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Abstract

Unmanned aerial vehicles like drones are one of the key development
technologies with many beneficial applications. As they have made great
progress, security and privacy issues are also growing. Drone tacking with
a moving camera is one of the important methods to solve these issues.
There are various challenges of drone tracking. First, drones move quickly
and are usually tiny. Second, images captured by a moving camera have
illumination changes. Moreover, the tracking should be performed in real-
time for surveillance applications. For fast and accurate drone tracking, this
paper proposes a tracking framework utilizing two trackers, a predictor, and
a refinement process. One tracker finds a moving target based on motion
flow and the other tracker locates the region of interest (ROI) employing
histogram features. The predictor estimates the trajectory of the target by
using a Kalman filter. The predictor contributes to keeping track of the
target even if the trackers fail. Lastly, the refinement process decides the
location of the target taking advantage of ROIs from the trackers and the
predictor. In experiments on our dataset containing tiny flying drones, the
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proposed method achieved an average success rate of 1.134 times higher than
conventional tracking methods and it performed at an average run-time of
21.08 frames per second.

Keywords: Object tracking, unmanned aerial vehicles, drones, surveillance
system.

1 Introduction

Due to the rapid development in the field of unmanned aerial vehicles (UAVs)
and the technologies used to construct them, the number of UAVs manu-
factured for military or commercial purposes has increased sharply [22, 2].
Drones are used for commercial applications in environmental and natural
disaster monitoring, border surveillance, delivery of goods, and construc-
tion. As a result of the increased commercialization, drones have made
headlines in the last few years due to various incidents. These events have
created widespread fear of the damage that could be caused by such a small
unmanned system when used in malicious ways [27]. Thus, a high demand
exists for the development of a surveillance system for drones [12].

The recent interest in surveillance is increasing the need to create and
deploy intelligent or automated visual surveillance systems. Recently, the
pan-tilt-zoom (PTZ) camera has been extensively used [1]. A fixed camera
cannot completely cover the entire space in a single view, but the PTZ camera
can be controlled to view changing areas of interest using the pan, tilt, and
zoom controls. However, tracking is difficult with a moving camera due to
background changes and lighting changes, and it must be implemented in
real time [8].

Object tracking is one of the main components in computer vision,
such as augmented reality, video surveillance, and human-computer inter-
action [13, 21]. In object tracking, selecting features for object tracking
plays a critical role, and the object must be represented by shape or appear-
ance. Regarding the overall research, according to [30], three approaches to
object tracking have primarily been studied: point-based, kernel-based, and
silhouette-based tracking methods. The point-based tracking methods repre-
sent and track moving objects as feature points in an image. Kernel-based
tracking methods generally represent the motion of an object in the form of
parametric motion, such as transform, affine, and so on, and track the object
by calculating and performing the respective elements for motions that can
be expressed [23]. A representative method is a mean-shift tracking method



Tiny Drone Tracking Framework Using Multiple Trackers 2393

using a color histogram [9]. Silhouette-based tracking methods represent an
object as an outline or silhouette, and these are predominantly used to track
complex objects, such as people [3].

Tracking tiny drones with a moving camera is challenging. First, drones
fly extremely fast, and these are usually tiny in the image. Second, cam-
era movement causes illumination changes and global motion. Moreover,
a tracking system should satisfy a real-time environment of surveillance
applications. Considering these conditions, the color feature information,
which is frequently used for object tracking, is unsuitable. In addition, edge
or silhouette features are also unsuitable because the tiny drones do not have a
characteristic edge or silhouette information. To address these problems, this
paper proposes a tracking framework comprising two trackers, a predictor,
and a refinement process. Trackers use motion flow and histogram features
to locate the region of interest (ROI), respectively. Kalman filter is also used
to estimate the trajectory of a moving target as the predictor. The predictor
predicts the position and size of a target with the trajectory obtained by the
Kalman filter, which helps track the target continuously even if the trackers
fail. To locate the target from the two ROIs, the ROIs are compared using the
trajectory obtained, and the target is localized in the refinement process.

The remainder of this paper is organized as follows. Section 2 outlines
the description of the tracking methods using optical flow and the Kalman
filter. In Section 3, the proposed tracking framework is introduced. Section 4
reveals the experimental results obtained for the implementation methods.
Finally, Section 5 concludes this paper.

2 Methodology
2.1 Optical Flow in Object Tracking

Optical flow is the apparent movement of an image brightness pattern,
which is used to recover the image movement of each pixel with the image
brightness change between two consecutive frames. That is, the optical
flow represents a distance vector in which the point of interest moves
between the previous and current frames. Representative methods to obtain
the optical flow are the Gunnar Farneback [11], Horn Schunck [15], and
Lucas—Kanade [20] methods. The Lucas—Kanade method is based on three
assumptions: brightness constancy, temporal persistence, and spatial coher-
ence. Brightness constancy indicates that the brightness values of the pixels
within a tracked window are constant. The temporal persistence indicates that
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the amount of movement of an object within a frame is not great, even if
the movement of the object is very fast. The spatial coherence refers to the
precondition that spatially adjacent points are likely to belong to the same
object and have the same movement. The Lucas—Kanade method operates by
finding the best-matching window in the next frame. In other words, for the
problem of finding a point v in an image J that is very similar to point u in
image I, a vector must be determined that minimizes Equation (1) [16]:

€ (de, dy) = Z Z (I(m,y)—J(ac—i—dx,y—i—dy))g. (1

T=Ug — Wz Y=Uy—Wy

In the Lucas—Kanade method, the size of the window is critical. A large
window causes a problem that reduces performance due to the smoothing
effect, whereas a small window often causes the tracking to fail when the
motion of an object is larger than the window. An iterative Lucas—Kanade
method is proposed to resolve this problem [7]. The iterative Lucas—Kanade
method generates an image pyramid according to the image scale from the
current frame and repeatedly applies the Lucas—Kanade method from the
smallest pyramid image to the largest pyramid image. In other words, the
optical flow is estimated at the smallest pyramid image, as shown in Figure 1,
and it passes to the lower level. The redefined optical flow is recalculated in
the Gaussian pyramid image, and it also passes to the lower levels. There-
fore, it is possible to calculate large movements while keeping the window
small.

The iterative Lucas—Kanade method is frequently used in an object-
tracking system because it is easy to track an object that has appearance
changes and fast movements, and it can be tracked in real time. Moreover,
Kalal proposed a forward-backward error using the iterative Lucas—Kanade
method, which is used in a tracking system called MedianFlow [17]. The
forward-backward error is defined as the distance between the trajectory from
the t-1 frame to the t frame and the trajectory from the t frame to the t-
1 frame. The Euclidean distance algorithm is used to obtain the distance
between trajectories. In MedianFlow, a set of points is initialized within
the bounding box, and these points are then tracked using the iterative
Lucas—Kanade method. The quality of the point predictions is estimated by
the forward-backward error. It removes 50% of the points that have a large
forward-backward error and finds the median over each spatial dimension to
estimate the bounding box in the current frame.
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Figure 1 Proposed tracking framework.

2.2 Kalman Filter in Object Tracking

The Kalman filter is an algorithm used to estimate the state of a linear
system where the state is assumed to have a Gaussian distribution. The
Kalman filter is often used in the field of image processing because of the
low computational time cost, and it leads to applications in real time [18].
To detect and track vehicle objects, [5] suggests using Gaussian mixture
model (GMM) and Kalman filter. The GMM is used for object detection
and the Kalman filter is used to track after the vehicle object is detected.
In this work, the Kalman filter provides a new position of the object in the
current frame using the information of the detected object in the previous
frame. In order to improve the precision of object tracking, [26] proposes a
hybrid method using Camshift method and the Kalman filter. The Camshift is
applied as the main tracking technique, and the Kalman filter is for prediction
and correction. The first step is tracking the object with the Camshift. The
centroid of ROI from the result of Camshift uses as an input of the Kalman
filter to predict and correct the object location in the next frame. The predicted
point from the Kalman filter would be processed by the Camshift method
in the next step. In this work, the Kalman filter is proved to make object
tracking results become more precise. Although the Kalman filter is often
used for object tracking, it has one limitation that is the assumption the
state variables are normally distributed [30]. This limitation can be solved
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by using the particle filtering [31]. However, the particle filtering requires
a considerable computational complexity, which may not be suitable for
real-time application.

The Kalman filter estimates a process using a form of feedback control.
The filter estimates the process state and then obtains feedback in the form
of measurements. As such, Kalman filters fall into two groups: state-update
equations and measurement-update equations [19]. State-update equations
are responsible for projecting the current state and error covariance esti-
mates to obtain the a priori estimate for the next state-update step. The
state update projects the current state estimate ahead in time. The time
update equations are shown in Equations (2) and (3), where 27 is a vector
representing the predicted process state at time k. In Equation (3), P, is the
predicted error covariance at time k, and Px_; is a matrix representing the
error covariance in the state prediction at time k£ — 1. After the state-update
process, a measurement-update process is conducted to correct the current
object parameter value using the current predicted object parameter value
and the current object information, as shown in Equations (4), (5), and (6). In
Equation (4), K} is the Kalman gain using the predicted and measured noise.
In Equation (5), the process status 2, is updated using the Kalman gain K},
and the measurement zj. The last step in Equation (6) is to update the error
covariance. After each state-update and measurement-update equation, the
process is repeated with the previous posteriori estimates used to project or
predict the new a priori estimates [29].

iy = A#y_1 + Buy 2)

P, = AP, AT +Q 3)

Ky = PHT (HPHT + R) ™ )
Gp = g + Kp (2 — Hiy) (5)
P, =(1—- Ky Hy) Py (6)

3 Proposed Tracking Framework

As mentioned, tracking tiny drones with a moving camera is challenging.
To address this, the tracking framework shown in Figure 1 is proposed. The
framework consists of two trackers, a predictor, and a refinement process. The
predictor predicts the position and size of the target with the trajectory. Then,
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the target is tracked using two tracking methods. To locate the target from the
two ROIs, the ROIs are compared using the trajectory obtained, and the target
is localized in the refinement process. Lastly, the predictor and trackers are
updated for the next frame.

3.1 Optical Flow-based Tracker

The iterative Lucas—Kanade method is often used because it is easy to track
an object that has appearance changes and fast movements, and it can also
be used in real time. Considering these benefits, this paper uses the iterative
Lucas—Kanade method for tracking.

The process of the proposed optical flow-based tracker consists of feature-
point-motion estimation, target-motion estimation, bounding-box estimation,
and refinement feature points. For tracking, the feature points are extracted
in the first frame. The corner-point-detection method proposed by Shi-
Tomasi [24] is used for feature extraction. These extracted features are
registered as feature points. In the target-motion estimation, each motion
flow of the feature point is estimated through the iterative Lucas—Kanade
method. To estimate the quality of the predicted feature points, various
methods, such as the sum of the squared difference algorithm or a nor-
malized cross-correlation algorithm can be used. In this paper, the feature
points are estimated based on the assumption of the spatial coherence of
the Lucas—Kanade method. As such, the displacement of each motion flow
is calculated, and the proposed tracking method estimates a representative
motion flow of the target by averaging the displacements of the motion
flow. In the refinement feature-point process, unreliable feature points that
have a large difference of displacement relative to the average displacement
of all feature points are filtered out from the feature-point set because the
outlier points are likely to lead tracking failure. The remaining feature points
that have a dominant motion flow are then used to estimate the bounding
box of the target. The remaining feature points are updated for the next
frame. To maintain sufficient feature points, new corner points are extracted
periodically and added to the feature-point set.

3.2 Histogram-based Tracker

Tracking through the optical flow is robust for tiny drone tracking. However,
when camera movement happens rapidly, tracking failure often occurs. To
address the problem, we supplement the tracking framework by adding the
histogram-based tracking method. For tracking a target, the model is set at
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the first frame on an ROI. The histogram on an ROI is extracted, and feature
points are detected using the Shi-Tomasi method. The histogram of the model
is set as the average and standard derivation of the luminance values of feature
points. Afterward, tracking is performed in every frame. First, feature-point
extraction occurs in the ROI. Then, each histogram of the window in which
the feature point is centered is extracted. These histograms are compared
using the model histogram. The feature point that has a histogram similar
to the model histogram is determined to be a positive point, and it is used
to estimate the bounding box. For adaptivity, the proposed tracker conducts
the model adjustment. The model is periodically updated by fine-tuning
the average and standard derivation of the luminance values of the positive
feature points.

3.3 Kalman Filter-based Predictor

The Kalman filter is often used for object tracking because it is easily able to
take tracking algorithm outputs as measurements. Tracking often fails when
the background and lighting change because of camera movement. To cope
with this tracking failure, the Kalman filter is used as the predictor in Figure 1.
As such, the predictor detects tracking failures and conducts retracking from
the tracking failure. First, the Kalman filter is initialized on the ROI in the first
frame. Afterward, the target is predicted in every frame. The bounding box
is predicted using the output of the predicted state from the Kalman filter in
Equation (7). Where, x, y, width, height represent centroid coordinates and
sizes of the bounding box, v represents their speed respectively. That is, the
Kalman filter predicts the position and size of the target with the trajectory.
For the target prediction, the measurement is updated in every frame with four
parameters, which are the centroid coordinated and sizes of the bounding box
as shown in Equation (8). The predicted bounding box is used in two ways
for the refinement process. One method is when all trackers fail, the tracking
framework tries to track by predicting the bounding box from the predictor.
This causes the tracking framework to track the target continuously even if
the trackers fail. Another method is to measure the confidence of the trackers.
Hence, it helps the tracking framework to determine the output:

T = [2,Y, Ve, Uy, width, height]”. @)
2 =[x, y, width, height]” (8)

As shown in Equations (9) to (12), the initialized element is the matri-
ces used to update the values of each vector in performing the Kalman
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filter algorithm.
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3.4 Refinement Process

In the refinement process, two critical roles are conducted. First, the output is
used to update the predictor and trackers for the next frame. The second role
is the target decision. This paper proposes a tracking framework that uses two
tracking methods. The target decision is determined by comparing it with the
known trajectory obtained from the predictor. To measure the error of the
outputs from the trackers, the Euclidean distance between the predicted ROI
from the predictor (Bp) and the estimated ROI from the tracker (Br) is used:

error(Bp, Br) = \/(Bp)x — (Br)a) + ((Br)y — (Br),)?  (13)

threshold = \/((Bp)wian)? + (B )height)? % . (14)
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Figure 2 Flowchart of the refinement process.

The flowchart of the refinement process is shown in Figure 2, the output
is determined as follows:

* Let Bp, Bor, and By denote the output bounding boxes of the pre-
dictor, the tracker with optical flow, and the tracker with a histogram,
respectively, where B = [z, y, width, height].

* Let Eor and Ey denote the errors compared by Bp with the Equa-
tion (13).

* If Eor < threshold and Eg < threshold, the output is set as Bor.

* If Eor > threshold and Ey < threshold, By becomes the output. The
optical flow-based tracker is initialized on Bp;.

* If Eor < threshold and Ef > threshold, the Bor becomes the output.

When this decision occurs continuously, the tracking framework is con-

sidered to exhibit a tracking failure by mistracking, and all processes in

the tracking framework are initialized.

If Eor > threshold and E'; > threshold, the output is set as Bp. Like-

wise, when this decision occurs continuously, the tracking framework is

considered a tracking failure due to mistracking, and all processes are
initialized.
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Table1 Testsequences. (Camera Moving (CM) — camera is moving. Global Motion (GM) —
the global motion is occured. Background clutters (BC) — the background has the similar
color as the target or the background is changed. Occlusion (OC) — the target is occluded.
Low Resolution (LR) — the number of pixels inside the ground-truth is less than 400 pixels.
Out of View (OV) — the target leaves from the view.)

Target Target
minimum maximum Num. of
Resolution | Sequences sizes (pixels) sizes (pixels)  frames Attributes
. CM, BC, OC
Inspirel 56 182 1369 _LR.GM
. CM, BC,LR
QHD Inspire2 45 2080 3206 GM
Inspire3 1782 14994 2691 CM, OV, GM
Inspire4 408 6035 7107 CM, GM
Inspire5 1334 24738 7061 CM, GM
. CM, OV, LR
Inspire6 99 918 5441 GM
FHD Phantom1 12 20 586 BC,LR

4 Experimental Results and Discussion

4.1 Dataset and Evaluation Metrics

For evaluation, we built a dataset of natural scene images. The dataset consists
of 7 sequences. These sequences are captured by a moving camera, and
they involve a flying drone. The dataset includes real-world challenges, such
as fast motion, camera movement, scale changes, occlusion, background
clutters, and low resolution. Table 1 shows the details of the dataset, which
are resolution, target sizes, number of frames, and attributes.

For quantitative evaluation, three criteria are employed, including the
center location error, correctly tracked frames, and overlap success rate. The
center location error is defined as the average Euclidean distance between
the center location of the ground truth and the center location of the tracked
bounding box. The correctly tracked frames are computed by the bounding-
box overlap with the ground truth. To compute the success rate, the criterion
used in the PASCAL VOC challenge [10] is employed. Given the ground truth

bounding box 7, and the tracked bounding box r;, the bounding-box overlap

score is defined as S = }:Z U:ZI , where [ and | represent the intersection and

union of the two regions, respectively, and | - | denotes the number of pixels in
the region [25]. The tracking result in one frame is considered a success when
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the score is above t, (e.g., t, = 0.1). The success rate is computed with all
frames of one sequence. As the threshold varies between 0 and 1, the success
rate changes, and the resultant curve is presented.

In this paper, the performance of the proposed method is evaluated
against the existing methods, such as MedianFlow, MIL, Boosting, KCF, and
STAPLE. The experiments are tested on Opencv (v. 3.3). The most common
evaluation method is to initialize an algorithm with the ground truth object
state in the first frame and report all results. All experiments are measured
using this straightforward approach.

4.2 Evaluation

In Figures 3 and 4, the performance of the proposed framework is evaluated
against two tracking algorithms, which are conducted through the optical
flow. In Figure 3, the center location error is compared frame by frame on
the Inspirel sequence. The optical flow-based tracking (OF) method is the
optical flow-based tracker, as mentioned in Section 3.1, and it is compared
with the optical flow-based tracking method combined with the Kalman filter
(OFKalman). In the figure, the OF and OFKalman methods are track with

30
----- OF
25
OFKalman
20

Center error
7Y

Frame #

Figure 3 Frame-by-frame comparison of the center location errors (pixels) on the Inspirel
sequence (OF: optical flow-based tracking method, OFKalman: optical flow-based tracking
method combined with the Kalman filter).
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Figure 4 Frame-by-frame comparison of the center location errors (pixels) on the Inspire4
sequence (OFKalman: optical flow-based tracking method combined with Kalman filter, Ours:
proposed tracking method in Figure 1).

similar center errors. However, the OF method fails by mistracking becuase
of illumination changes, but the OFKalman method continues tracking.

In Figure 4, the proposed framework and the OFKalman are com-
pared. The Inspire4 sequence includes fast camera movement. The proposed
framework achieves much better overall results. It indicates that the proposed
method manages the changes from fast camera movement.

4.3 Main Comparison Results

In this section, the proposed framework, as shown in Figure 1, is eval-
vated against existing tracking methods on the dataset. We implemented
MedianFlow [17], MIL [4], STAPLE [6], KCF [14], and Boosting [12]
trackers.

As shown in Tables 2 and 3, in terms of the average center location errors
and the number of succeeding frames. The Table 3 indicates the top three
trackers in each sequence. The KCF tracker exhibits the lowest average center
errors on all sequences, but it has the least succeeding frames as shown in
Table 3. Tables 2 and 3 show the proposed framework tracks better than the
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Table 2  Average center errors (pixels) (Ours: proposed tracking method in Figure 1).

Sequences | Ours MedianFlow MIL  STAPLE KCF Boosting
Inspirel 95.1 176.5 114.4 286 0.3 841.4
Inspire2 89.8 231.3 483.8 376.8 2.9 665.8
Inspire3 10.7 10.3 23.1 6.2 3.1 686.8
Inspire4 6.3 229 14.7 18.9 1.9 9.0
Inspire5 4.0 8.6 5.4 6.8 1.4 1065.1
Inspire6 35 359.6 2.6 1.9 0.8 1.6
Phantom1 160.7 12.8 292.0 2.7 2.8 2.0
Average 529 160.3 133.7 99.9 1.9 4674

Table 3 The number of succeeded frames. The top three trackers in each sequence are
denoted by different colors: red, green, and blue (Ours: proposed tracking method in Figure 1).

Sequences | Ours MedianFlow MIL STAPLE KCF Boosting
Inspirel 1046 13 1045 56 2 44
Inspire2 2426 602 198 422 7 150
Inspire3 2690 2691 2377 2692 336 336
Inspire4 7107 6548 6772 2695 785 7107
Inspire5 7061 450 7027 7061 98 113
Inspire6 5435 501 5409 5441 17 5440
Phantom1 134 423 115 586 121 586

other trackers. Although the STAPLE tracker is also a top-three tracker, it has
few succeeding frames on Inspirel.

In Figure 5, the proposed framework is compared using the overlap suc-
cess rate, and the results are reported in the one-pass evaluation (OPE) [28].
The average success rate is also shown. The figure reveals that the proposed
framework achieves the highest average success rate of 0.406. The MIL
tracker has a high average success rate following the proposed framework, but
the tracker does not work well for the Inspire2 sequence. When the overlap
threshold is over 0.5, the MIL, STAPLE, and Boosting trackers are slightly
better than the proposed method. These experimental results indicate that the
proposed method is mostly robust over all range of the threshold for the tiny
drone tracking from images captured by a moving camera.

Figures 6 illustrates the continuous tracking results for the Inspire2
sequence. The proposed framework continuously tracks the target, whereas
other trackers fail when the camera moves fast. Figure 7 displays examples
of the tracking results using the proposed framework.
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OPE
1
0.9 — Ours (0.406)
~— Medianflow (0.216)
0.8 — MIL (0.358)
0.7 — STAPLE (0.345)
. — KCF (0.045)
5|06 — Boosting (0.280)
% 0.5
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“103
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0 01 02 03 04 05 06 07 08 09 1
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Figure 5 Success plots of OPE on our dataset.

Figure 6 Continuous tracking results on the Inspire2 sequence (green: Ours, yellow: Medi-
anFlow, purple: MIL, red: STAPLE, blue: Boosting).
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Figure 7 Examples of tracking results using the proposed framework.

In this work, the proposed framework was implemented on an Intel
i7-6700 3.40GHz CPU with 16 GB RAM. To evaluate computational com-
plexity of the proposed framework, a run-time performance in terms of
frame-per-second (FPS) is measured. The proposed framework runs at an
average of 21.10 FPS on the test sequences in the Table 1. Note that it is
implemented using a CPU and not a GPU.

5 Conclusion

In this paper, a tracking framework utilizing two trackers, a predictor,
and a refinement process is proposed for fast and accurate drone tracking.
Combining the outputs of two trackers, which are the optical flow-based
tracker and histogram-based tracker, and a Kalman filter predictor reveals
a significant increase in robustness for tracking tiny drones on a moving
camera. Experimental results on our dataset containing tiny flying drones
show that the proposed method mostly robust against the existing trackers,
but an improvement of overall accuracy in terms of success rate is required.
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