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Abstract

In this study, an automatic end-to-end speech recognition system based
on hybrid CTC-attention network for Korean language is proposed. Deep
neural network/hidden Markov model (DNN/HMM)-based speech recogni-
tion system has driven dramatic improvement in this area. However, it is
difficult for non-experts to develop speech recognition for new applications.
End-to-end approaches have simplified speech recognition system into a
single-network architecture. These approaches can develop speech recogni-
tion system that does not require expert knowledge. In this paper, we propose
hybrid CTC-attention network as end-to-end speech recognition model for
Korean language. This model effectively utilizes a CTC objective function
during attention model training. This approach improves the performance
in terms of speech recognition accuracy as well as training speed. In most
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languages, end-to-end speech recognition uses characters as output labels.
However, for Korean, character-based end-to-end speech recognition is not
an efficient approach because Korean language has 11,172 possible numbers
of characters. The number is relatively large compared to other languages.
For example, English has 26 characters, and Japanese has 50 characters.
To address this problem, we utilize Korean 49 graphemes as output labels.
Experimental result shows 10.02% character error rate (CER) when 740
hours of Korean training data are used.

Keywords: End-to-End speech recognition, hybrid CTC-attention network,
Korean speech recognition.

1 Introduction

An automatic speech recognition (ASR) system is factorized into several
subtasks including acoustic, lexicon, and language model. Especially, deep
neural network/hidden Markov model (DNN/HMM)-based approach has
driven substantial improvements in acoustic model [1]. In this system, the
acoustic model, language model, and lexicon model are developed separately
and integrated into a weighted finite state transducer (WFST) for efficient
decoding. In this integration, it is difficult for non-experts to develop ASR
system for new applications and languages.

The goal of end-to-end approach has simplified the above system into
a single-network architecture within a deep learning framework in order
to address the above difficulty. This approach successfully leads to more
optimised ASR system compared with DNN/HMM-based approach [2].

There are two types of end-to-end ASR architecture: connectionist
temporal classification (CTC) and encoder–decoder network with attention
mechanism. CTC model is a sequence training model that monotonically
maps an input sequence to an output sequence of shorter length [3]. CTC
uses forward–backward algorithm to solve sequential problems efficiently.
The key difference of CTC compared to DNN–HMM architecture is that the
output labels can be phonemes or characters directly instead of HMM states.

Encoder–decoder network with attention mechanism is also known as
attention model [4]. The attention model has been applied in machine trans-
lation [4], image captioning [5], and speech recognition [6, 7]. This model
learns stacked recurrent layers from audio features sequence to output label
directly. The attention model transforms input sequence of variable length
into fixed dimensional vector using the encoder, and recovers output labels
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from the fixed dimensional vector using the decoder. However, the attention
model allows non-sequential alignments, although the alignments in speech
recognition are monotonic.

To solve this problem, a hybrid CTC-attention model is proposed in [8].
The hybrid CTC-attention model effectively utilizes a CTC objective function
during attention model training. CTC in this hybrid model encourages align-
ments to be monotonic. This hybrid model is trained by objective functions of
CTC and attention simultaneously. This approach improves the performance
in terms of recognition accuracy as well as training speed [8].

The parameters of end-to-end model extremely depend on language
characteristics because the number of characters differs from language to
language. For example, end-to-end speech recognition of English has 26
output labels representing each English character [9] and that of Japanese
has 50 output labels representing each Japanese Kana symbol [10]. English
and Japanese end-to-end speech recognition systems achieved significantly
high recognition accuracy, thereby reducing the difference with the hybrid
DNN–HMM architecture. However, end-to-end speech recognition of Chi-
nese has approximately 5,000 output labels of character symbols [11]. This
leads to a two-fold error rate in terms of character error rate compared with
DNN–HMM-based methods [11].

There are 11,172 character symbols in Korean end-to-end speech recogni-
tion. This is an inefficient method in end-to-end speech recognition since the
model has many parameters to predict compared to other languages. There
were previous studies on the straightforward way, which uses all 11,172
characters, but the results were poor compared to the existing studies [9, 12].

This performance degradation problem is caused by the linguistic charac-
teristic of Korean language. Korean syllables are made up of a combination
of three types of graphemes, namely, the Cho-sung (initial consonant), Jung-
sung (vowel), and Jong-sung (final consonant). There are 19 Cho-sungs,
21 Jung-sungs, and 28 Jong-sungs, while the Jong-sungs use all the 19
graphemes of the Cho-sungs. Because of this, the Korean language contains
11,172 syllables that consist of two or three graphemes [13, 14]. For example,
in English, the word “car” is represented by the three graphemes ‘c,’ ‘a,’
and ‘r.’ Each syllable has one grapheme. Korean is a syllabic language
type, where the word “ ” is represented by five graphemes, namely,
‘ ,’ ‘ ,’ ‘ ,’ ‘ ,’ and ‘�,’ despite the fact that it consists of only two
characters, namely ‘ ,’ and ‘ .’

In this paper, we propose an efficient Korean speech recognition system
that has only 49 individual graphemes, compared with the technology that
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needs 11,172 kinds of syllables. To make this, we use a hybrid CTC-attention
model as Korean end-to-end speech recognition system that uses graphemes
as recognition units. We applied Korean graphemes as output unit to this
hybrid model and showed a performance improvement over the Korean
syllable-based end-to-end model.

This paper is organized as follows: Section 2 presents related stud-
ies about end-to-end structure and recognition unit. Section 3 describes
the hybrid CTC-attention-based, end-to-end speech recognition architecture.
Section 4 describes the method used to compose and decompose Korean lan-
guage between syllables and graphemes. Section 5 explains the experiments.
Section 6 concludes the study.

2 Related Studies

The end-to-end speech recognition system categorizes three different meth-
ods. The first method uses CTC [3, 11, 15]. CTC is proposed as an approach
to extract phoneme sequences from speech features without forced alignment.
This comprises a necessary method in the DNN–HMM model. CTC is a kind
of loss function as a neural network’s output layer. CTC does not require
forced alignment because CTC extracts phoneme sequences from the speech
frames. The HMM-based model’s auto segmentation method includes iden-
tifying the best route according to the time sequence of phonemes. However,
CTC results in a lower performance because each frame of the speech features
cannot present the entire quality of the phone [16].

The second method is the attention model. This model is a sequence-
to-sequence model that represents inputs/outputs as data series [4, 17, 18].
The attention model is a kind of encoder and decoder model, and is one
of the most famous kinds of sequence-to-sequence models. Given that this
model type requires the learning of information, it uses the recursive neural
network (RNN) model [17]. In attention network, the energy weights based
on the output vector generated by the encoder during the decoding and joins
results of two networks. Its system depends on the consideration of the output
value, which is significant among the outputs of the encoder. Compared with
other end-to-end models, the model performance is measured similar to the
DNN–HMM in a specific domain. However, the model is not utilized in
streaming. the sequences must be used into a one network in case of this
model [19].

The RNN transducer is the third method [19, 20]. This method uses
both sequence training and speech-to-word transform at the same time with
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two RNNs. The RNN transducer comprises of a transcription network that
transforms speech features to word sequences and a prediction network
learned by the language sequences. According to the number of input frames,
the number of input nodes in the transcription network using RNN generates
transcription vector sequences. The prediction RNN has the maximum num-
ber of input labels as input nodes. This model generates the same number
of vector sequences. The output vectors of two RNNs trained at the same
time. The two RNNs’ output vectors trained at the same time. In this model,
fewer computations are required during the decoding compared to CTC,
which considers all the possible outcomes. This achieves a precise alignment
based on training data. However, a large amount of training data and time is
required for computing and the complicated network and limited input size
make it unsuitable for sentence unit-based speech recognition [19]. Among
the three methods, the CTC method is the most efficient convergence when
the CTC model is learnt with phoneme-unit outputs [16]. In comparison to
the attention model, the CTC model is simpler as it only computes frame
unit outputs, and a relatively smaller number of training data is required
for convergence. Additionally, it shows superior compatibility, especially
the ability to use weighted finite-state transducer (WFST) decoding like
the DNN–HMM-based model. The method that yields the best performance
is the attention network–based method. This model, which uses the entire
sequence, has the highest accuracy among the end-to-end systems. Recently,
a bidirectional long short-term memory (LSTM) was used for bidirectional
training on a sequence. This resulted in an improved accuracy. Additionally, a
hybrid model that combined the CTC and the attention network was also been
proposed. It combined the advantages of each model and exhibited better
performance [16].

3 Hybrid CTC-Attention Architecture

This section describes the hybrid CTC-attention network for the Korean end-
to-end model in speech recognition. Figure 1 illustrates the structure of the
network. The input feature sequence is denoted by x, and its transcription
by y. The frame length of each element of x has 20 ms (milliseconds).
However, the output sequence length is typically shorter than that of x. In
encoder–decoder model, the encoder is shared to CTC and attention. The
encoder output vector h is used to create the attention weight vector a
and the context vector c. The encoder uses a bidirectional LSTM network
structure [8].
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Figure 1 Hybrid connectionist temporal classification (CTC) and attention-based speech
recognition network: the input x is transformed the encoder vector h as the output by shared
encoder. The shared encoder is trained both the CTC model and the attention model. The CTC
and the attention generate the probability distribution for the output y.

3.1 Shared Encoder

In speech recognition problems, the number of inputs is much larger than
the number of outputs. A speech signal is represented by multiple vec-
tor sequences with the use of feature extractors, such as perception linear
prediction (PLP) and Mel-frequency cepstral coefficients (MFCCs). Each
vector sequence normally has a length, which spans 20–25 ms approximately.
For example, a phoneme [t] has 16–25 features on average. The encoder
transforms the speech feature vector x to the encoder vector h to compress
the input vector. The encoder vector h is used as the input based on the
decoder’s CTC criterion known as “Attention decoders.” In this study, we
used bidirectional LSTM–RNN as the encoder network [18]. A LSTM–RNN
network is used to solve sequential problems in deep learning tasks. Because
the network refers to many more inputs to generate encoder vectors effi-
ciently, this recurrent network not only refers to the next node weight but also
to the previous. Figure 2 shows a bidirectional LSTM. In this case, x1, x2,
and xt are inputs from the speech signal, h1, h2, and ht are from forward
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Figure 2 Bidirectional long short-term memory (LSTM) architecture proposed in this study.

LSTM layers, and bh1, bh2, and bht are from backward LSTM layers, while
c1, c2, ct, bc1, bc2, bct are from memory cell values in each LSTM layer.

3.2 Connectionist Temporal Classification (CTC)

In CTC, an output is produced for each input x. In Korean, a number of frames
generate just one pronunciation sequence. To handle this, blank symbols are
used to determine the boundary of the output in CTC. CTC is applied to target
the encoder output vector h, which is the encoder network’s output [6].

y∗ = argmax yP (y|h) (1)

(1) is the CTC basic formula. y∗ is the closest to the y for the encoder output
h. P(y|h) is illustrated as indicated in (2).

P(y|h) ≈
T∏
t=1

P (yt|x) =
T∏
t=1

qt(yt) (2)

CTC is a loss function on the network’s output layer and find for an output
sequence using (2). qt(yt) is the softmax activation value of yt of the encoder
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Figure 3 CTC networks for speech recognition used in this study. In this case, e represents
a blank symbol.

layer q at time t. The CTC loss function is shown in formula (3).

LCTC = −lnP(y|x) = −ln
T∑
t=0

(αtβt)/qt (3)

The loss function of CTC is calculated with the forward and backward
algorithm. The forward value α represents the sum of all routes from 0 to
t for CTC training. The backward value β represents the sum of the ways
from time T to t when the forward value exists. Figure 3 represents the CTC
algorithm. The first stage is the prediction step. The deep neural network
(ex > feed-forward neural network (FFNN), RNN) outputs a sequence of
syllable or a phoneme. The second step is the alignment step. A blank symbol
is dropped and a repeated character is merged to ensure alignment. Finally,
the merged character or phoneme is assigned as the output.

3.3 Attention Decoder

The RNN–LSTM-based attention decoder takes the shared encoder output h
and transforms it into the attention weight from the previous time in decoder
to train the model to maximize the output parameter.

Figure 4 shows attention decoder architecture. In this case, h1 . . . h5 are
the encoder vectors given by the shared encoder. Additionally, c1, c2, and c3
represent context vectors as the decoder’s input. The context vectors guide the
decoder to identify the encoder vectors that deserve to pay attention to solve
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Figure 4 Decoder network with an attention mechanism as used in this study.

the problem. Additionally, y is a sequence of characters used as the output.

P (y|h) =
T∏

u=1

P (yu|h, y1:u−1) (4)

(4) represents the attention-based decoder. The output is the multiplication of
the probabilities for the encoder output h and decoder output y1:u−1 of the
previous point for time step u.

Cu =
∑
l

(au,lhl) (5)

For uth step in (4), decoder model generates a context vector Cu, as
in (5). au,l represents the attention weight vector at each time. This study
uses the location attention method to compute attention weight. The location
algorithm computes the attention weight using the RNN decoder weight, the
encoder output, and the previous time point [18].

au,l = softmax (eu,l) (6)

eu,l = ωT tanh(Wsu−1 + V hl +Mfu,l + b) (7)

Tfu = F ∗ au−1 (8)
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(6), (7), and (8) represent the attention weight’s computation. The attention
energy is represented by e. As shown in (7), it is computed with fu, the
outcome of the one-dimensional convolutional parameter F on the value
obtained from the previous time’s attention weight. The trainable weight
matrices are W, V, M, b, and ω. W, V, and M, and b denotes the bias.

su = LSTM (su−1, yu−1, cu) (9)

yu = FFNN (su, cu) (10)

(9) receives as inputs yu−1 the decoder’s output at the u–1 time, the context
vectors cu and su−1, and the LSTM state at the u–1 time to generate cu.
The cu is fed as inputs to generate the output yu. In attention decoder, the
beginning of the sentence is defined as a start of sequence (SOS) and the end
of a sentence is defined as an end-of-sequence (EOS) symbol [16].

Loss = λLossctc + (1− λ)Lossattention. (11)

Equation (11) defines the loss function in the hybrid model, and λ is a
non-trainable parameter value in the range between 0 and 1.

Figure 5 shows the hybrid CTC-attention architecture, whereby xt repre-
sents a sequence of input speech features, and ht is the encoder vector from
the shared encoder. The final output yt is the weighted sum of the output
probabilities from CTC and attention.

3.4 Hybrid Model

The CTC-attention hybrid network is proposed to handle the weaknesses
of the two models and improve their accuracy [8]. The CTC and attention
loss functions reduce errors from network training. In speech recognition, a
language model is required to improve the performance. CTC cannot read
the left and right context of input frame given that the CTC results for each
speech frame. The attention network, which learns the left and right contexts
as input, solves this problem in CTC. Moreover, the attention model does
not require an alignment process because the attention model is trained on an
entire speech signal at the same time. Therefore, the attention model is trained
without information of alignment for input and output sequences. This lowers
the accuracy of the speech recognition results. The problem would be solved
by using the CTC, which generates an output for speech input [16].
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Figure 5 Hybrid CTC-attention architecture.

4 Korean Graphemes

There are graphemes, phonemes, morphemes, syllables, and words in Korean
recognition units. The end-to-end speech recognition models generate the
recognition units’ probability as output. The recognition units can change
the number of parameters to update. Syllable-based units are the most widely
used ones in DNN–HMM-based acoustic model. During decoding process,
the model converts phonemes as inputs into word, and generates results
with language model. However, word and morpheme units are not utilized
in end-to-end speech recognition model. There are approximately more than
200,000 vocabularies and morphemes; however, this is an excessive number.
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Table 1 An example of a split Korean sentence “  .” Symbol ‘/’: recognition
boundary, symbol ‘ ’: space

Unit Split Sequence of Token
Word  / . 
Morpheme  /  / _/  /  /  /  
Syllable  /  /  / _/  /  /  
Grapheme  /  /  /  /  /  /  /  / _ /  /  /  /  /  /  / 

Moreover, the out-of-vocabulary (OOV) problem is caused by the number of
recognition units [13].

Syllable-based recognition has relatively fewer dictionaries compared
with word or morpheme. For example, English and Japanese have 26 char-
acters and 50 kanas respectively. However, in case of Korean, there are
11,172 numbers of possible syllables. Moreover, there are about 8,000
syllables used in Chinese. This number of syllables is inappropriate for soft-
max function in end-to-end speech recognition. In case of these languages,
phoneme- and grapheme-based recognitions are appropriate for end-to-end
speech recognition. The Korean grapheme has 49 numbers of graphemes.
However, grapheme-based units require a decoding to sentence. To split
syllables to graphemes, we used Unicode Korean. The Unicode is one of
the most commonly used writing systems worldwide for representing text.
In this study, the 8-bit Unicode transformation format (UTF-8) is capable of
encoding all 1,112,064 characters and is used to represent text [27]. Unicode
Korean begins with the AC0016 hexadecimal. One perfect Korean syllable is
calculated like (12).

K = ((C ∗ 21) + V ) ∗ 28 + J +AC0016 (12)

where K shows a Korean syllable, C denotes the Cho-sung (initial consonant),
V denotes the Jung-sung (vowel), and J represents the Jong-sung (final
consonant). Following (12), each position of grapheme can be calculated as
follows.

C = ((x−AC0016)/28))/21 + 110016 (13)

V = ((x−AC0016)/28))%21 + 116116 (14)

J = (x−AC0016)%28)%28 + 11A816 − 1 (15)

where x is a target Korean syllable. The hexadecimals at the end represent the
first Unicode of each grapheme.
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5 Experiments

5.1 Datasets

In this section, the speech recognition corpora were described to verify the
proposed model. A total of 740 hours of audio data were compiled by
mixing white noise from a quiet office environment with 320 hours of Korean
dialogue data and adding these to dialogue recorded on mobile phones.

Table 2 represents the corpora used in this study. Additionally, we used
data augmentation to improve the performance of deep neural networks in
the domain of speech recognition. The data augmentation we used in this
study involved the addition of background noise to the original speech. The
background noise was from Soundsnap [21]. Noise signals from a cafe, bus,
bus stop, train, restaurant, department store, and car noise, were used.

5.2 Experimental Setup

The End-to-End speech processing toolkit (ESPnet) is used to build
speech recognition model [22]. External toolkits, namely Chainer [23] and
Pytorch [24], were used for training and decoding, whereas Kaldi was used
for feature extraction and data structures. Rescoring factors, such as language
model and pronunciation dictionaries were not used to measure just the
performance of end-to-end speech recognition model. The shared encoder
consists of bidirectional RNN with eight hidden layers, which had 320 nodes
each. 320 nodes mean that input frame length was 3 seconds. The attention
decoder consists of one layer of unidirectional RNN–LSTM and 49 output
nodes, i.e., the number of possible onsets, nuclei, and codas. 83 speech
features were used, with delta, pitch, and pitch information added to the 80
filterbank probability of the voice (PoV) information [25]. The error rate of
the model was measured with the grapheme error rate (GER) based on the
1,000 sentences of the test dataset. These 1,000 sentences were extracted from
SiTEC’s reading DB 02 corpus.

Table 2 Corpora used in this study
Training Corpus Number of Utterances Hours
ETRI Korean reading DB 100,000 277.78
SiTEC Korean reading DB 01 20,806 57.79
Korean mobile assistant DB 92,874 100.00
Test corpus Number of utterances Hours
SiTEC Korean reading DB 02 [partial] 1,000 2.78
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Table 3 Experimental results obtained from each tested model (GER: grapheme error rate,
and SER: syllable error rate)

System Token GER (%) CER (%)
Hybrid CTC-attention Grapheme 4.1 10.02
Hybrid CTC-attention Character – 70.5
CTC Grapheme 4.4 18.23
Attention Grapheme 5.2 10.11

5.3 Experimental Results

Table 3 shows that the proposed hybrid CTC-attention model outperformed
both the CTC and attention models. They also show that the grapheme-based
approach yields a meaningful result. Note that the best results were achieved
with a hybrid model. A Korean syllable-level hybrid CTC-attention model
was used, and the results yielded a character error rate (CER) of 70.5%.
This suggests that the decision of recognition units had a great impact on
the performance of speech recognition. The CTC model yielded a grapheme
error rate (GER) of 4.4% and a CER of 18.23%. The CTC, which generated
phonemes for each chunk, had a high accuracy in the grapheme unit, but
yielded a somewhat lower performance in the entire context. However, the
attention model yielded a GER of 5.2% and a CER of 10.11%. Compared
with the CTC, the attention network yielded a better performance regarding
CER compared with the CTC model.

5.4 Discussion

In this study, most of the speech recognition errors occurred at which the pro-
nunciations differed from the words (e.g., “ ” is spoken as “ ”
when vocalized). Phoneme-based recognition units can decrease the number
of these errors. However, this would require an additional procedure for
reconverting phonemes into words. Furthermore, when the same syllable
has different pronunciations in the onset and coda, recognition errors would
occur. For example, ‘ ’ is pronounced as [s] as an onset but is pronounced as
[t] as a coda. If recognition units were determined, differentiating the onsets
and codas would decrease errors.

6 Conclusion

We have introduced a method for grapheme-based end-to-end speech recog-
nition system using hybrid CTC-attention network. The method fits all
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end-to-end speech recognition system of Korean. This method uses 49 kinds
of graphemes in Korean as the output unit, and shows higher performance
compared to the end-to-end Korean speech recognizer using 11,172 syllables.
Experimental results are measured to absolute 10.02% syllable error rate.
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