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Abstract

The Best-worst multi-criteria decision-making method can determine optimal
weight value of each criteria. It uses two vectors for pairwise comparisons
in multi-criteria decision-making problem. This paper improves the original
method from the perspective of robust optimization. Four robust counterpart
constraints instead of two linear constraints in original optimization model
are proposed. The decision-making problem can divide into full consistent
and non-full consistent problems by classifying parameter value. We can
achieve a unique set of interval solution in full consistent decision-making
problem. Non-full consistent problem can result in multiple sets of optimal
interval solution. The result which we get from this method is more effec-
tive than the original method. Each criterion can achieve optimal weight
interval value. Then we take quantile value of each interval as optimal
weight. This is effectively illustrated in the numerical test at the end of the
paper.
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1 Introduction

Multi-criteria decision-making is a problem which we need to resolve in our
daily life. For any choice, we need to judge and decide according to multi-
criteria. For logistic enterprise, these criteria need to be considered when
choosing a suitable warehouse location in a region include warehouse area,
rent, transportation and surrounding environment, etc. For entrepreneur need
to consider some criteria include rent, area, office environment, transporta-
tion and commercial facilities around the location when choosing an office
location in the early stage. Nowadays, with the emergence of many funds and
financial products, people often choose the right way to invest their money,
and these select criteria generally include the principal amount, interest rate
and investment cycle, etc. Kumar et al. [1] proposes a method to resolve the
ongoing urban renewal in India, this method considers 7 criteria and 27 sub-
criteria from the literature about social technical. Li et al. [2] proposes a
method which uses hierarchy process and VIKOR optimization to resolve
decision-making problem from the four categories electric, gas, methanol
and ethanol vehicles. Guy De Tré [3] introduces a novel multi-dimensional
approach for data quality assessment in multi-criteria decision-making and
supporting the computation of associated confidence degrees. Gou et al. [4]
focus on some distance and similarity measures of double hierarchy hesitant
fuzzy linguistic elements (DHFLEs) and double hierarchy HFLTSs from
different angles. It develops a method to deal with multi-criteria decision-
making (MCDM) problem based on these distance and similarity measures.
Thus, many scholars have studied the multi-criteria decision-making prob-
lem and put forward many decision-making methods. In these methods, the
process of multi-criteria decision-making mainly is divided into two stages:
rank and select. Scholars mainly focus on ranking stage in their research,
and the select stage generally is choosing the best option according to the
order from ranking stage. In ranking stage, we need to order all options
under multi-criteria. Thus, how to assign the weight value of each criterion is
an importance procedure before decision-making. In previous studies, many
decision-making methods only focus on the rank stage, and the value of
weight is determined by decision maker at random. Therefore, some scholars
also have carried out research on how to assign weight values scientifically,
and proposed the best-worst multi-criteria decision-making method.

Jafar et al. [5] proposes the best-worst multi-criteria decision-making
method in 2015. It calculates the optimal weight of each criterion by com-
paring two vectors in pairwise. The most important criteria is compared with
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other criteria. The least important ones is compared with other criteria. The
weight value of each criterion can be obtained by considering two constraints
at the same time. So, the weight value which obtained from this method is
more reasonable. Mou et al. [6] propose an intuitionistic fuzzy multiplicative
best-worst method (IFMBWM) with intuitionistic fuzzy multiplicative pref-
erence relations (IFMPRs) for multi-criteria group decision making. Guo and
Zhao [7] use the best-worst method (BWM) under the fuzzy environment,
which considers the reference comparison for the best criterion and the worst
criterion described by triangular fuzzy numbers. Thus, this method has been
applied by many scholars in multi-criteria decision-making field. However,
few scholars have studied this method more deeply. In this method, the
relative preference value between criteria is a fixed value given by decision
maker, but the relative preference value between two same criteria is usually
different for many decision makers. For example, we need to judge between
style and price when buy a coat. The relative preference value between
these two criteria will be different for different people. So, when we can
express the relative preference value in the form of interval, then we can
calculate all weight values under different relative preference value. All the
possible weights of each criterion can be considered in the later decision
process. In this method, the optimal weight value is selected more convincing.
The weight value is not reasonable when the relative preference value is
fixed. Therefore, how to change the fixed relative preference into uncertain
environment becomes an important problem. Robust optimization is a method
which can resolve this problem very well.

Robust optimization, the study of uncertain problem, has been well
studied. Many scholars have studied how to transform the target problem
into a robust optimization problem, the expression of uncertain parameter
and the solution method of uncertain model. Martin et al. [8] considers box-
constrained robust optimization problems with implementation uncertainty.
The solution which a decision maker wants to implement may become
perturbed in this setting. Kaedi et al. [9] apply probabilistic robustness
evaluation to the Bayesian optimization algorithm (BOA) with a view to
improve its computational time. Marla et al. [10] study different classes
of model to achieve robust airline scheduling solution, with focus on the
aircraft routing problem. Thus, robust optimization has been well studied
and there are many constraint forms to deal with uncertainty problem. The
parameter in the best-worst multi-criteria decision-making method can be
rewritten through different robust optimization constraint forms, the original
model can be transformed into the corresponding robust equivalent form,
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then the corresponding value range can be obtained by resolving robust
equivalent model. Robust optimization can transform uncertain problems into
deterministic ones which has practical significance for many problems.

In this paper, we use box-constraint and ellipsoidal-constraint to express
relative preference value. Through these two form constraints, relative pref-
erences value become uncertain. Through taking different relative preference
value into model, we can get different weight values by resolving model.
Each criterion can get a weight interval which includes all possible cases.
Compared with the case of fixed relative preference value, the range of weight
value can be obtained in the optimized model. According to the experimental
analysis, when the relative preference value is fixed in the original method,
the optimal weight value obtained is only an arbitrary point in the feasible
domain. It is not the optimal weight value. When we use the quantile value
of interval as weight value, the order of weight is obtained different from
original data. We can see the result from experimental analysis, the order of
weight is better than original ones. Next, we introduce the main structure of
this paper.

In Section 2, the original best-worst multi-criteria decision-making
method has been introduced in detail. In Section 3, we improve the original
method by robust optimization which use box-constraint and ellipsoidal-
constraint. In Section 4, we put forward the concept of weight quantile which
is taking different quantile values of weight interval. In Section 5, we use
three groups data to carry out comparative experiments between original
method and optimization method respectively.

2 Best-Worst Multi-criteria Decision-making Method

Next, we will describe the method in detail how to give weights during the
decision-making process [11].

This method can achieve the optimal weight of each criteria. The Table 1
illustrates all steps of this method. The preference value should be determined
in Step 3 and Step 4 before decision-making. The best-worst multi-criteria
decision-making method can be translated to the next mode l.
min ξ

s.t.

∣∣∣∣wBwj − pBj
∣∣∣∣ ≤ ξ, for all j
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Table 1 Best-worst multi-criteria decision-making method
Step 1. Determine multi-criteria during decision process.

Step 2. Choose the best and worst criteria from multi-criteria.

Step 3. Determine the preference of the best criterion over others criteria, using a number
between 1 and 9 to represent the preference value. The result of best-to-others vector would
be: PB = (PB1, PB2, . . . , PBn),
Where aBj indicates the preference of the best criteria B over criteria j.

Step 4. Determine the preference of all the criteria over the worst criteria, using a number
between 1 and 9 to represent the preference value. The result others-to-worst vector would
be: Pw = (P1w, P2w, . . . , Pmw),
Where ajW indicates the preference of the criteria j over the worst criteria w.

Step 5. Find the optimal weight (w1, w2, . . . , wn) and ξ.

∣∣∣∣ wjww − pjw
∣∣∣∣ ≤ ξ, for all j∑

j

wj = 1, wj ≥ 0, for all j (1)

Constraints in model (1) also can be transformed into the follow linear model:
min ξ

s.t. |wB − pBjwj | ≤ ξwj , for all j

|wj − pjwww| ≤ ξww, for all j∑
j

wj = 1, wj ≥ 0, for all j (2)

Due to all the constraints in model (2) are linear, thus when the value of
ξ is large enough, the solution space will be non-empty. The optimal weights
(w1, w2, . . . , wn) and ξ are achieved.

3 Robust Optimization

In the model (1) pBj and pjw can be determined by decision maker, so it
is known before calculation. However, the preference relationship between
two criteria always cannot express in an exact value but within a range
of variation. For example, we usually consider multi-criteria includes style,
color, performance, size and price when buy a phone. For most people, the
performance should be the most important decision criterion, and the color
of phone is the least important reference criterion. When we compare other
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criteria with performance and color for giving relative preference values,
size and style will be considered more of wealth. Price will become the
second important criterion of buyer with limited capital. When the preference
value is fixed, the weight value is not optimal by the model at some time.
So, if we can use box-constraint and ellipsoidal-constraint to express the
relative preference value, then the interval of relative preference value can
be achieved. This preference interval can express the degree of preference
among all the criteria very well, so that the weight value is more accurate.

3.1 Uncertainty in Relative Preference

For relative preference, we want to change it to uncertainty. We use box
uncertainty and ellipsoidal uncertainty to describe relative preference value.

Definition 1. Consider the case of interval uncertainty, where Z is a box.
We can normalize the situation by describe that Z = Box1 = {ς ∈ RL,
‖ς ∞ ≤ 1}.

Definition 2. Consider the case of ellipsoidal uncertainty where Z is an
ellipsoid. We can normalize the situation by describe that Z = BallΩ =
{ς ∈ RL, ‖ς‖2 ≤ Ω}.

Definitions 1 and 2 introduce the forms of box constraint and ellipsoidal
constraint respectively. In this paper, we use box constraint and ellipsoidal
constraint to express the relative preference value:
pBj ∈ [1, I + 1]

pBj = p0
Bj +

I∑
i=1

lipiBjz = {l ∈ Rl, ‖l‖∞ ≤ 1} (3)

pjw ∈ [1, I + 1]

Pjw = P 0
jw +

I∑
i=1

ciP ijw, z = {c ∈ RI , ‖c‖∞ ≤ 1} (4)

PBj ∈ [1, I + 1]

PBj = P 0
Bj +

I∑
i=1

liP iBj , z = {l ∈ RI , ‖l‖2 ≤ 1} (5)
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Pjw ∈ [1, I + 1]

Pjw = P 0
jw +

I∑
i=1

ciP ijw, z = {c ∈ RI , ‖c‖2 ≤ 1} (6)

The value of the pBj and pjw are from 1 to I + 1. Both
(P 0

Bj , P
1
Bj , . . . , P

I
Bj) and (P 0

jw, P
1
jw, . . . , P

I
jw) are I + 1 bases, model (3)–

(6) are linear combination of piBj and pijw, i = 0, . . . , I respectively. For the
sake of calculate, each base can equal to 1 or 0. In models (3) and (4), we use
box-constraint to express relative preference. li and ci are coefficient of bases,
0 ≤ li ≤ 10 ≤ ci ≤ 1, l ∈ RIc ∈ RI and ‖l‖∞ ≤ 1, ‖c‖∞ ≤ 1. In the mod-
els (5) and (6), we use ellipsoidal-constraint to express relative preference. li

and ci are coefficient of bases, 0 ≤ li ≤ 1, 0 ≤ ci ≤ 1, l ∈ RI , c ∈ RI and
‖l‖2 ≤ 1, ‖c‖2 ≤ 1. We can get different preferences value by changing the
coefficient of Ibases. If we take all coefficient of bases value as 1, models
(3) and (4) can obtain maximun value of pBj and pjw. If all coefficient of
bases values as 0, models (3) and (4) can obtain minimum value of pBj and
pjw. However, all the I bases can not equal to 1 at same time, decision maker
can determine the number of bases equal to 1 by criterion. Through (3) and
(4) we can obtain an interval of pBj and pjw, (pLBj , p

H
Bj) and (pLjW , p

H
jW ). In

models (5) and (6), the coefficient conforms to 2-norm. So, we also can get
different coefficients into model to obtain different pBj and pjw. (pLjW , p

H
jW )

and (pLBj , p
H
Bj) also can be obtained. (pLBj , p

H
Bj) can seem as the preference

range of best criteria and the j criteria. (pLjW , p
H
jW ) can seem as the preference

range of thejcriteria and worst criteria.

3.2 The Best-worst Multi-criteria Decision-making Method in
Box-constraint

In this section, we take the box-constraint of relative preference parameter
into model.

Definition 3. When we take the box constraint of relative preference into
original model, we call the new model as best-worst multi-criteria decision-
making box-constraint method.
min ξ

s.t.

∣∣∣∣∣wBwj − P 0
Bj −

I∑
i=1

lijP
i
Bj

∣∣∣∣∣ ≤ ξ, ‖l‖∞ ≤ 1, ∀j;
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jw −

I∑
i=1

cijP
i
jw

∣∣∣∣∣ ≤ ξ, ‖c‖∞ ≤ 1,∀j;

∑
wj = 1, wj ≥ 0 (7)

For the sake of calculation, we change the two uncertainty constraints
in model (7) into four inequality constraints, when each extreme case of a
constraint is true, and other case is also true. Therefore, the model (7) can
be rewritten as the following model (8) by maximizing the four inequality
constraints.
min ξ

s.t.max‖li‖∞≤1

∣∣∣∣∣
I∑
i=1

lijP
i
Bj

∣∣∣∣∣ ≤ ξ + P 0
Bj −

wB
wj

,∀j;

max‖li‖∞≤1

∣∣∣∣∣
I∑
i=1

lijP
i
Bj

∣∣∣∣∣ ≤ ξ − P 0
Bj +

wB
wj

,∀j;

max‖ci‖∞≤1

∣∣∣∣∣
I∑
i=1

cijP
i
jw

∣∣∣∣∣ ≤ ξ + P 0
jw −

wj
ww

, ∀j;

max‖ci‖∞≤1

∣∣∣∣∣
I∑
i=1

cijP
i
jw

∣∣∣∣∣ ≤ ξ − P 0
jw +

wj
ww

, ∀j;

∑
wj = 1, wj ≥ 0 (8)

The four constraints in model (8) can admit a representation by a system
of linear inequalities as follow:
min ξ

s.t.− ui ≤ lijP iBj ≤ ui, i = 1, . . . , I

wB
wj
− P 0

Bj −
I∑
i=1

ui ≤ ξ;

−ui ≤ lijP iBj ≤ ui, i = 1, . . . , I

−wB
wj

+ P 0
Bj +

I∑
i=1

ui ≤ ξ;
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−ui ≤ cijP ijw ≤ ui, i = 1, . . . , I

wj
ww
− P 0

jw −
I∑
i=1

ui ≤ ξ;

−ui ≤ cijP ijw ≤ ui, i = 1, . . . , I

− wj
ww

+ P 0
jw +

I∑
i=1

ui ≤ ξ∑
wj = 1, wj ≥ 0 (9)

The constraints in model (9) are the robust equivalent of the constraints
in model (5). By solving the model (9), we can obtain an optimal interval
(wLj , w

H
j ) of wj and ξ. Through n rounds calculate, we can get n intervals of

wj and ξ, j = 1, . . . , n. Through the model (5), we can get a set of weight
optimal intervals {(wL1 , wH1 ), (wL2 , w

H
2 ), . . . , (wLI , w

H
I )}, j ∈ [1, n] and ξ.

3.3 The Best-worst Multi-criteria Decision-making Method in
Ellipsoidal-constraint

In this section, we take the ellipsoidal-constraint of relative preference
parameter into model.

Definition 4. When we take the ellipsoidal-constraint of relative preference
into original model, we call the new model as best-worst multi-criteria
decision-making ellipsoidal -constraint method.
min ξ

s.t.

∣∣∣∣∣wBwj − P 0
Bj −

I∑
i=1

lijP
i
Bj

∣∣∣∣∣ ≤ ξ, ‖l‖2 ≤ 1, ∀j;

∣∣∣∣∣ wjww − P 0
jw −

I∑
i=1

cijP
i
jw

∣∣∣∣∣ ≤ ξ, ‖c‖2 ≤ 1, ∀j;

∑
wj = 1, wj ≥ 0 (10)

The constraints in model (10) is 2-norm less than 1, it is different from
model (7). It has more demands for coefficient value. In order to construct the
robust equivalence of the model, we transform the model into the following
models (11) and (12).
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min ξ

s.t. max‖li‖2≤1

∣∣∣∣∣
I∑
i=1

lijP
i
Bj

∣∣∣∣∣ ≤ ξ + P 0
Bj −

wB
wj

,∀j;

max‖li‖2≤1

∣∣∣∣∣
I∑
i=1

lijP
i
Bj

∣∣∣∣∣ ≤ ξ − P 0
Bj +

wB
wj

,∀j;

max‖ci‖2≤1

∣∣∣∣∣
I∑
i=1

cijP
i
jw

∣∣∣∣∣ ≤ ξ + P 0
jw −

wj
ww

, ∀j;

max‖ci‖2≤1

∣∣∣∣∣
I∑
i=1

cijP
i
jw

∣∣∣∣∣ ≤ ξ − P 0
jw +

wj
ww

, ∀j;

∑
wj = 1, wj ≥ 0 (11)

min ξ

s.t.
wB
wj
− P 0

Bj +

√√√√( I∑
i=1

lijP
i
Bj

)2

≤ ξ;

−wB
wj

+ P 0
Bj +

√√√√( I∑
i=1

lijP
i
Bj

)2

≤ ξ;

wj
ww
− P 0

jw +

√√√√( I∑
i=1

cijP
i
jw

)2

≤ ξ;

− wj
ww

+ P 0
jw +

√√√√( I∑
i=1

cijP
i
jw

)2

≤ ξ;

∑
wj = 1, wj ≥ 0 (12)

Models (11) and (12) are equivalent. Constraints in model (12) are convex
and conic quadratic inequality. Through this model we also can get weight
interval of all criteria.
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Table 2 Consistency Index (CI)
pBW 1 2 3 4 5 6 7 8 9
CI(max ξ) 0.0 0.4 1.0 1.6 2.3 3.0 3.7 4.5 5.2

4 Analysis of Non-full and Full Consistent Problems

Firstly, we illustrate the definition of consistency ratio, full consistent and
non-full consistent problems [11].

Definition 5. A comparison is full consistent when pBj × pjw = pBW , for
all j, where pBj , pjw and pBW are the preference of the best criterion over
the criterion j, the preference of criterion j over the worst criterion and the
preference of the best criterion over the worst criterion respectively.

Through the Table 2, we know the different value of pBW under
differentCI . The trend of this table is direct proportion.

Definition 6. The ratio of maximum values ξ (CI) and the optimal value ξ is
consistency ratio (CR). The formula as follow:

CR =
ξ

CI
(13)

CR = [0, 1], the value of CR closer to 0 show high consistent level. On the
contrary, closer to 1 mean less consistent. When we get ξ = 0, CR = 0 the
decision problem is full consistent problem. Since full consistent problem
ξ = 0, each constraints can transfer to equality constraints. Thus we known
that full consistent problems have 4n+1 equality constraints from model (5),
a set of linear constraints with n weight variables and 4n+ 1 constraints (4n
equality constraints +1 weights constraints), since the number of variables
is smaller than constraints, so we can obtain a set of unique interval weight
by solve the constraints in pairs. If ξ > 0, the problem is non-full consistent.
For non-full consistent problem (ξ > 0), the number of constraints is the
same as model (5). However, non-full consistent problems have 5n variables,
so if n = 1, the number of constraints are equal to the number of variables:
4n+1 = 5n, we also can get a unique interval result. Whenn > 1,the number
of constraints are less than the number of variables: 4n + 1 < 5n. Thus, we
can obtain multiple optimal interval solutions.

4.1 Analysis of Weight Interval

Next, we firstly introduce some definitions and operation rules of interval
number [11].
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Definition 7. A closed interval is an order pair in a bracket as:

A = [ai, as] = {x : ai ≤ x ≤ as, x ∈ R} (14)

Where ai and as are the infimum and supremum of A, respectively.

wj = [wLj , w
H
j ] = {x : wLj ≤ x ≤ wHj , x ∈ R} (15)

Where wLj and wHj are the lowest and highest limits of wj respectively.

Definition 8. Quantile weight (QW ) is the α quantile value of weight interval

QWα = (wi, wj)α (16)

where 0 < α < 1, (wi, wj)α is α quantile of weight interval.
The optimal value of wj can use α quantile (α can be 1

4 ,
1
2

3
4 ) of interval.

If we take all of the value wj 1
4wj

1
2wj

3
4 (wji is the αi value of wj interval)

as weight. When we use wji as center of interval, [wLj , w
H
j ] can transform to

wj = 〈wji, wl〉 = {x : wji − wl ≤ x ≤ wji + kwl, x ∈ R}. Where wl is the
width of wji and wLj , k is a parameter as follow:

k =


3
(
i = 1

4

)
1
(
i = 1

2

)
1
3

(
i = 3

4

) (17)

Then we can obtain the weights of all criteria. For full consistent problem
and a non-full consistent problem with one criterion, we can direct obtain
weight of all criteria. When non-full consistent problem with more criteria,
we will achieve a set of weight intervals

{(wL1
j , wH1

j ), (wL2
j , wH2

j ), . . . , (wLnj , wHnj )}, j = 1, . . . , n.

For this set of weight intervals, we can use α quantile for
all intervals within set, then the set can transfer to one interval
(w

1αj

j , w
2αj

j , . . . , w
nαj

j )j = 1
2 ,

1
4 ,

3
4 . We use α quantile for this interval again,

the weight of wj can be achieved.

5 Numerical Examples

Example 1. Firstly, we use the same data from [11]. Consider quality, price,
comfort, safety and style as five main criteria when we want to have a car.
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Figure 1 Optimal interval weights when using box-constraint.

Figure 2 The rank of criteria weight under different quantile.

Price is the best criterion and style is the worst criterion. According to these
criteria, we can determine the interval of the preference of best criterion to
other criteria and the preference of other criteria to the worst criterion by
using models (3)–(6), the first line is the result of using box-constraint, the
second line is the result of using ellipsoidal-constraint.

Then we can take the interval of preference into model (9). Through
solving the model (9) we can get the optimal interval of all criteriaw1 =
[0.1687, 0.2204], w2 = [0.4201, 0.4423], w3 = [0.0977, 0.1985], w4 =
[0.2001, 0.2781], w5 = [0.0502, 0.0733] and ξ = 0. Thus, it is a full
consistent problem, we can get only one set of weight interval.

In the Figure 1, The horizontal axis 1 to 5 are represented quality, price,
comfort, safety and style respectively. When we find each standard weight
interval, the raw data is only one of the values of the interval. The original
data is not the optimal weight value in the interval. As shown in the Figure 1,
it is more convincing when we take the quantile of the interval. We can have
an optimal weight of all criteria as follow Figure 2.

According to the Figure 2, the relative weight position of all criteria
can be seem. Price and style are the most important and the least criteria
respectively. The other criteria have a rank as quality = safety > comfort



1080 D. Qu et al.

Figure 3 Optimal interval weights when using ellipsoidal-constraint.

when we take the original method. If we use the new method, we can get a
rank as: safety > quality > comfort.

When we take the interval of relative preference in Table 3 into model
(12), we can get the optimal interval of weight through resolving the model
(12), all interval are the range of weight. All criteria can get the only interval
since the example is a full consistent problem.

w1 = [0.1233, 0.2194] , w2 = [0.3316, 0.4322] , w3 = [0.0732, 0.1354] ,

w4 = [0.1833, 0.2594] , w5 = [0.0321, 0.1344] and ξ= 0.

Then we can takeQW value as weight for each criterion, and get the rank
of all criteria in Figure 3.

As we can see from Figure 3, weight interval of each criteria can be
achieved. The weight which we can get by using origin method are arbitrarily
value in weight interval. So, it is not reasonable to take arbitrary value as
optimal weight value. The rank of all criteria is price > safety = quality
> comfort > style by original method. Safety and quality cannot be distin-
guished which is more important. But this problem can be resolve by using
improved method, five criteria can be rank as price > safety > quality >
comfort > style. It is rational for us take QW value as optimal weight. The
rank of all criteria is more effective that we can see from Figure 4.

Example 2. Firstly, we take the interval of box-constraint preference into
model (9), through solving the model (9) we can get ξ = 0.1324. This result
implies the problem is a non-full consistent, so we can get multiple optimal
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Figure 4 The rank of criteria weight under different quantile.

weight interval. All the optimal weight intervals are interval set as follow:

w1 = [(0.0879, 0.1049), (0.2214, 0.2301)];

w2 = [(0.3831, 0.4201), (0.4136, 0.4689)];

w3 = [(0.1042, 0.1302), (0.2234, 0.2321)];

w4 = [(0.1421, 0.1702), (0.1597, 0.2053)];

w5 = [(0.0311, 0.1002), (0.0589, 0.0932)];

Through all weight interval sets above, we can take different quantile of
interval. In this experience we take the middle of lower interval and upper
interval as light and right limit of new weight interval. Then we also take
different quantile as weight of all criteria. The result can be achieved from
Figure 6. In the Figure 6, we know all the original data within interval. But
all the weight values under different criteria have different positions in the
interval. Therefore, it is unreason to take the original data as the optimal
weighted value. The weight value obtained in the original method is not the
optimal weight. For this problem of non-full consistency, we can obtain a set
of interval weights, and it is more convincing to take the weight value of all
the criteria through interval quantiles.

We can know according to Figure 6, we can see that all the original data
are within the interval, but the position of data are scattered randomly within
the interval and no rule, so the weight value found by the original method
is only a set of feasible values and not the optimal value. In this paper, it is
more convincing to take the value of the quantile position of all the intervals
as the weight value. The original method finally ranked the 5 criteria as price
> quality > safety = comfort > style. But we can get a new rank as price
> comfort > quality > safety > style when we take α 1

2
, α 3

4
and α 1

4
of
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Figure 5 Optimal interval weights when using box-constraint.

Figure 6 The rank of criteria weight under different quantile.

interval as we can see from Figure 6. In the original method, the weight
cannot be compared between safety and comfort. The optimized approach
has already shown its advantages. But to avoid the chance, a third set of data
was compared.

Then we take the interval preference of ellipsoidal-constrained into model
(12). We can get five sets of weight interval and ξ as follow:

w1 = [(0.0321, 0.0873), (0.1314, 0.1677)];

w2 = [(0.3841, 0.4044), (0.4231, 0.5821)];
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w3 = [(0.1321, 0.1566), (0.1891, 0.2054)];

w4 = [(0.1631, 0.1988), (0.2133, 0.2431)];

w5 = [(0.0145, 0.1421), (0.1531, 0.2003)];

ξ = 0.1247

Since this case is non-full consistent problem, so we can get a set of
weight interval for each criterion. Next, we take different QW as weight value
in Figure 7.

As we known from Figure 8, the green point is weight which can get
from original method. The weight of first and third criteria are out of weight
interval, so weight value are higher. It is not reasonable from this angle. We
can get a rank of all criteria as price > quality > safety > comfort > style.

Figure 7 Optimal interval weights when using ellipsoidal-constraint.

Figure 8 The rank of criteria weight under different quantile.
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Figure 9 Optimal interval weights when using ellipsoidal-constraint.

Example 3. Firstly, we can take the preference interval of second line into
model (9), through solving the model (9) we can get ξ = 0.2435 and multiple
sets of weight interval as follow:

w1 = [(0.0768, 0.0989), (0.1937, 0.2264)];

w2 = [(0.3728, 0.3969), (0.4028, 0.4345)];

w3 = [(0.0978, 0.1285), (0.1934, 0.2169)];

w4 = [(0.1397, 0.1678), (0.1897, 0.2064)];

w5 = [(0.0437, 0.0784), (0.0978, 0.1253)];

When we use α 1
2

of interval sets as the right and left limit of new weight
interval as follow:

w1 = [0.08785, 0.22575], w2 = [0.38485, 0.44125],

w3 = [0.11315, 0.22775], w4 = [0.15375, 0.1825],

w5 = [0.06105, 0.07605]

Then we use α 1
4
, α 3

4
, α 1

2
of new weight interval, the result as in Figure 9.

Through Figure 9 we can know the rank of all criteria. The branches
from 1 to 5 represent quality, price, comfort, safety, and style. When we take
quantile of interval as weight, a consistent rank as price> safety> comfort>
quality> style. However, the rank can be obtained as price> quality> safety
> comfort> style by original method. Since the weight value of each criteria
is irregular. So, the rank of all criteria is not reasonable.
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6 Conclusion

In this paper, the fix relative preference value in the original method is
changed into the weight interval, and the left and right limits of weight
interval are substituted into the model respectively, so that the weight interval
of each standard can be calculated. After improvement, the value obtained
through the model is no longer a unique value but the feasible region of
weight value. The position of selected optimal value in the interval can
be clearly seen through the feasible region of the weight, and it is more
reasonable to take the value on the fixed quantile as the weight value. This
paper have three advantages as follow: 1. this paper can calculate the weight
feasible region of each criterion. 2. The position of optimal value in the
feasible interval can be seem clearly, which is more intuitive. 3. Each criterion
can be sorted according to the overall position of weight value through the
feasible region of weight, which is more reasonable.

In this paper, we use box-constraint and ellipsoidal-constraint of
robust optimization to improve the best-worst multi-criteria decision-making
method, we can also use other constraint forms to improve the relative
preference value.
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