2, . . . ρdr}, among them, λi represents the ratio
of the number of edges which are connected to variable nodes with degree
i to the number of total edges, ρj represents the ratio of number of edges
connected to check nodes with degree j to the number of total edges, dl and dr
represent the biggest degrees of variable nodes and check nodes respectively,
so we can get

dl∑
i=1

λi = 1,

dr∑
j=1

ρj = 1 (7)

The degree distribution sequence of edges can be expressed by polyno-
mials as followers

λ(x) =

dl∑
i=1

λix
i−1, ρ(x) =

dr∑
j=1

ρjx
j−1 (8)

where λ(1) =
∑dl

i=1 λi = 1, and ρ(1) =
∑dr

j=1 ρj = 1.
Let the total number of edges in the Tanner diagram corresponding to

an LDPC code be E, according to the degree distribution polynomial of the
edges, the number of variable nodes with degree i is vi = Eλi/i, and the
number of check nodes with degree j is cj = Eρj/j, then the total number
of variable nodes and check nodes are respectively given by

n =

dl∑
i=1

vi =

dl∑
i=1

Eλi/i = E

∫ 1

0
λ(x)dx (9)

m =

dr∑
j=1

uj =

dr∑
j=1

Eλj/j = E

∫ 1

0
ρ(x)dx (10)

When the check matrix is full rank, the rate of the irregular LDPC codes
constructed by the degree distribution polynomial λ(x) and ρ(x) is:

R(λ, ρ) =
n−m
n

= 1−
∫ 1
0 ρ(x)dx∫ 1
0 λ(x)dx

(11)
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When the check matrix is not full rank, the actual code rate is a little
bigger than R(λ, ρ).

The check matrix of an irregular LDPC codes would no longer main-
tain the fixed row weight and column weight, which would obey a certain
distribution.

2.3 Construction of QC-LDPC Measurement Matrix

2.3.1 Characteristics of QC-LDPC codes based on finite field
For any finite geometric domain with existence, if there are N points and M
lines, we can construct the vector V = {v1, v2, . . . , vN} with the weight N
corresponding N points on GF(2). The line i in the geometry corresponds to
a vector Vi = {vi1, vi2, . . . viN} with the weight N , when the first j point is
on the line, that is vij = 1. It is called Vi the correlation vector of a line i, and
its weight is ρ. So the N points, the M lines and their associated vectors in a
finite geometry form a matrix HM×N . LDPC codes based on finite geometry
have good iterative decoding performance, and the check matrix can often be
written as a quasi-cyclic structure. Such check matrix not only has sparsity,
but also has the characteristics of cyclic codes or quasi-cyclic codes, which is
very suitable for hardware implementation [13]. The finite geometric domain
contains only a finite number of lines and points, and these lines and points
satisfy the following conditions:

1. There is just ρ points on each line.
2. Each point has exactly λ lines going through it.
3. The lines are either parallel to each other with no intersection, or they

intersect at one point.

The density of the matrix HM×N is ρ/N = λ/M , when ρ and λ are very
small in comparison with N and M , it is a very sparse matrix whose zero
space constitutes the LDPC codes [14].

2.3.2 QC-LDPC Matrix Construction Algorithm
The specific steps of QC-LDPC matrix construction algorithm are as follows:

Step 1: Determine the cyclic submatrix A

The check matrix H of quasi-cyclic LDPC codes is composed of cyclic sub-
matrices with the same number of many dimensions. Each cyclic submatrix
is a square matrix, and each row or column of it is obtained by moving the
previous row or column one bit to the right. In particular, the first row or
column of the matrix is obtained by moving the last row or column one bit to
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the right. The cyclic submatrix I1 obtained by the cyclic right shift of the unit
matrix, i.e.

I1 =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
1 0 0 0 · · · 0


q×q

(12)

If the rank of A is q, then each column and each row in A are linearly
independent. On the contrary, if the rank is less than q, then only partially
continuous rows and columns in A are linearly independent. It can be con-
sidered that the first rows or columns of the cyclic submatrix are linearly
independent vector of A, that is, the rank of A is r. According to equation
(12), its row weight and column weight are both 1.

Step 2: Construction of basis matrix Hb

Hb =


a1
a2
...
am

 =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am0 am1 · · · amn

 (13)

where aij ∈ (0, 1), i = 1, 2, . . .m; j = 1, 2, . . . n.
The basis matrix Hb must meet the following conditions:
There can be one “0” element in any row of the basis matrix at most.

(2) In any two rows of the basis matrix, there are at least n-1 elements with
different values at the same position.

Step 3: Determine the number of shifts matrix

Each element of the basis matrix is expanded into a square matrix with a size
of q × q, “0” element is represented by a square matrix of zeros, “1” element
is represented by the cyclic shift matrix I with a size of q× q, and the specific
number of shifts is represented by the matrix as

P =


p11 p12 · · · p1n
p21 p22 · · · p2n

...
...

. . .
...

pm1 pm2 · · · pmn

 (14)
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In particular, pij =∞ represents the total zero matrix q×q corresponding
to the cyclic shift matrix.

Step 4: Extend the base matrix to check matrix H

This element is replaced by the cyclic permutation matrix corresponding to
each element in the basis matrix Hb, Hb(pij) represents the cyclic submatrix
obtained after the zero matrix or the unit matrix q × q circulates to the right
pij times. The non-zero elements are extended into the check matrix H of
m× n blocks.

H =


Hb(p11) Hb(p12) · · · Hb(p1n)
Hb(p21) Hb(p22) · · · Hb(p2n)

...
...

. . .
...

Hb(pm1) Hb(pm2) · · · Hb(pmn)

 (15)

Step 5: Eliminate the girth of 4 in the check matrix

If the length of the code isN , the row weight is ρ, the column weight is λ, it is
defined the row vector basis α = [1, 2, . . . , ρ], and the row position vector is
defined as R = [R1R2 . . . Rλ]T, then R1 can be got by arranging of the row
vector basis, and R2 can be got by cyclic shift after random arrangement of
the elements. The submatrix R3 . . . Rλ can be constructed in the same way.

Starting at line 1, we compare the following (λ− 1) rows in sequence in
order to see if they have the same elements. If it is so, we will recover the
corresponding vector of row position, and then compare the second row with
the following (λ − 2) row. By analogy, any two rows in R are compared to
see if the column vectors are the same, then the check matrix H is formed
by the corresponding row position vectors R1, R2, . . . Rλ. Because the rank
of matrix H satisfies r ≤ q, the row weight and column weight of cyclic
matrix are less than the digits of matrix, and the situation of the same circular
permutation matrix at the same position of any two rows can only exist once.
That is, the number of nonzero elements on the same position of any two
rows or columns is less than or equal to 1, thus there is no girth of 4 in the
constructed matrix H.

3 Simulation Results

In this section, we carry out some simulation experiments to validate the
compressed sensing performance of the proposed QC-LDPC Matrix. The
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QC-LDPC measurement matrix constructed on a basis of finite field is used to
preojct the signal to the low-dimensional space, and then the low-dimensional
nonlinear projection of the signal is sampled by orthogonal matching tracking
(OMP) algorithm [15]. The block-compressed sensing method and Wavelet
sparse transform are used to conduct multi-group comparison simulating
experiments. It is selected DCT dictionary as the sparse basis for sparse
representation of the image signal. In the process of iteration, the atoms that
match the signal best are selected from the atomic library, and we can get
the original signal and deduce the signal residual. After that, the atoms that
match the residual best will be selected. The optimization is guaranteed by
normalizing the atomic set recursively. On the premise that the sparsity K is
known and the measurement matrix satisfies the RIP criterion, the orthogonal
matching tracking algorithm for signal recovery is regularized to reduce the
number of iterations.

The Bernoulli matrix, part Hadamard matrix, Gaussian matrix, Toeplitz
matrix, random sparse matrix, circulant Matrix, and QC-LDPC measurement
matrix are selected for the simulating experiments, and the recovered Lena
images by different measurement matrices are shown in Figure 2.

It can be seen from Figure 2 that the recovered image of Lena by different
measurement matrices. Due to the subjectivity of human eye observation, the
recovered quality of image can be objectively evaluated through four indexes
of PSNR, SSIM, NMSE and Runtime, in order to analyze the recovered quality
more objectively.

PSNR (peak signal-to-noise ratio) is defined as

PSNR = 10 log
Q2 ×M ×N∑M

i=1

∑N
j=1[g

′(i, j)− g(i, j)]
(dB) (16)

WhereQ represents the grayscale level of the quantization, g(i, j) is taken
as the original image, and g′(i, j) is reconstructed image.M andN represents
the length and width of the image respectively.

SSIM (structural similarity index) is an index for the similarity of two
images, expressed by the following formula

SSIM (x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2x + µ2y + c1)(σ2x + σ2y + c2)
(17)

where x and y are the two images with similar structures, µx is the mean of
x, σ2x is the variance of x, σ2y is the variance of y, and σxy is the covariance of
x and y. c1 and c2are constants used to maintain stability. c1 = (k1L)2,c2 =
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a) Original Image  b) Image of Bernoulli Matrix 

c) Image of Part Hadamard Matrix  d) Image of Gauss Matrix 

e) Image of Toeplitz Matrix  f) Image of Sparse Random Matrix 

g) Image of Circulant Matrix  h) Image of QC-LDPC Matrix 

Figure 2 Lena images recovered by different measurement matrices.
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(a) Contrast of PSNR 
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Figure 3 Continued
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(c) Contrast of NMSE 
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Figure 3 Comparison of parameters by different matrices.
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(k2L)2, L represents the dynamic range of pixel values. k1 = 0.01, k2 =
0.03.

NMSE (normalized mean square error) is defined as

NMSE =

∑M
i=1

∑N
j=1[g

′(i, j)− g(i, j)]2∑M
i=1

∑N
j=1[g(i, j)]2

(18)

where g(i, j) is taken as the original image, and g′(i, j) is reconstructed
image. M and N represents the length and width of the image respectively.

It is shown in Figure 3 the comparison parameters of PSNR, SSIM, NMSE
and Runtime in image recovery of Bernoulli matrix, circulant Matrix, Gaus-
sian matrix, part Hadamard matrix, random sparse matrix, Toeplitz matrix
and QC-LDPC measurement matrix. According to the data in Figure 3, the
image recovered by QC-LDPC measurement matrix has the best effect, with
PSNR at 33.7301dB, structural similarity at 0.9219 and NMSE at 0.0024.
In second, the part Hadamard matrix PSNR was 33.2064 dB, the structural
similarity was 0.9128, and the NMSE was 0.0025. This is mainly because
the two kinds of measurement matrices have good orthogonality in structure,
and the finite geometry structure QC-LDPC matrix designed in this paper
eliminates the short girth and reduces the complexity of coding and decoding
by optimizing the design of the basis matrix.

On the other hand, through the comparison of Runtime, it is found
that QC-LDPC matrix spends the least time in image recovery, Runtime
is 7.9955s. The second is gauss matrix, and the Runtime is 8.2426s. This
is mainly because the measurement matrix is a very sparse matrix with
low density, and has the structural characteristics of cyclic or quasi-cyclic,
which greatly improves the operation speed. However, the Gaussian matrix
is irrelevant to the vector elements of most orthogonal sparse basis. The
measurement matrix can satisfy the RIP criterion with high probability and
recover the K sparse signal with length N from the high probability of M
measured values. In addition, the shift register can be used in the hardware
implementation of QC-LDPC matrix, which can save the storage space of
check matrix and meet the demand of real-time transmission.

4 Conclusion

The compressed sensing theory solves the problem of bandwidth in tradi-
tional sampling. The measurement matrix with good performance projects
the signal into the low dimensional space, and the measured value contains as
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much important information of the original signal as possible, so as to ensure
the accurate recovery of the original signal. In view of the problems such as
large data transmission and difficult hardware implementation in using tradi-
tional measurement matrix for data compression, it is constructed QC-LDPC
codes by cyclic shift structure of the basis matrix, which can eliminate the
short girth of 4 in Tanner graph and improve decoding threshold through the
optimization design of basis matrix structure. Because of its characteristics
of cycle or quasi cycle, it can not only save the check matrix of storage space
but also reduce the decoding complexity, so as to be suitable for application
in integrated circuits. It can be realized by simple shift register in coding, so
it can save cost in practice. Through the comparison of simulation data of
image recovery, it is found that the recovery results of QC-LDPC matrix are
better than other traditional measurement matrices by using the same OMP
algorithm, and there are good improvements in the aspects of PSNR, SSIM
and NMSE. At the same time, through the comparison of running time, it is
found that the image recovery with QC-LDPC matrix takes less time, which
is conducive to the application of compressed sensing algorithm in real-time
data transmission.
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