
Journal of Web Engineering, Vol. 10, No.1 (2011) 070-086

© Rinton Press

STATE-OF-THE-ART A�D TRE�DS I� THE SYSTEMATIC DEVELOPME�T OF

RICH I�TER�ET APPLICATIO�S

GIOVANNI TOFFETTI
Faculty of Informatics, University of Lugano

V. Buffi 13 – 6900 Lugano, Switzerland

toffettg@usi.ch

SARA COMAI
Dipartimento di Elettronica, Politecnico di Milano

P.zza L. da Vinci, 32. I20133 – Milano, Italy

comai@elet.polimi.it

JUAN CARLOS PRECIADO; MARINO LINAJE
Quercus Software Engineering Group.

Universidad de Extremadura. 10071 - Cáceres, Spain

jcpreciado@unex.es; mlinaje@unex.es

Rich Internet Applications (RIAs) are widely adopted Web applications that add the richer interaction,

presentation, and client-side computation capabilities of desktop applications to the Web. However, the evolution

from Web applications towards RIAs comes at the cost of increased complexity in their development. For this

reason, a wide variety of tools and technologies have been proposed in order to streamline their development

effort. This paper investigates the current state of the art of the RIA development approaches. The review shows

that the current industrial development practice lacks a comprehensive approach to RIA development, supporting

all the development steps from the design to implementation, test and maintenance, and helping identifying correct

design choices. This is in part due to the severe fragmentation of current RIA technologies that prevents the

adoption of a commonly recognized set of best practices resulting in ad-hoc development processes. These aspects

are in part treated by research methodologies and some innovative industrial solutions, but also these approaches

present some limitations. The paper identifies future research directions for RIAs to fully support their

development process and to support their design in a more comprehensive and systematic way, from both

industrial and research perspectives.

Key words: Rich Internet Applications, Systematic Development, Web Engineering

Communicated by: (to be filled by the JWE editorial)

1 Introduction

In the last decade, Web applications have continuously evolved, from static Web pages, to pages

whose content is generated dynamically, to applications offering sophisticated User Interfaces (UIs).

One of the last steps of this evolution is represented by Rich Internet Applications (RIAs) and related

technologies that provide capabilities currently adopted by a growing number of Web 2.0 applications,

such as multimedia support, sophisticated interactivity and presentation, the possibility to store and

process data at the client side, collaborative work, and flexible communication paradigms (like pull,

push, disconnected functioning) [17].

Toffetti, G; Comai, S; Preciado, J.C.; Linaje, M.; 71

Attractiveness and usability have become key issues in current Web development. In these terms,

the main reasons behind RIA adoption are user experience improvement and the increased number of

capabilities compared to traditional Web applications. However, these benefits come with some

drawbacks since RIAs are much more complex to design and develop than their Web 1.0 counterparts.

Indeed, while in traditional applications what mattered most in terms of user experience was Web

server response-time (and the interaction paradigm left very few alternatives), in a RIA the UI

responsiveness is a direct consequence of a much wider range of design choices (e.g., adopted

technologies, client-side vs. server-side logic and data, client-server communication, pre-fetching

policies, presentation logic, and so on). When also RIA-specific functionalities are considered (e.g.,

server-push, disconnected functioning, or collaborative work) the range of design decisions that have

to be evaluated and combined into a coherent system grows considerably.

Considering both, server-side and client-side components, RIAs can be developed and deployed

for different technological platforms (e.g., Silverlight [DL-18], Flex [DL-4], OpenLaszlo [DL-22], and

so on). While these technologies are reaching maturity, wide-ranging methodologies for the systematic

development of RIAs are lagging behind. The current development practice relies on a set of

application development frameworks for client-side code with little or no provision for the

management of the complete application life-cycle from design to deployment and evolution, making it

difficult to maintain a big picture perspective. Notwithstanding, an alternative solution is promoted by

model-driven approaches, proposing methodologies relying on visual languages for the conceptual

specification of the application and automatic code generation. They provide a more systematic

approach to the development of RIAs, but are scarcely adopted by developers.

The main goal of this paper is to represent the current RIA development reality, classify and

compare the development approaches, identify their principles, limitations, and highlight research

challenges.

This paper is structured as follows: in Section 2 we provide an overview of RIA features and

technologies; in Section 3 we explain the rationale behind the choice of the analysed approaches and

the evaluation criteria used for comparison. Sections 4 and 5 compare code-generation frameworks and

model-driven development approaches, respectively. Finally, Section 6 discusses the open issues and

devises possible future trends and research directions.

2 An overview of RIAs: features, applications, and technologies

Compared to traditional Web applications, RIAs improve the user experience through novel features

[20], facing four main aspects of the application development:

• Rich Presentation: RIAs offer client-side event-handling and widgets similar to those of

desktop UIs, allow partial page updates, support interaction with visual data representations and

multimedia content (e.g., audio, video).

• Client Data Storage: In RIAs it is possible to store data on the client-side with different levels

of persistence (temporarily while the application is running or persistently).

• Client (and Distributed) Business Logic: In RIAs it is possible to carry out complex operations

directly on the client, like for example, data navigation/filtering/sorting with multiple criteria,

domain-specific operations and local validation of data. It is also possible to distribute the

72 State-of-the-Art and Trends in the Systematic Development of Rich Internet Applications

Business Logic between the client- and the server-side, (e.g., to validate some form fields on

the client and others on the server).

• Client-Server Communication: RIAs support (a)synchronous communication between client

and server to distribute domain objects, data, and computation, and provide server-push (e.g., in

collaborative / monitoring applications).

Depending on the application's intended functionalities, the above features can be combined to

obtain for instance standalone applications (with client-side persistent data and logic), collaborative

applications (with client-server communication and the server acting as proxy), or simply more

appealing UIs for existing Web applications (through rich presentation). In terms of growing number

of features and development complexity a RIA typically falls in one of the following application

types
a
 (that can be possibly combined to obtain complex RIAs):

• Traditional Web applications with RIA-makeover: where simple isolated RIA capabilities

(usually for partial page updates) are added to a traditional Web application (e.g., Facebook).

• Rich UIs: Web applications with widget-based UIs, where the client-side logic is an extension

layer over the browser, superseding core browser responsibilities, such as handling events and

managing states and the rich user interfaces components work in a coordinate way (e.g.,

Gmail).

• Standalone RIAs: Web applications capable of running both inside and/or outside the browser

in a connected and/or disconnected fashion (e.g., SlideRocket).

• Distributed RIAs: where the application data and logic are (sometimes dynamically)

distributed across client and server, on-line collaboration is supported, client-server

communication is used to fill the gap between objects and events living across the application

components (e.g., Google Docs).

Table 1 shows the mapping between RIA features and common application types.

RIA Features

Type of

Application

Rich Presentation Client Data Storage
Client (and Distributed)

Business Logic

Client-Server

Communication

RIA-makeover
Limited: partial page

update
No No

Limited: pull for
partial page update

Rich UIs Yes No
Limited: events and state

management
Limited: pull for
partial page update

Standalone RIAs Yes Yes Yes
Limited: data

synchronization

Distributed

RIAs
Yes Yes Yes Yes (push - pull)

Table 1: Rich Internet application types and supported features

a
 A similar classification for AJAX-based RIAs can be found in Gartner's report no. G00136945

Toffetti, G; Comai, S; Preciado, J.C.; Linaje, M.; 73

Currently, RIAs capabilities can be implemented in a number of different client-side technologies

that can be broadly classified in three categories, according to the runtime environment:

• JavaScript-based: the client-side logic is implemented in JavaScript (the approach is also

known as "AJAX", Asynchronous JavaScript and XML) and UIs are based on a combination

of HTML and CSS. The main advantage of this approach is that it relies on built-in browser

JavaScript support and W3C standards. The main drawbacks are insufficient media support,

browser sandboxes limiting, for instance, file system access or persistent storage, and

inconsistent browser behaviour. Because of the latter aspect, a large number of libraries and

frameworks have been proposed allowing developers to abstract from browser idiosyncrasies

(e.g., Backbase [DL-7], Dojo [DL-8], Prototype [DL-23], GWT [DL-10], jQuery [DL-14],

etc.). The current W3C’s working draft HTML5 [DL-11] is trying to solve many of such

limitations.

• Plug-in-based: advanced rendering and event processing are granted by browser’s plug-ins

interpreting specific scripting languages, XML or media files (e.g., Flash [DL-3], JavaFX

[DL-12], Silverlight). An advantage of plug-ins (e.g., FlashPlayer [DL-9]) is that they

generally support media interaction natively, allow client-side persistence, and provide better

performances than interpreted JavaScript. Some plug-ins come already installed in the

browsers, but others require user administrative action. However, in some cases they do not

provide access to the Operating System (OS) services (e.g., file system).

• Runtime environments: applications are downloaded from the Web but are executed outside

the browser using a desktop runtime environment (e.g., Java Web Start [DL-13], AIR [DL-

2]). These solutions offer the most in terms of client-side capabilities and off-line usage with

full access to the underlying operating system. However, they rely on a dedicated runtime

environment, which requires users to install it (and might not be available on all platforms,

e.g. mobile phones). Many RIA technologies can be used to develop applications for these

runtimes (e.g., for Adobe AIR, Javascript-based and/or Flash-based development technologies

can be used).

RIA Features

RIA

Technologies

Rich Presentation Client Data Storage
Client (and Distributed)

Business Logic

Client-Server

Communication

Javascript-based
Limited: no
multimedia

Limited: no persistence Yes Yes

Plug-in based Yes
Yes (by means of additional

plug-ins)
only some plug-ins Yes

Runtime

environments
Yes Yes Yes Yes

Table 2: RIA technologies and supported RIA features

Table 2 shows the mapping between RIA features and RIA technologies. Most technologies can be

used to implement all RIA features. The main limitations are for JavaScript-based ones with respect to

74 State-of-the-Art and Trends in the Systematic Development of Rich Internet Applications

multimedia and client-side persistent storage (in browsers not fully compliant with the recent HTML5

draft). Notwithstanding, among the above technologies, the current RIA development practice sees the

adoption of the JavaScript-based ones (i.e., AJAX) as the most common choice [14]. The current

limitations are typically solved using Flash extensions for video rendering (and Google Gears or Flash

Shared Objects when client-side persistent storage is required). The main reasons behind this trend are

to be found in the fact that: a) AJAX is felt by many developers as the most open and standard set of

technologies (and closer to the incoming HTML5 specification); b) it does not require administrative

actions (e.g., installing software) from users; c) it can be easily combined with plug-ins that are built to

overcome its limitations.

3 Survey Methodology

Over 150 approaches have been proposed by software vendors [14] and academic researchers [16] to

support the new implementation of RIAs or the migration from legacy applications to RIAs.

To better represent the state of the practice, we can fit existing development approaches into three

categories, exhibiting homogeneous features:

1) Code-based development, where developers choose the set of client- and server-side

technologies and code directly in the technology-specific programming language(s).

2) Framework-based development, where developers leverage on a set of specific primitives,

tools, libraries, and/or code generation techniques that provide some automation of the most repetitive

programming tasks for the client- and/or server-side (e.g., Ajax, Adobe Flex, Silverlight, etc.).

3) Model-driven development methodologies, where the application designer specifies the

application behaviour by creating models consisting of a set of high-level primitives, abstracting from

implementation details. Code-generators transform models into executable code for the server and/or

the client-side of a RIA (see Section 5).

The order of presentation of the different categories reflects the increasing level of abstraction of

concepts and tool support to the structured development process of RIAs.

Approaches not using frameworks are very rare in practice: a developing framework is generally

picked by considering it against the required features for the developed application. However, as

application complexity increases, more systematic development approaches are needed to improve the

whole development process, from its design, to its deployment and maintenance.

In our analysis we will focus only on systematic development approaches, and therefore on

framework-based and model-driven development solutions.

Our evaluation is based on a set of criteria organized into three groups (technology, language, and

process-related features) fitting the key features identified in Section 2 and answering the following

questions:

Technology:

Q1: Is the proposed approach tied to a specific set of (client- or server-side) technologies?

Language(s)/ Development environment:

Toffetti, G; Comai, S; Preciado, J.C.; Linaje, M.; 75

Q2: What is the programming style (e.g., imperative or declarative) of the supported languages?

Q3: What abstract primitives are provided to support a higher-level specification of the

application?

Q4: What is the language scope? Does it address only client or also server features? Does it cover

all the RIA features and, as a consequence, can it be applied to all RIA application types?

Development process:

Q5: Which tools support the development process?

Q6: What are the required development phases / steps?

Q7: Who are the actors involved in the process?

These questions should help in understanding how the development process of RIAs is supported

(in particular, how much a developer needs to be concerned with the low-level details of

implementation like, e.g., programming style and abstractions, as well as how the typical development

process unfolds) and in identifying the possible weaknesses and inadequacies in the current state of the

art.

4 Framework-driven development

The most adopted development approaches in the Web industry are framework-based. Table 3 gives an

overview of the most prominent (according to [14]) frameworks that focus on the client-side code of

Rich Internet Applications. The technology, language, and process dimensions are considered. In this

table frameworks are ordered in terms of growing number of supported RIA features.

In general, most frameworks share a set of common characteristics:

• They focus only on the client-side aspects, where they are very tied to specific RIA

technologies; they are independent of server-side technology for accessing server-side data

sources, since they leverage on SOA or REST paradigms.

• Advanced communication behaviours typical of RIAs (e.g., based on push) are instead bound

to the usage of a specific server-side support (e.g., streaming in Silverlight, RPC in GWT).

• Considering the adopted languages, the UI implementation is quite similar to standard-based

Web UIs: a declarative language is used for UI definition, and scripting for event handling

(e.g., HTML with DOM and JavaScript, XML and scripting in MXML, LZX, and XAML).

This solution sets up the ground for the separation of designers and developers roles so that

specific tools and IDEs can be provided to each role (this is the case, for example, of Adobe

FlashBuilder and Catalyst).

Considering the development process, most approaches are hybrid in the sense that they are

strongly influenced by target developers’ backgrounds providing programming metaphors from either

desktop development (e.g., GWT and JavaFX using Java) or traditional Web development (e.g., AJAX

or Flash). For both approaches, extensions are provided (typically through APIs) to target and exploit

the out-of-the-browser capabilities. Currently, the latter is a key aspect for all RIA frameworks: the

struggle is clearly to provide developers with a unified way to produce both native-Web and Web-

76 State-of-the-Art and Trends in the Systematic Development of Rich Internet Applications

enabled desktop applications. This is especially relevant for mobile development where Web

applications must be wrapped as native applications in many cases.

The main issues with the framework-based development practice in RIAs concern the lack of

support for:

1) the complete application development (server & client-side business logic, client/server

communication, and interaction),

2) the complete application lifecycle (no design and testing phase, limited support for

maintenance and evolution),

3) the integration/collaboration among roles concurring in designing and implementing the final

application (typically, using different tools and IDEs).

Technology Language Process

Server-side tech

dependence

Client-side

tech

dependence

Style

Scope

Abstractions: Data, Logic,

Presentation, Communications
Tool support Typical development process

S
e
r
v
e
r

C
li
e
n
t

AJAX libraries

(e.g., Dojo,

jQuery,

Backbase, YUI

toolkit)

Independent of server-

side technology

(usually LAMP)

AJAX

libraries
(JavaScript

enabled)

Declarative UI

(HTML),
Imperative logic

(JavaScript)

- �

D: virtual datasets at client side
Aptana IDE. Some

have lib-specific
IDEs, some are

IDE-neutral

UI design and coding, no

provision for server-side
development

L.: JavaScript libraries

P: cross-browser DOM and widgets

C: cross-browser XMLHTTPRequest

AJAX code-

generators

(e.g., Google

Web Toolkit

GWT)

Independent of server-

side technology

AJAX

libraries

(JavaScript

enabled)

Declarative UI in
some cases (e.g.,

GWT using
UiBinder) +

Imperative (Java)

- �

D: application domain objects

Java IDEs, IDE-

neutral

Developers specify UIs and
business logic as they would in

Java. JS code is generated for
the client-side including

support for RPC on the server

L.: GWT Java library

P: Java GWT UI components and
events

C: cross-browser XHR abstraction, RPC

OpenLaszlo

Independent of server-

side technology for
data sources. Own

application server is
mandatory when LZX

runtime compilation is

required

Both AJAX

or Flash plug-
in

Declarative UI /

Imperative logic

(LZX:XML +

JavaScript)

- �

D: datasets

IDE4Laszlo

(IBM),
IDE-neutral

Definition of UI components
and behaviour, definition and

connection to data services,
SWF or AJAX code

generation. Server-side

development not-covered.

L: OpenLaszlo JavaScript library

P: UI description language, UI

components and events

C: SOA, XML-RPC, and Java Data

Transfer Object

Adobe Flex

Independent of server-

side technology.

Initially shipped with

LCDS a J2EE

integration application

Browser

Flash plug-in.

AIR runtime,

for desktop

RIAs

Declarative UI /

Imperative logic

(MXML: XML +

ActionScript).

�
b

�

D: datamodel Flex Builder,

FlashDevelop,

FlexBean,

Amethyst...

Many IDEs are

also available to

pack AJAX and

Flash into AIR

(e.g, Aptana)

Definition of UI components
and behaviour, definition and

connection to data services,

SWF generation. Server-side

development not-covered.

L: Actionscript libraries

P: UI description language, UI

components and events

C: AMF, Real Time Message Protocol,

HTTP Services, WebServices
(SOA/REST) and Remote Objets. More

capabilities with LCDS

Silverlight

Independent of server-
side technology, Ms

IIS for advanced
features (e.g., WMS

streaming)

Silverlight
plug-in.

WPF (.NET)
for desktop

RIAs

Declarative UI

(XAML) /
Imperative logic

(multiple
programming

languages)

- �

D: data objects

Microsoft
Expression Studio,

Blend and Visual
Studio.

Eclipse4SL

Three roles collaborate, each
using its specific tools: a UI

designer, an integrator, and a
developer. The developer has

responsibility over data
retrieval from local or remote

sources. Server-side
development not-covered.

L: dependent of the language used

P: UI description language, UI
components and events

C: SOA/REST, Windows

Communication Foundation

JavaFX

In principle

independent of server-

side technology, clear

tie with Java servers

JVM with

JavaFX
support

Declarative UI /

Imperative logic
(Java)

- �

D: data objects

Netbeans or

Eclipse

A mix between Java

traditional desktop application
and Java Web Start

L: Java libraries

P: UI components and events

C: JNI, SOA, REST, RMI EXEC, TCP

Table 3: Most adopted RIA development frameworks

b When using Adobe LiveCycle Data Services (LCDS) [DL-5]

Toffetti, G; Comai, S; Preciado, J.C.; Linaje, M.; 77

The last aspect is recognized and addressed especially by runtime environment vendors that

propose tools and processes (e.g., Adobe Catalyst [DL-1], Ms Expression Blend [DL-17]) targeted to

different roles involved in the Web development process (designers, developers) and supporting the

integration of their work. Most frameworks are designed to automate or simplify the coding of the

application on the client-side (rightfully considered the novelty in RIAs), but very little or no support is

given to the design and implementation of the client-server communication, as well as the server-side

implementation. This is somehow justified by the widespread adoption of SOA, thus on the assumption

that the same services designed for other aims (e.g., service composition) are appropriate or can be

easily adapted to RIA UI needs.

Albeit their limited industrial adoption, model-driven methodologies aim towards a more

comprehensive approach, covering more application life-cycle phases (e.g., design, evolution) as well

as more application layers (client, server, and communication) through abstractions. The next section

provides an overview of model-driven solutions for RIA development.

5 Model-driven development methodologies

In [12] we recognized the need for systematic methodologies to develop RIAs. Since then, several

proposals have been designed adopting model-driven development (MDD) methodologies for RIAs

[16], both from academia and from software vendors.

Depending on their origins, these approaches can be categorized into:

1. Research contributions coming from the Web Engineering community, stemming as evolution

of model-driven approaches conceived for the design and development of traditional Web

applications: they include WebML-RIA [1][18], OOHDM for RIA [13], OOH4RIA [11][19],

and UWE for RIA [5].

2. Systematic development approaches from the Human Computer Interaction (HCI)

community: RIA design is the focus of the RUX-Method [8] and can be achieved also with

the more general UsiXML approach [10].

3. Approaches mixing HCI and Web Engineering techniques: the UML-based approach

presented in [3], OOWS for RIA [15].

4. Recent proposal from tool vendors adopting MDD: WebRatio [DL-27], Mendix [DL-16],

Novulo [DL-19], RUX-Tool [DL-24] and Thinkwise [DL-25].

78 State-of-the-Art and Trends in the Systematic Development of Rich Internet Applications

Technology Language Process

Server-side

tech

dependence

Client-side tech

dependence
Style

Scope

Abstractions for RIA features Tool support

Typical

development

process

S
er
v
e
r

C
li
e
n
t

W
e
b
 E
n
g
in
e
er
in
g

WebML-

RIA
Independent

Independent

(technologies

hidden in the

code generator)

Declarative

(Visual DSL)
�

Architectural issues

(client data, client

business logic and

C/S comm.)

Client/server annotations on

data and business logic models;

event handling high-level

primitives

WebML Prototype on top

of WebRatio.

Design + automatic code

generator (OpenLaszlo)

Back-to-front

(data-oriented)

OOHDM for

RIA
Independent

Independent

(technologies

hidden in the

code generator)

Declarative

(Object-oriented

notations +
specific notation

for UI objects)

�
Presentation and

behavioral issues

Extension of ADVCharts

behavioral presentation model

to capture rich interaction styles

and event handling

Prototype

Under development

Back-to-front

(object-oriented)

OOH4RIA Independent

Platform specific
presentation

design
(exemplified in

GWT)

Declarative

(UML-based
notations)

�
Presentation and

behavioral issues

Introduction of a widget-based
presentation model and of an

orchestration model for event
handling

OOH4RIA Prototype
[DL-21].

Design + QVT model-to-
model and model-to-text

transformations (GWT)

Back-to-front

(object-oriented)

UWE for

RIA
Independent

Independent

(technologies
hidden in the

code generator)

Declarative
(UML-based

notations)

�
Presentation and
behavioral issues

UML state machines for

modeling RIA patterns –
independent of modeling

language

MagicUWE [DL-15]
Prototype under

development

Back-to-front
(object-oriented)

RUX-

Method
N/A

Independent

abstract models

+ platform

specific concrete

models

Declarative
(Visual DSL)

- Presentation issues

Abstract concepts for content

and containers; visual options

for layout, user interaction,

event handling, temporal

behaviors

RUX-Tool.

Design + model-to-text
transformations

(OpenLaszlo, Ajax, Flex)

Back-to-front
(component-

oriented)
+

User-Centered
Design

H
C
I

UsiXML N/A

Independent

abstract models

+ platform

specific concrete

models

Declarative

(XML
Description

language)

- Presentation issues
Introduction of RIA widgets at

the concrete level

Set of UsiXML tools.

Design +

XSLT model

transformations (to

XAML)

User-Centered
Design

W
e
b
 /
H
C
I UML-based Independent Independent

Declarative

(UML-based

notations)

-
Presentation and

behavioral issues
None None

User-Centered

Design

OOWS for

RIA
Independent Independent

Declarative

(UML

metamodel and

CTT model)

-
Presentation and

behavioral issues

OOWS [DL-20] RIA support

Transformations and automatic

code generator

Olivanova tool support.

Transfomations and

automatic code generator

(Flex)

User-Centered

Design

WebRatio Independent

Currently

applied only to

AJAX

Declarative
(Visual DSL)

�
Presentation and
behavioral issues

WebML RIA support

WebRatio.

Design + automatic code

generator (AJAX)

Back-to-front
(data-oriented)

RUX-Tool Independent Independent
Declarative

(Visual DSL)
� Presentation issues RUX-Method RIA support

RUX-Tool.

Design + automatic code

generator (for Open

Laszlo, Flex, AJAX)

User-Centered

Design

(presentation

components-

oriented)

Mendix Independent

Dependent
(AJAX)

Model is
interpreted, no

code generation

Declarative

(Visual DSL)
� Presentation issues Rich Forms DSL

Mendix Business

Modeler.

Design + automatic code

generator (AJAX)

Back-to-front

(Service-Oriented

Business

Applications)

�ovulo

Dependent

(based on

.Net)

Dependent

(AJAX)

Declarative

(Visual DSL)
� Presentation issues N/A

Novulo Architect and

Application Server.

Design + automatic code

generator (AJAX)

User-Centered

Design

(workflows &

forms-oriented)

Thinkwise

Software

Factory

Independent Independent
Declarative
(Visual DSL)

�
Presentation and
behavioral issues

UI description
language

Thinkwise Software
Factory.

Design + automatic code
generator

(different technologies,
including AJAX)

User-Centered
Design

(object-oriented)

Agile

Platform
Independent AJAX-based

Declarative

(Visual DSL)
�

Presentation and

behavioral issues

AJAX-based patterns integrated

in the visual models

ServiceStudio.

Design + automatic code
generator (AJAX)

Back-to-front

(data + process +
screen design)

Table 4. MDD methodologies for RIAs, clustered into Web Engineering, HCI approaches and commercial tools

Toffetti, G; Comai, S; Preciado, J.C.; Linaje, M.; 79

The evaluation of the MDD approaches is summarized in Table 4. The table shows that they share

the following characteristics:

1) From a technology point of view, the design of RIAs can abstract both from server-side and

client-side technologies, thus reaching also client-side technology independence. In particular,

the binding with the specific client-side technology is moved either to the code generation

phase or to presentation models including technology-specific primitives.

2) Considering the language dimension, visual declarative notations based on Domain Specific

Languages (DSLs) or on UML are used to model the structure and the behavior of the UI and

possibly the back-end of the application.

3) From a process point of view, code can be automatically generated starting from design

specifications.

The development process in MDD approaches is incremental and iterative with back-to-front

design. The typical steps include: requirement analysis, design (from data to business logic to

presentation and communication design), implementation, testing/evaluation, maintenance.

Methods concentrating on UI issues are adopting user-centered design (UCD), which is still based

on iterative design principles. The main focus is on users, directly involved in the process, and user

tasks, to guarantee usable and effective artifacts. The UI can be designed first, so that user feedbacks

can be incorporated in the earliest phases.

The high-level design of MDD approaches combined with the possibility of automatically

generating the code presents several advantages:

1) Models can be used in all the phases of the project as (always updated) documentation,

2) Agile processes with rapid prototyping can be easily supported,

3) Developed components implementing high-level primitives can be reused across different

applications.

Nevertheless, MDD solutions also present some drawbacks:

1. The independence of RIA technologies implies that in general they do not cover all the

features offered by RIA technologies. This implies for instance that if an application requires

a functionality that is not directly expressible through an MDD approach primitive, the

designer has to go through the extension of the MDD language and code generator: this has

the advantage of preserving the virtuous circle of high level-modeling and code generation

through the whole application lifecycle, but presents the shortcoming of requiring additional

efforts and knowledge with respect to simply writing executable code. Figure 1 illustrates the

coverage of the different MDD proposals with respect to the four main categories of RIA

features introduced in Section 2.

2. When the RIA interface to generate is particularly complex (e.g., cannot be expressed using

the primitives of the modelling language, contains animations, etc.), although generally

80 State-of-the-Art and Trends in the Systematic Development of Rich Internet Applications

discouraged in MDD, the case may require generated code to be manually manipulated. This

can cause a lack of synchronization between models and code.

3. MDD, like frameworks, does not solve the issue of collaboration among designer and

developer roles.

The primitives introduced by the MDD approaches to capture the RIA features can be specified by

means of different models and at different levels of abstraction, which are worth being briefly

described:

Data features are addressed only by the WebML proposal: the specification consists of a data

model represented as an Entity-Relationship model refined with annotations on the entities and

relationships to express where data must be located (on the client or on the server) and its persistence

level (temporary or persistent). By combining these two aspects, it is possible to specify which data are

stored for disconnected functioning, which are temporarily stored on the client for client-side

manipulation, which data remain only on the server and so on.

Business logic features are addressed in two different ways:

• By explicitly specifying the computation distribution between the server and the client

in the business logic model. This is the solution adopted in the WebML proposal, where

the model expressing the business logic of a traditional Web application is enriched with

annotations denoting the layer of computation of each primitive (an area of the page, an

entire component, part of the query performed by a component, etc. can be executed

entirely or partially on the server or on the client [1]). By annotating business logic

operations as “client”, it is possible to specify that navigation/filtering/sorting/validation of

data are performed on the client; by denoting primitives as “server”, the designer specifies

which parts of the application are computed by the server.

• By superimposing the UI model (representing the client) to the business logic model

(representing the server), and by associating UI elements with business logic elements to

trigger server-side operations. This is the solution adopted for example in OOHDM,

OOH4RIA, and RUX-Method.

(Rich) presentation features are the focal aspect of most of the proposals. According to [2] user

interface development is one of the most time-consuming parts of application development, testing,

and maintenance: due to the nature of RIAs, this issue becomes more complex than in traditional Web

applications. It involves several aspects:

• Partial page refresh behaviors: this aspect is explicitly treated in WebML, OOH4RIA,

and RUX-Method where a dynamic model is introduced to address the computation of the

Web page, where the parts to be refreshed/reloaded are specified.

• Client-side interaction and RIA widgets: this aspect is treated by the different proposals

with different levels of abstraction as explained next.

UWE specifies patterns

and presentation of typical RIA widgets (e.g., auto

Patterns are independent of the technology and also of the adopted model; they can be integrated into

existing models by means of transformation rules that add the desired behavior t

OOHDM abstracts from the technology, by extending the presentation model of a traditional Web

application with Statecharts that express

allow the specification of sophisticat

in the interface, how information expands or collapses, etc).

Toffetti, G; Comai, S; Preciado, J.C.; Linaje, M.;

 by means of UML state machines modeling the interaction, functionality,

RIA widgets (e.g., auto-completion of fields, periodic/dynamic refresh).

Patterns are independent of the technology and also of the adopted model; they can be integrated into

existing models by means of transformation rules that add the desired behavior to the model elements.

OOHDM abstracts from the technology, by extending the presentation model of a traditional Web

Statecharts that express UI transformations as the result of user interaction

allow the specification of sophisticated navigational behaviors (e.g., which objects are shown or hidden

in the interface, how information expands or collapses, etc).

Figure 1: MDD approaches and coverage of RIA features

Preciado, J.C.; Linaje, M.; 81

by means of UML state machines modeling the interaction, functionality,

completion of fields, periodic/dynamic refresh).

Patterns are independent of the technology and also of the adopted model; they can be integrated into

o the model elements.

OOHDM abstracts from the technology, by extending the presentation model of a traditional Web

UI transformations as the result of user interaction; they

navigational behaviors (e.g., which objects are shown or hidden

82 State-of-the-Art and Trends in the Systematic Development of Rich Internet Applications

OOH4RIA proposes a new presentation meta-model at a lower level of abstraction, where the

central elements are represented by the widgets provided by a specific platform (in this case, Google

Web Toolkit): this meta-model allows the specification of the structural aspects of a RIA. Widgets can

be combined, extended, customized, and bound to the other models. Work is ongoing to define a more

abstract meta-model to represent generic widgets for generating any RIA framework, and not only

GWT.

UsiXML applies to general UIs, not only to Web applications: it is an XML-compliant markup

language that describes the UI for multiple contexts of use, including also RIA widgets. However, only

the presentation aspects can be described and cannot be bound to business logic or data aspects.

The RUX-Method operates at three different levels of presentation (Abstract, Concrete and Final

presentation levels), which include also temporal and interaction behaviors. Following Event-

Condition-Action rules, operations provided by other models (e.g. UWE, WebML) can be triggered.

RUX-Method specifies a component library able to specify the relationships between widgets of

different complexity levels (e.g., mashups, windows and so on) and to ensure their right composition in

the UI.

The approaches mixing HCI and Web Engineering techniques focus on users tasks and on user

interaction, modeled as interaction patterns (both at an abstract and at a concrete level) or as UML-

Statecharts, respectively.

Commercial tools provide simple solutions for RIA presentation. Novulo defines the UI by means

of its IDE; Thinkwise uses a UI description language; Mendix supports a DSL for the specification of

rich forms, and the Agile Platform [DL-6] contains a set of rich-Web usability patterns (e.g., user input

validation, patterns involving asynchronous HTTP requests). In WebRatio, the interface elements like

links, form fields, and pages can be associated with properties defining rich behaviors, like partial page

refresh, drag&drops, dynamic tooltips, field content autocompletion, etc.: the corresponding code is

automatically derived from the model enriched with such properties. Finally, RUX-Tool implements

the specification of the RUX-Method.

Communication features are captured by means of event-handling, which may occur either

• at the business logic level, to generate, synchronously or asynchronously notify, and detect

events between the client and the server (e.g., in WebML) or

• at the presentation level, where UI or system events can be associated with actions to be

executed on the server-side (e.g., in OOHDM and OOH4RIA) and where the designer can

decide between synchronous and asynchronous event handling (e.g., in the RUX-Method).

Figure 1 graphically summarizes all such aspects: currently, none of the proposed methodologies

covers all the RIA features. However, it can be noticed that almost all the typical features of RIAs can

be specified using conceptual models and, therefore, the different MDD methodologies can however

support the development of the different classes of applications introduced in Section 2:

• A RIA makeover can be easily done with all the approaches focusing on presentation.

• Rich UIs can be designed with RUX-Method, OOHDM, and OOH4RIA.

Toffetti, G; Comai, S; Preciado, J.C.; Linaje, M.; 83

• The main features of distributed and standalone RIA applications can be specified with the

WebML methodology.

More complex RIAs covering all the categories can be obtained by combining different proposals:

for example, in [7] the combination of WebRatio and RUX-Tool is illustrated.

6 Discussion and conclusions

Both framework-based and model-driven approaches present some limitations. Figure 2 visually

compares the RIA development frameworks of Section 4 with the MDD development approaches of

Section 5.

The current industrial development practice and MDD solutions lack a comprehensive approach to

RIA development, covering all development steps and application layers (server and client), easing the

process, and helping identifying correct design choices.

The severe fragmentation of RIA technologies encourages non-structured ad-hoc development,

preventing the adoption of a common set of guidelines and best practices. Also, MDD approaches

allow to declaratively model at a high-level of abstraction several RIA features and in many cases to

automatically generate the final code, but each methodology focuses only on specific aspects.

Given these shortcomings, we identified the following main future research directions for RIAs:

1. Life-cycle: RIAs impact on the whole life-cycle of the development process, but both

frameworks and model-driven approaches have focused their attention mainly on the design

and implementation phases. Important phases like requirement analysis and testing need to be

revised w.r.t. traditional Web applications. RIAs pose new challenges both concerning

functional (dynamic UIs, mark-up and scripting, browser idiosyncrasies) and non-functional

testing (how and where to measure UI responsiveness [9]).

2. Design methodology: A complete design methodology covering all RIA dimensions (data,

business logic, presentation, communication) is still missing. Such a methodology should be

distilled as a combination of the best practices in the industrial world and the choices

identified at an abstract level in the design of MDD approaches. MDD solutions cover

complementary aspects and should help in the early identification of the possible design

alternatives and the impact of a choice on the different aspects of the application. For

instance, both server- and client sides should be seamlessly co-designed: code-based and

framework-driven developments induce a fracture between client-side and server-side

development
c
.

3. Roles: In RIAs the UI is the main responsible for the user experience and therefore it plays a

pivotal role. Specific methodologies such as User-Centered Design become important;

however, they still need to be adapted to the RIA development process by focusing on the

inclusion and integration of the different tasks and professional figures involved in producing

the final application user experience (designers, client- and server-side developers, system

administrators). Also, accessibility guidelines such as WAI-ARIA
d
 should be supported by

c An exception is GWT providing means for the generation of (at least part of) the server-side application logic.

d http://www.w3.org/WAI/intro/aria

84 State-of-the-Art and Trends in the Systematic Development of Rich Internet Applications

development approaches. Currently, only some efforts have been proposed by some MDD

approaches such as [6]

4. Tool support: current tools

complete application life

Furthermore, they should natively ease the integration of different roles in the development

process.

Figure 2: Graphical summary of the aspects covered by RIA development approaches

We can affirm that MDD approaches can play a major role in challenging the complexity of RIA

development. Indeed, current trends in the software and Web engineering fields show an increasing

adoption of MDD and MDA

with the aim of streamlining the development process and improving final software quality.

The XMLHTTPRequest [DL

HTML5 specification - expected to be completed by the end of 201

RIA development in terms of technologies and, therefore, processes. Browsers supporting HTML5 will

natively provide most of the features that now require plug

storage support); in addition, more homogeneous JavaScript support across browsers is expected. We

believe this will result in less effort to be invested in technology

frameworks, plug-in-specific coding) and more into final application and developm

For these reasons, the research directions we identified above remain valid, as they concentrate on

high-level primitives, models, and processes rather than implementation technologies.

Acknowledgements.

The authors wish to acknowled

PDT09A015 granted by Junta de Extremadura and FEDER

de Ciencia e Innovación and FEDER.

and Trends in the Systematic Development of Rich Internet Applications

development approaches. Currently, only some efforts have been proposed by some MDD

[6].

current tools can be improved to reach technology independence, to cover the

complete application life-cycle, to leverage on high level primitives and code

Furthermore, they should natively ease the integration of different roles in the development

Graphical summary of the aspects covered by RIA development approaches

that MDD approaches can play a major role in challenging the complexity of RIA

development. Indeed, current trends in the software and Web engineering fields show an increasing

adoption of MDD and MDA [4] (e.g., Eclipse has joined MDA, Visual Studio partially adopts MDD)

with the aim of streamlining the development process and improving final software quality.

[DL-26] has got the W3C recommendation status in 2010

expected to be completed by the end of 2011 - will have a major impact on

RIA development in terms of technologies and, therefore, processes. Browsers supporting HTML5 will

natively provide most of the features that now require plug-ins (namely multimedia and client

on, more homogeneous JavaScript support across browsers is expected. We

believe this will result in less effort to be invested in technology-specific issues (cross

specific coding) and more into final application and developm

For these reasons, the research directions we identified above remain valid, as they concentrate on

level primitives, models, and processes rather than implementation technologies.

The authors wish to acknowledge the collaborative funding support from the

PDT09A015 granted by Junta de Extremadura and FEDER and TIN2008-02985 granted by Ministerio

de Ciencia e Innovación and FEDER.

and Trends in the Systematic Development of Rich Internet Applications

development approaches. Currently, only some efforts have been proposed by some MDD

to reach technology independence, to cover the

cycle, to leverage on high level primitives and code-generation.

Furthermore, they should natively ease the integration of different roles in the development

Graphical summary of the aspects covered by RIA development approaches

that MDD approaches can play a major role in challenging the complexity of RIA

development. Indeed, current trends in the software and Web engineering fields show an increasing

(e.g., Eclipse has joined MDA, Visual Studio partially adopts MDD)

with the aim of streamlining the development process and improving final software quality.

in 2010, meanwhile the

will have a major impact on

RIA development in terms of technologies and, therefore, processes. Browsers supporting HTML5 will

ins (namely multimedia and client-side

on, more homogeneous JavaScript support across browsers is expected. We

specific issues (cross-browser JS

specific coding) and more into final application and development process quality.

For these reasons, the research directions we identified above remain valid, as they concentrate on

level primitives, models, and processes rather than implementation technologies.

ge the collaborative funding support from the Spanish projects:

02985 granted by Ministerio

Toffetti, G; Comai, S; Preciado, J.C.; Linaje, M.; 85

References

[1]. A. Bozzon, S. Comai, P. Fraternali, G. Toffetti Carughi, Conceptual Modeling and Code

Generation for Rich Internet Applications, in: International Conference on Web Engineering

(ICWE), ACM 263, Palo Alto, USA, 2006, pp. 353-360.

[2]. F. Daniel, J. Yu, B. Benatallah, F. Casati, M. Matera, R. Saint-Paul, Understanding UI

Integration: A Survey of Problems, Technologies, and Opportunities, IEEE Internet Computing

11 (3) (2007) 59-66.

[3]. P. Dolog, J. Stage, Designing Interaction Spaces for Rich Internet Applications with UML, in:

International Conference on Web Engineering (ICWE), Springer LNCS 4607, 2007, Como, Italy,

pp. 358-363.

[4]. B. Hailpern, P. Tarr, Model-driven development: the good, the bad, and the ugly, IBM Systems

Journal 45 (3) (2006) 451-461.

[5]. N. Koch, M. Pigerl, G. Zhang, T. Morozova, Patterns for the Model-Based Development of

RIAs, in: International Conference on Web Engineering (ICWE), Springer LNCS 5648, San

Sebastián, Spain, 2009, pp. 283-291.

[6]. M. Linaje, A. Lozano-Tello, J.C. Preciado, F. Sanchez-Figueroa, R. Rodríguez, Obtaining

accessible RIA UIs by combining RUX-Method and SAW, in: Automated Specification and

Verification of Web Systems, Hagenberg, Austria, 2009, pp. 85-98.

[7]. M. Linaje, J.C. Preciado, R. Morales-Chaparro, R. Rodríguez-Echeverría, F. Sanchez-Figueroa,

Automatic Generation of RIAs Using RUX-Tool and WebRatio, in: International Conference on

Web Engineering (ICWE), Springer LNCS 5648, San Sebastián, Spain, 2009, pp. 501-504.

[8]. M. Linaje, J.C. Preciado, F. Sanchez-Figueroa, Engineering Rich Internet Application User

Interfaces over Legacy Web Models, IEEE Internet Computing 11 (6) (2007), 53-59.

[9]. C. Loosley, Rich Internet Applications: Design, Measurement, and Management Challenges,

white paper, Keynote Systems (2006).

<http://www.keynote.com/docs/whitepapers/RichInternet_5.pdf>

[10]. F. Martinez-Ruiz, J. Muñoz Arteaga, J. Vanderdonckt, J. Gonzalez-Calleros, R. Mendoza, A

first draft of a Model-driven Method for Designing Graphical User Interfaces of Rich Internet

Applications, in: Latin American Web Congress (LA-Web), Puebla, Mexico, 2006, pp. 32-38.

[11]. S. Meliá, J. Gómez, S. Pérez, O. Díaz, A Model-Driven Development for GWT-Based Rich

Internet Applications with OOH4RIA, in: International Conference on Web Engineering (ICWE),

New York, USA, IEEE Computer Society, 2008, pp. 13-23.

[12]. J.C. Preciado, M. Linaje, F. Sanchez, S. Comai, Necessity of methodologies to model rich

Internet applications, in: International Symposium on Web Site Evolution (WSE), IEEE

Computer Society, Budapest, Hungary, 2007, pp. 7-13.

[13]. M. Urbieta, G. Rossi, J. Ginzburg, D. Schwabe, Designing the Interface of Rich Internet

Applications, in: Latin American Web Congress (LA-Web), Santiago de Chile, Chile, 2007, pp.

144-153.

[14]. R. Valdes, E. Knipp, D. Mitchell Smith, G. Phifer, M. Driver, Market Scope for Ajax

Technologies and Rich Internet Application Platforms, Gartner RAS Core Research Note

G00173751, 2009. <http://www.adobe.com/enterprise/pdfs/gartner-ajax-ria.pdf>

[15]. F. Valverde, O. Pastor,,P. Valderas, V. Pelechano, A Model-Driven Engineering Approach

for Defining Rich Internet Applications: A Web 2.0 Case Study, Handbook of research on Web

2.0, 3.0 and X.0 Technologies, Business, and Social Applications, IGI Global, 2009, pp. 40-58.

[16]. J. Wright, J. Dietrich, Survey of existing languages to model interactive web applications, in:

Asia-Pacific Conference on Conceptual Modelling vol. 79, Wollongong, Australia, 2008, pp.

113-123.

86 State-of-the-Art and Trends in the Systematic Development of Rich Internet Applications

[17]. J. Wright, J. Dietrich, Requirements for Rich Internet Application Design Methodologies, in:

International Conference on Web Information Systems Engineering (WISE), Auckland, New

Zealand, 2008, pp. 106-119.

[18]. P. Fraternali, S. Comai, A. Bozzon, G. Toffetti. Engineering rich internet applications with a

model-driven approach. ACM Trans. Web 4, 2, Article 7 (April 2010), 47 pages.

[19]. S. Meliá, J. Gómez, S. Pérez, O. Díaz. Architectural and Technological Variability in Rich

Internet Applications. IEEE Internet Computing 14, 3 (May 2010), 24-32.

[20]. P. Fraternali, G. Rossi, F. Sánchez-Figueroa, "Rich Internet Applications," IEEE Internet

Computing, vol. 14, no. 3, (May 2010) pp. 9-12.

Appendix 1: DL-Development Links

[DL-1] Adobe Catalyst: http://labs.adobe.com/technologies/flashcatalyst/

[DL-2] Adobe AIR: http://www.adobe.com/products/air/

[DL-3] Adobe FlashPro: http://www.adobe.com/products/flash/flashpro/

[DL-4] Adobe Flex: http://www.adobe.com/products/flex/

[DL-5] Adobe LiveCycle Data Services: http://www.adobe.com/devnet/livecycle/dataservices.html
[DL-6] AgilePlatform: http://www.outsystems.com/

[DL-7] Backbase: http://www.backbase.com/

[DL-8] Dojo Toolkit: http://dojotoolkit.org/

[DL-9] Flash Player: http://www.adobe.com/support/flashplayer/

[DL-10] GWT: http://code.google.com/webtoolkit/

[DL-11] HTML5: http://www.w3.org/TR/html5/

[DL-12] JavaFX http://sun.com/javafx/

[DL-13] Java Web Start: http://java.sun.com/products/javawebstart/

[DL-14] JQuery: http://jquery.com/

[DL-15] MagicUWE: http://uwe.pst.ifi.lmu.de/toolMagicUWE.html

[DL-16] Mendix: http://www.mendix.com/

[DL-17] Ms Blend: http://www.microsoft.com/expression/products/Blend_Overview.aspx

[DL-18] Ms Silverlight: http://silverlight.net/

[DL-19] Novulo: http://www.novulo.com/

[DL-20] Olivanova: http://www.care-t.com/products/index.asp

[DL-21] OOH4RIA: http://www.dlsi.ua.es/~santi/ooh4ria

[DL-22] OpenLaszlo: http://www.openlaszlo.org/

[DL-23] Prototype: http://prototypejs.org/

[DL-24] RUX-Tool: http://www.homeria.com/

[DL-25] Thinkwise: http://www.thinkwisesoftware.com/

[DL-26] XMLHttpRequest:http://www.w3.org/TR/XMLHttpRequest/

[DL-27] WebRatio: http://www.webratio.com/

