
Towards Improving Productivity in NMap
Security Audits

Jose Manuel Redondo1,∗ and Daniel Cuesta2

1Computational Reflection Research Group, Department of Computer Science,
University of Oviedo, Science Faculty, Office 240, C/Federico Garcia Lorca S/N,
33007, Oviedo, Spain
2Computer Network Attack (CNA), S2Grupo, Valencia, Spain
E-mail: redondojose@uniovi.es
∗Corresponding Author

Received 19 February 2019; Accepted 18 September 2019;
Publication 04 October 2019

Abstract

Maintaining an adequate security level in computer infrastructures,
like Internet-facing web servers, requires periodic assessment of their
vulnerabilities with specialized security tools. nmap is arguably the most
popular one, due to its versatility, powerful features, and low resource usage.
However, this versatility can turn its usage difficult and error-prone, as it
implements a lot of features and reports errors at runtime. This can lead
to suboptimal results while designing auditing tasks. This research aims to
decrease this complexity by developing a web GUI that favors experimen-
tation, on-demand scans, and provides solutions to several shortcomings
detected in the official one. We complemented it with a Domain Specific
Language that implements early detection and reporting of syntax, type, and
semantic errors when creating audit tasks. Both expand nmap possibilities,
creating robust, schedulable, distributable, and portable auditing tasks able
to find anomalies analyzing their output. Our initial release shows that the
web GUI has been well received by several security related media and
professionals. The language can detect and report a wide range of potential
errors, substantially increasing the robustness of the created tasks. Therefore,

Journal of Web Engineering, Vol. 18 7, 539–578.
doi: 10.13052/jwe1540-9589.1871
c© 2019 River Publishers

540 J. M. Redondo and D. Cuesta

Domain Specific Languages with early detection of type errors turned to
be suitable to lower the complexity and expand the usage possibilities of
complex tools like nmap.

Keywords: nmap, web GUI, advanced features, productivity, Domain
Specific Language, static type checking.

1 Introduction

Attacks to different types of computer system infrastructures [1] are critical
problems. Their number increases each year [2]. These attacks usually take
advantage of subtle implementation details of protocols and services [3].
They may be performed over private companies, public institutions, or mili-
tary infrastructures [4]. Consequences may be varied: steal user information
[5], alter the normal behavior of services [6–8], data hijacking [9], or taking
control of an infrastructure to perform malicious activities [10]. Both web
applications and their hosting servers are very common attack targets [11].

The security status of computer systems can be evaluated through audits
performed by professionals (called pentesters). They find vulnerabilities
applying the same techniques that malicious attackers may use, but on
controlled environments and agreeing to certain limitations. Found problems
are written to a report, detailing their causes and potential solutions.

Pentesting activities require specialized tools. The nmap network analysis
tool [12] is arguably the most popular and widely used one. It was created in
1997 to discover hosts and services on computer networks (thus building a
“Network Map”). Its user base and popularity greatly increased when it was
ported to all major operating systems. It also won the Linux Journal Editor’s
Choice Award in 2001 [13] and appeared in numerous news media. It is also
part of widely used automatic vulnerability discovery tools.

nmap capabilities have increased over the years. Nowadays, it is a very
flexible and powerful security tool that performs a wide variety of security
tests, beyond typical service type and version discovery. It has a scripting
engine (Nmap Scripting Engine or NSE) and an extensive and customizable
library of scripts [12]. These enable an ample set of advanced and specialized
security tests in a wide range of scenarios. For example, it is possible
to establish the geographical location of scanned targets, locate malware-
spreading hosts via the Google Safe Browsing API, locate active e-mail
accounts, or perform web server specific testing. It also supports a wide range
of scanning techniques and integrates firewall/IDS evasion features, like the
popular zombie scan technique.

Towards Improving Productivity in NMap Security Audits 541

Unfortunately, this turns using its full potential more difficult, especially
for students or users with little experience. It has 4 ways of specifying targets,
more than 110 options (divided in 10 categories), multiple option combina-
tions (some mutually incompatible) that achieve different effects, and more
than 600 standard NSE scripts [12] (it also supports adding third-party ones).
Detailed information about nmap options is not provided when running the
tool from the command-line. Additionally, the official GUI (Zenmap) lacks
information about options (and their correct parameter values) to facilitate
performing quick on-demand scans (see Figure 1, part 1). More information
is provided if designing a custom scan profile, but this requires time, advanced
knowledge about the tool options, correct parameter values, and possibilities.
This could lead to missing or misusing some important options when creating
non-basic on-demand scans, leading to suboptimal results.

Solutions to simplify and automate complex operations with infras-
tructures not only comprise improving GUIs. The rise of the cloud as a
deployment platform for public HTTP-based services has also popularized
tools that allow deploying infrastructure as code, such as Ansible1 or Puppet2.
These products define a Domain-Specific programming Language (DSL), so
their programs can be translated to specific actions in the target infrastruc-
ture, installing, updating, configuring or managing software in any way the

Target: Profile:

Command:

Output Port/Servers Server DetailsServicesServers

Quick scan plus

ServerOS

scanme.nmap.org

DDDeeeeetails

uiiicck scan plusTarget: Profile:

Command:

Output Port/Servers TopologyServices

nmap –sV –T4 –O –F –versión-light scanme.nmap.org

Servers

ServerOS

nmap –sV –T4 –O –F –versión-light scanme.nmap.org

Server Details Scans

scanme.nmap.org

nmap –sV –T4 –O –F –PA70000 –versión-light scanme.nmap.org

Test profile

1

2

3

Topology

Figure 1 Different Zenmap scan outputs.

1https://www.ansible.com/
2https://puppet.com/

542 J. M. Redondo and D. Cuesta

user will specify. The same approach is followed by the popular container
management software Docker3 with its Dockerfiles.

One of the main advantages of this approach is that these programs
can be easily distributed and used in multiple OS, as they are small plain
text files. This way, a single program can be applied to multiple machine
instances fulfilling the same role provided by modern cloud-based services.
This substantially simplifies infrastructure configuration. However, the lack
of early validation of these programs is arguably the main drawback of
this approach: these DSLs are typically dynamic, so validation is performed
mostly at runtime, while the infrastructure is being deployed by executing
the program commands. This means that if one instruction has errors (for
example, by using parameters of the wrong type), the user could be forced to
run the program multiple times, until all errors are fixed.

nmap scans also suffers this lack of early validation problem. The syntax
and parameters of its options is usually very different from each other, and
therefore prone to mistakes. Errors are always reported when the scan process
is run (see Figure 1, part 2). This way, users might as well be forced to
run a scan several times until its configuration is correct, decreasing their
productivity. The contribution of our research is focused on facilitating nmap

usage by:

1. Designing a new GUI (NMapGUI) that answers the following research
questions: can a GUI offer detailed information about all nmap features
in on-demand scans, and facilitate using its full potential? Can it also
facilitate the usage of advanced nmap options, or implement additional
features (such as scan scheduling or output analysis), without requiring
deep nmap knowledge?

2. Creating a new DSL (NMapDSL) that models and facilitates creating
and managing nmap scan tasks with the same advantages of popu-
lar infrastructure-management DSLs: distribution, portability, and easy
application to multiple targets. Our research also aims to substantially
decrease lack of early validation problems, identifying and reporting
task errors prior to its execution. Therefore, the final research question is
if modern language processors design techniques can be used to provide
early validation and debugging of nmap option syntax, parameter types,
and semantics, decreasing runtime errors.

nmap scan tasks designed with NMapGUI can generate NMapDSL code.
Both products can run independently. Their features have been created

3https://www.docker.com/

Towards Improving Productivity in NMap Security Audits 543

focusing on teaching scenarios, encouraging knowledge transfer from expe-
rienced users to beginners, and providing verbose information about their
operations. We will review the design principles, features, usage scenarios
and planned future functionality, and how a part of our research was received
by security-related media and users.

The rest of this paper is structured as follows. Section 2 describes
NMapGUI. First, it details the shortcomings of the official GUI (Subsec-
tion 2.1); Then, it details NMapGUI main design features (Subsection 2.2),
and UI design patterns (Subsection 2.3). The web GUI architecture and
implementation characteristics will be reviewed in Subsection 2.4, along with
sample usage scenarios (Subsection 2.5). Section 3 describes NMapDSL,
describing its syntax (Subsection 3.1), validation (Subsection 3.2), architec-
ture (Subsection 3.3), and execution results (3.4). Section 4 describes the
reviews made by security-related media and users to the current release of our
research prototype, along with a proposed systematic validation procedure.
Finally, Sections 5, and 6 detail the conclusions, future, and related work.

2 NMapGUI

2.1 Shortcomings of the Official GUI

Performing predefined on-demand scans with the nmap official GUI
(Zenmap) is simple. Users must choose a scan profile and provide scan
targets. Default scan profiles are a list of 10 predefined combinations of
nmap options, determining the amount or type of information that will be
obtained when a scan completes. However, unless we decide to edit a profile,
Zenmap does not display a description about the profile goals. Its concrete
options are just shown as a nmap command line. This way, users with little
experience might not fully understand the performed operations or the type
of information they obtain, as it requires a substantial knowledge of the tool.
Zenmap shows the following information after a scan finishes (see Figure 1,
parts 1 and 3):

1. The nmap raw output.
2. Services running in each port of every target.
3. Extended information about each discovered service and target details

(such as predicted operating system (OS) type and version), depending
on the chosen profile.

4. A diagram of the subnets passed through to reach the targets.

However, Zenmap does not facilitate the usage of the full nmap auditing
potential in several use cases, as we will outline in the following subsections.

544 J. M. Redondo and D. Cuesta

2.1.1 No information about individual options for on-demand
scans

Zenmap predefined scan profiles do not cover all possible options, com-
binations, or scan types, just a few of common usages. So, customizing
on-demand auditing tasks requires manually editing the options to be used,
which is error-prone due to the lack of information about them. Each option
and parameter must be manually written in the Zenmap command box (see
Figure 1), as if running from a system console. Zenmap displays more
detailed information if a new scan profile is created, but this requires more
time, and do not fit well in quick on-demand scan scenarios. So, users
frequently rely on third-party support materials to consult the effects and
syntax of each option. Finding the correct option combination to create
an on-demand audit task can be complex and time-consuming, decreasing
productivity.

2.1.2 Limited support of NSE scripts
The NSE script library gives nmap a lot of flexibility, greatly enhancing
its usefulness in multiple scenarios. Zenmap only provides a list of the
installed NSE scripts (plus individual descriptions) when a new scan profile is
created. The script list does not have filtering or search capabilities, so finding
adequate scripts may be more difficult.

For example, a script like http-affiliate-id, grabs affiliate network
IDs from a web page, so pages with the same owner can be identified
and studied together. Crawling and analysis of web error pages is offered
by the http-errors script, which can be used to guess important infor-
mation about an audited system, or the technologies used in their hosted
webs [14]. Several scripts also target specific hardware types or vendors:
broadcast-bjnp-discover discovers Canon printers in a network. Others
detect backdoors in certain devices, as the http-dlink-backdoor script
does with certain D-Link router models.

Not using adequate scripts could drastically change the outcome of a
security audit, especially when users have limited experience. For example,
not using the http-dlink-backdoor NSE script may leave some important
vulnerabilities undetected, throwing false negatives, and not taking advantage
of all nmap possibilities.

2.1.3 Limited support of parallel scan tasks
The execution state of simultaneous scan tasks cannot be viewed on real time
unless multiple Zenmap instances are run. Active scan tasks can be accessed
through the “Scan” tab (see Figure 1, label 2), but only one can be viewed at

Towards Improving Productivity in NMap Security Audits 545

a time in a single window. This potentially decreases productivity, forcing the
user to navigate through different windows to know the status of each scan.

2.1.4 No scan scheduling or result analysis support
nmap does not implement scheduling or output analysis with reporting
features. These have to be performed by third-party tools. This lowers its
usefulness in some pentesting scenarios, forcing the user to search or create
tools when, for example, a low-cost surveillance method is needed, such as
in IoT networks.

2.2 Main NMapGUI Design Features

One of the major problems we faced when designing the GUI is that
we could not follow a systematic approach involving users. Unfortunately,
we could not find potential target users that have adequate knowledge of
nmap and consistently commit to the project development during the GUI
creation phase. So, we were unable to create questionnaires for differ-
ent potential user groups regarding functionality and UI design, to obtain
feedback before creation. Shortcomings of the official GUI (Section 2.1)
were identified using our own experience with nmap and reading anony-
mous opinions in specialized forms. These information sources were also
used to define the features of NMapGUI we will describe in the following
subsections.

Having no initial feedback from potential user profiles increases the risk
of creating an unsuccessful GUI design. We verified that this was not the case
using the feedback provided by expert reviewers and users after its initial
public release (see Section 4). However, we admit that using a systematic
approach instead would have been more adequate.

2.2.1 Favor on-demand scans and experimentation
NMapGUI was designed to prioritize experimentation and creating on-
demand scans that can be optionally saved later. Opposite, Zenmap is more
focused in creating custom scan profiles. Zenmap provides much more com-
plete nmap usage information when creating/editing profiles (see Section 2.1),
which in turn requires a deep knowledge of nmap options. NMapGUI displays
the full range of nmap options divided in four areas for immediate use (see
Figure 2):

1. Host discovery: related to finding different types of targets.
2. Port scanning (shown in Figure 2): enabling users to find services

running at concrete ports in the targets.

546 J. M. Redondo and D. Cuesta

Discovery

Port Scan

NSE Scripts

OS Version

Configure

Currentnt Nmapp commandd line

Discovery

Port Scan

NNNSE Scripts

OOS VeVV rsion

Configure

NmapNmap
op�onsop�ons

area

Op�onn groupsps area

Nmapp rawNmapp raaw
output

Save Profile

Go!

Load
Profile

Scheduler

SchedulingScheduling
Op�ons

Graph

HTML

Output

nmap –F scanme.nmap.org

nmap –F scanme.nmap.org

nmap –F scanme.nmap.org

Port scan

TCP scan type

IP Protocol scan:

Port scan

TCP scan type

-sO

-FPort selec�on Fast scan: -FPort lselec�on Fast scan:
Window

-p <port ranges>

--exclude-ports <port

ranges>

-r

--port-ra�o <ra�o>

--top-ports <n>

-b <FTP relay
host>

Figure 2 nmap UI design and nmap output.

3. Usage of NSE scripts (shown in Figure 3): that facilitates using NSE
scripts in scanning tasks.

4. OS and service version detection: related to the detection of OS/service
types and versions running on the targets.

A fifth option area (“Global scanning options”) contains those that change
the behavior of every scan. Inside each area, NMapGUI groups options
by purpose (Figure 2). Each option has a short description and a syntax
example to decrease the probability of accidental errors and needing external
information sources.

NMapGUI favors interactivity allowing users to create scan tasks only
with GUI elements: clicking on an option automatically adds it to the com-
mand line to be executed. If the option is already included, it is removed.
However, user feedback (see Section 4) revealed that manually customizing
the command to be run was requested, even if part of it was specified
using GUI elements. Consequently, NMapGUI allows writing nmap options
directly in the command section, enabling combined manual- and click-based
command construction. Pressing the “Go!” button runs the current command
as a background task, so a new scan can be immediately built and run (see
Figure 2).

2.2.2 NSE scripts support
NMapGUI organizes installed NSE scripts in a category tree, depending on
their main purpose (see Figure 3). A keyword search engine facilitates finding

Towards Improving Productivity in NMap Security Audits 547

Discovery

Port Scan

NSE Scripts

OS Version

Script pt searchh engine

General Scripts List

Scripts List

Script Scan

Checks for an identd (auth) server which is spoofing its
replies. Tests whether an identd (auth) server responds with

an answer before we even send the query. This sort of
identd spoofing can be a sign of malware infec�on, though

it can also be used for legi�mate privacy reasons

Figure 3 NSE script information in NMapGUI.

them by description, obtained from its official documentation and shown as
a tooltip. This way, users have information to decide if a script is suitable
or not, decreasing the possibility of consulting external information sources.
This is aimed to facilitate the work in learning environments.

2.2.3 Parallel execution of scanning processes
Users can run multiple instances of nmap with different option sets simultane-
ously within the same GUI instance. Every scan task runs in a different thread,
and its output is displayed on an independent minimizable window at real-
time (see Figure 2). This way, users may increase their productivity by easily
running and supervising multiple scans at the same time, especially if the
scans take a long time to complete (as those using IDS evasion techniques).

2.2.4 Scan scheduling and anomaly reporting
Periodically running nmap auditing tasks over machine infrastructures,
analyzing anomalies in their output, can be a very useful and low resource
consumption surveillance practice. An anomaly can be defined as a condition
that target machines fulfill when they should not to, or vice versa. For
example, if a web server is expected to have the ports 22 (SSH), 80 (HTTP)

548 J. M. Redondo and D. Cuesta

and 443 (HTTPS) open only, presence of additional open ports is anomalous.
This might indicate a simple misconfiguration, but also an ongoing data
exfiltration process from a compromised machine or web site. Also, finding
these ports closed or unresponsive may indicate that a machine is down,
or its services have been interrupted. This allows users to detect problems
earlier, when the damage may not be very high, or quickly develop correc-
tive responses without further compromising the infrastructure. Using nmap

for these tasks enhances the security level of an infrastructure with lower
resource usage that more complex (albeit more versatile) threat detection soft-
ware [15]. Therefore, it is easier to deploy in infrastructures with potentially
low resources and/or bandwidth more easily, such as IoT networks.

The first step to create scan scheduling support is to give configured
scans its own entity. To do this, we provide the ability to save scan task
configurations created in NMapGUI as named scan profiles (see Figure 2),
with an optional long description. This way, NMapGUI allows users to create
a custom profile from their experience of working and testing several option
combinations first. These named scan profiles are aimed to be distributed
and reused, capturing the acquired usage experience. This was also specially
thought to target learning environments.

NMapGUI named scan profiles are simple JSON files composed by
key-value pairs. They contain the nmap command line to be run (except
the targets) and a description of its effects, so they can be easily shared
and understood. Named scan profiles were designed with a different design
approach to Zenmap custom profiles: users can design them to be very
granular, so they don’t contain a great range of different options, modeling
just particular features or usage types without requiring a deep knowledge of
the tool. This way, more complex scans can be composed aggregating smaller
named scan profiles. Using multiple named scan profiles in a scan task
combines their options. Named scan profiles can also be used in NMapDSL
programs (see Section 3).

The current release of NMapGUI and NMapDSL includes 37 dif-
ferent named scan profiles, covering a wide range of nmap options.
Some of them use common features, like different TCP detection tech-
niques (TCP IP scan, TCP SYN scan, . . .), but others also have more
advanced options. For example, there are profiles with firewall/IDS detection
and evasion techniques (detect firewall, avoid firewall detection

packet fragments, . . .), detection of NETB IOS services (netbios find),
or even testing specific vulnerabilities (netbios vuln MS08067).

Towards Improving Productivity in NMap Security Audits 549

Scan

On

Each

No�fy

Scan Condi�ons
Common ports

Reserved TCP ports

Fingerprint strings

SSH usage

Available scan profiles Scan profiles to run

<

>

Common ports

Fingerprint strings

scanme.nmap.org
Target(s) IP/name Scan targets

Add 192.168.2.0/24

Remove

2 Days

E-mail redondojose@uniovi.es

No�fy incidents through

Output
Python 2

Generated Script Language

Target Port Service Status

192.168.2.10 80,
443

Apache
2.2.4 OPEN

192.168.2.10 22 CLOSED

scanme.nmap.org 80 IIS OPEN

All unlisted ports must be closed or filtered for all targets

SMB AND

NOT ‘Windows’ AND NOT ‘Nginx’

Output contains

OR NOT+

Save ProfileLoad Profile

Generate scan script

Figure 4 Current prototype of the scheduling GUI proposed to be added to NMapGUI.

Figure 4 shows the NMapGUI window that supports scheduling and
surveillance features using named scan profiles. Several can be chosen to
be run over selected targets at a certain rate. Periodicity of tasks may be
specified from minutes to months, depending on the surveillance frequency
requirements. Detected anomalies may be reported through email or written
to a local or remote file to be consulted later. Support for anomaly detection
is divided in two categories:

1. Unwanted port states or running services: A table specifies expected
target IP/DNS names, ports, running services, and port status. The
example in Figure 4 shows that the service Apache 2.2.4 is expected
to be running in ports 80 and 443 of the target IP, all of them open to
traffic. Also, the port 22 (SSH) needs to be explicitly closed on the same
machine. Additionally, results of the scheduled scan must also indicate
that IIS is running in the port 80 of scanme.nmap.org. Service name
comparison is case-insensitive, and exact substring matching will be
used once trimmed. Finally, by default all unlisted ports in the scan
conditions table must either not appear in the task output, be closed, or
filtered to not to generate an anomaly alert. This works as a blacklist,
when everything is denied unless it is explicitly granted. The user may
lift this restriction.

2. Unwanted strings in scan results: This allows users to create simple
logical expressions with strings, specifying texts that may (or may not)

550 J. M. Redondo and D. Cuesta

appear in the scan output. The purpose of this functionality is to provide
basic support to detect certain services running in environments when
they should not, machines with unwanted software (OS, service types, or
service versions), or just check that some services are really visible from
the outside. In Figure 4, no machine should have a Windows operating
system detected, and no Nginx web server must be running. Detecting
these strings in the scan output will be reported as errors to the users. OR
and OR NOT operators have similar semantics but reported as standard
information messages.

Once the scheduling behavior is specified, NMapGUI can generate the
corresponding NMapDSL program, which could be translated to scripting
languages supported by the scanning machines OS (see Subsection 3.3). This
also opens the possibility of running surveillance tasks with technologies like
Docker (creating ad-hoc containers with nmap installed), or from automated
infrastructure deployment products, such as Puppet. These configurations
may be also saved or loaded to be modified at any time.

2.3 UI Design Patterns

As we said in Section 2.2, we also relied on our own experience and
anonymous comments when designing the layout of the different GUI win-
dows. We used expert advice to choose adequate UI patterns for each part of
the GUI, but UI mockups couldn’t be systematically validated by users prior
to building the application.

GUI feedback was again obtained after the application was released (see
Section 4). We know that we took a substantial risk, as this is not the optimal
way of creating a GUI, but its high specialization restricted the potential user
community we can reach, to the point that we were forced to take a different
approach. As we will see, the requested UI changes were not major, and
feedback from nmap experts has been good so far.

NMapGUI has been initially designed considering several UI design
patterns [16] to facilitate its usability. As we can see in Figure 2, main UI
abstraction is the Module Tabs pattern. This is because there is a limited visual
space, and content needs to be separated into just 5 sections that need a flat
navigation mode. As the content of each tab can be viewed separate from
each other, section names are short, and content do not depend of the context
of each other, this pattern adapts to our needs. We also prevent unnecessary
page refreshing.

Towards Improving Productivity in NMap Security Audits 551

Regarding scan outputs, we used a Navigation Tabs design pattern but
using the window abstraction with minimize, maximize and close buttons (so
they are disposable) instead of typical tabs. This is because we will rarely
have more than 9 scans running at the same time, scan output needs to fill
the entire width of a page, and there is a need to single-out the currently
selected scan. Regarding displaying single elements, the script category tree
(see Figure 3) has been conceived to follow the Progressive Disclosure UI
pattern while maintaining the classification of the scripts. This allows users
to progressively display information about the script they are inspecting.

Finally, the nmap options presented in each section are based in the Input
Prompt UI pattern. Labels of options do not fully explain what should be
filled into it. Therefore, they are accompanied by sample text using a different
font style so, in combination with the label, both further explain what kind
of input is needed. Although we have a single editable input field (the nmap

command line to be executed), using this approach clarifies what kind of input
is expected in each option. In any case, more work in the usability is needed
before the final NMapGUI release. We will detail part of this additional work
in the future work section.

2.4 Architecture

Current version of NMapGUI is an open source project composed by several
packages (see Figure 5, part 1) designed to be easy to understand and extend.

Executing the NMapGUI .jar file initially runs a small startup Java 1.8
Swing application. Its classes belong to the localGUI package and ensure
that nmap is installed using the features of the Executor package. Then, it
allows users to start/stop an instance of the Spring application implementing

Menu
<<Interface>>

CommandExecutor
<<Interface>>

CommandExecutor

implementsimplements

+ addObserver()
+ execute()

+ removeObserver()

TransInfoHtml

FileFinder

[En�ty classes]

WebController
+ command(Command)
+ executeCommand(Command)
+ finishedCommand(Command)

View

ErrorListenerErrorListener

VisitorVisitor

BaseSeman�cValidatorBaseSeman�cValidator

IPValida�onIPValida�on

Op�onsOp�ons

1 2

ScriptValida�onScriptValida�on

NMAPDSL.g4

CommandExecutorImplCommandExecutorImpl

Observer

NTransMain
+ main(args: String [])

Command

Figure 5 Architecture of NMapGUI (1) and NMapDSL (2).

552 J. M. Redondo and D. Cuesta

the NMapGUI web interface. NMapGUI can only be used from localhost

to prevent potential security problems via remote command execution or
using the machine as a pivot to explore other networks. In our tests we used
the version 1.5.3 of the Spring framework.

The architecture of the web application follows the MVC design pattern.
The View is responsible of processing user inputs, passing the correspond-
ing commands to the web server via HTTP requests. Data visualization is
enhanced using the jQuery 3.2.14 and the D3 V35 libraries.

Requests are managed by the WebController class until they
are executed. When the user runs a command, the controller calls
CommandExecutorImpl. This class is the default implementation of the
command execution processes of the application, and therefore runs
each nmap instance with the provided options. Command execution is
asynchronous, to enable running nmap instances in parallel and to write each
command output in its own window. For that reason, the WebController

uses an Observer design pattern, so it gets notified every time a command
finishes to update the corresponding view.

The Model package contains all classes representing system and scan
result entities: Address, Command, Hop, Host, Hostname, Port, Scan or
Script. Additionally, the Menu submodule contains entities representing
different interface elements, like Menu, Submenu, Category or Option. Its
configuration is read from an XML file so it can be easily updated.

Finally, the Util package contains utility classes to convert from XML to
HTML through an XSLT file (TransInfoHtml), and to locate files that store
command execution results (FileFinder). Code coverage of the application
tests is controlled using the jacoco 0.7.96 library.

2.5 Usage Scenarios

This section describes how to use NMapGUI to run typical nmap on-demand
scans as part of an auditing process. On-demand scans are more flexible that
creating custom scans profiles. The user can quickly react to the information
obtained by a scan, so the next will can be customized depending on the
information obtained by the previous one. For example, if the first scan

4https://jquery.com/
5https://d3js.org/
6https://www.eclemma.org/jacoco/

Towards Improving Productivity in NMap Security Audits 553

detects a web server, the next ones may try different web-related NSE
scripts (like the ones mentioned in Section 1) to try to discover different
vulnerabilities.

The first scenario requires to check the TCP reserved ports of a remote
system. To avoid potential filtering, the TCP SYN scan type will be used. To
do that, the user goes to the “Port Scan” area and, inside the “TCP Scan Type”
group, locate and click the appropriate nmap option for this type of TCP
scan (-sS). This way, the user should only remember the type of port scan,
and NMapGUI provides the necessary information about the corresponding
option. Then, the command can be enhanced guessing the OS type of the
target system. To do that the user goes to the “OS Version” area and click
on the “OS detection” option (-O). As described on Section 2.2, the interface
automatically adds this option to the existing nmap command line. Once the
user finishes adding all the desired options (using the GUI or manually editing
the command), clicking in the “Go!” button shows the scanning progress at
real time. All these steps are illustrated on Figure 6.

When the scanning process finishes, the user may decide to further
explore the remote machine. This begins the second scenario, that uses the
features of the nmap NSE script library to enhance the results of a previ-
ous scan. In this case, the command will incorporate a script that outputs
the fingerprints (service and versions description strings) of any service
not directly recognized by nmap. If the name of this script is not known,

-O

Port Scan

NSE Scripts

OS Version

NSE Scripts

OS Version

nmap –O –sS scanme.nmap.org

nmap –O –sS scanme.nmap.org

Graph

HTML
Configure

Output

TCP Syn: -sS

Port scan

TCP scan type

IP Protocol scan: -s0

OS detec�on:

Figure 6 Typical basic scan process over scanme.nmap.org.

554 J. M. Redondo and D. Cuesta

fingerprint-strings
Prints the readable strings from service

fingerprints of unknown services

Port Scan

NSE Scripts

OS Version

Configure

Discovery

nmap –script fingerprint-strings –O –sS scanme.nmap.org

General Scripts List

Scripts List

Script Scan

Figure 7 Scanning scanme.nmap.org using NSE scripts.

NMapGUI can be used to search it and perform the scan. Figure 7 shows the
“NSE Scripts” area and its “Script list” tab. The desired script can be found
under the “version” category (fingerprint-strings). Once located, the
script information can be checked to ensure it is the correct one. Finally,
clicking on the script adds it to the current command line, so the enhanced
scan can be run again. Although NMapGUI preserves the previously run
nmap command line, this is a new scan, so its output is displayed in a new
independent window. Therefore, it is easy to study and compare both outputs
later. Additionally, if the previous scan was still running, both scans will be
executed in parallel. Figure 7 illustrates this scanning process and the final
nmap output when executed over the same target machine as the previous one.

3 NMapDSL

As we said on Section 1, NMapDSL has two main design goals:

1. Provide an early validation and debugging tool for scan tasks, so errors
can be detected, precisely reported, and corrected during the task design
phase instead of at runtime (see Figure 1, label 2).

2. To be able to facilitate nmap usage on environments that typically cannot
display web pages or GUIs, like servers and IoT devices.

The language is structured in blocks, each modeling different parts of
a scanning process. Blocks include the scan scheduling, result notification,

Towards Improving Productivity in NMap Security Audits 555

and output analysis features described on Section 2.2.4. Another software
product created by this research is the NTrans validation and translation
tool, responsible of translating valid NMapDSL programs to popular scripting
languages. These translated scripts may be moved to any machine in the
infrastructure with nmap and the target scripting language runtime environ-
ment installed. They are also able to run stand-alone, without dependencies
of the GUI components. We plan to support Python 2, Python 3 (including
its fastest implementation [17], PyPy), Bash script, and Powershell as target
scripting languages to be able to run on any major operating systems. As we
said, NMapGUI is also aimed to generate NMapDSL code, so it can also work
as a NMapDSL web IDE for external machines not able to run it.

3.1 Syntax

To fulfill the requirements of our research, NMapDSL tries to increase user
productivity being a simple and easy to understand language that facilitates
performing advanced scan tasks without requiring deep knowledge of nmap.
This is also especially important in computer security courses. The language
has six different blocks, although several are optional. Line comments are
supported with #. The main elements of each block are defined using the
ANTLR7 specification syntax in Figure 8. Sample programs are shown in
Figure 9.

3.1.1 SCAN block
This block is the most important, as it specifies a list of named scan profiles,
or a single list of nmap command-line options, telling nmap what to do. If
nothing is specified, nmap runs with all-default parameters. Additionally, a
series of scan customizing keywords may be optionally placed before SCAN,
to facilitate running common advanced scan configurations without using
options or profiles. These keywords do not cover the full range of possibilities
of nmap, but facilitates users with limited experience to access advanced scan
types:

• Timing options (timing scanANTLR rule): PARANOID (0), SNEAKY (1),
POLITE (2), NORMAL (3), AGGRESSIVE (4), and INSANE (5), representing
values from 0 to 5 of the -T<number> option.

• Scan purposes (purpose scan ANTLR rule): keywords represent-
ing certain typical scan options, such as STANDARD (runs standard

7https://www.antlr.org/

556 J. M. Redondo and D. Cuesta

main: scan_profile des�na�on periodicity? report? with? output?;

// SCAN block

scan_profile: �ming_scan? purpose_scan? evasive_scan?
SCAN_KW scan_type NS;
…

scan_type: profile_list | nmap_op�ons;

profile_list: profile_name (',' profile_name)*;
…

nmap_op�ons: nmap_command_line;

nmap_command_line: nmap_command_op�ons
target_specifica�on?;

target_specifica�on: (input_file | random_targets | host_excluded
| host_excluded_file)+;

nmap_command_op�ons: (host_discovery |scan_techniques
|port_spec|service_detect|script_scan|os_detect|�ming|evasion
|scan_output|misc)*;

…… (103 addi�onal rules, one per each hhhhhhhhhhhhhh nmapppppppppppppppp op�on)

// EACH block

periodicity: EACH_KW period �me_unit NS;
…

// ON block

des�na�on: TARGET_KW targets port_list? NS;

targets: target (',' target)*;

target: ip_v4 | ip_v6 | cidr | dns_name;
…

// NOTIFY block

report: NOTIFYNG_KW (file_no�fy | email_no�fy) NS;
…

// WITH block

with: WITH_KW '{' (target_block)+ '}';

target_block: target '{' target_features '}';

target_features: target_feature (target_feature)*;

target_feature: (host_status | port_list_state | service_list) NS;
…

// OUTPUT block

output: OUTPUT_KW '{' logical_expression NS'}';

logical_expression: (not|text_to_search) (and | or| and_not|
or_not)*;

…… (keywords and d dd dd d d d dd ddd lexereeeeeeeeeerrrrrrrrrrr rules)

Figure 8 ANTLR specification of NMapDSL blocks.

INSANE SCAN -O -sS ; #NMap op�ons
ON ‘scanme.nmap.org’; #Machine DNS name
EACH 2 WEEKS;
NOTIFY FILE /tmp/test.txt ;
WITH ONLY {

‘scanme.nmap.org’ {
PORT 22, 80 OPEN;
PORT 17, 25, 135, 139,445, 4662, 6666 FILTERED;
SERVICE ‘qotd’ PORT 17;
SERVICE ‘ssh’ PORT 22;
SERVICE ‘smtp’ PORT 25;
SERVICE ‘h�p’ PORT 80;
SERVICE ‘msrpc’ PORT 135;
SERVICE ‘netbios-ssn’ PORT 139;
SERVICE ‘microso�-ds’ PORT 445;
SERVICE ‘edonkey’ PORT 4662;
SERVICE ‘irc’ PORT 6666;

}
}

1 2SCAN 'common_ports', 'fingerprint_strings'; #Named profiles
ON 192.168.2.0/24; #En�re subnet
EACH 2 DAYS;
NOTIFY EMAIL redondojose@uniovi.es;
WITH ONLY{

192.168.2.10 { #Expected ports/services for this host only
PORT 80, 443 OPEN;
SERVICE ‘Apache 2.2.4’ PORT 80, 443;
PORT 22 CLOSED;

}
… #Ports/services of addi�onal hosts

}
OUTPUT CONTAINS {

NOT ‘Windows’ AND NOT ‘Nginx’ ;
}

ACTIVEONLY SCAN -v;
ON 192.168.2.0/24;
EACH 2 MINUTES;
NOTIFY EMAIL redondojose@uniovi.es;
WITH ONLY {

192.168.23.10 { UP; } #Hosts are alive
192.168.23.25 { UP; }
#This host must not be running
obsolete.frontend.local { DOWN; }
…

}

3

Figure 9 Samples of NMapGUI DSL programs.

scan techniques, -sC option), ACTIVEONLY (only lists hosts, -Sp

option), AGGRESIVE (runs more common scan options, -A option), or
VERSION (obtain versions of the operating system and running services,
-O option). Other keywords also use popular NSE scripts to achieve use-
ful effects, like GEO (geolocalizes targets using the Maxmind database,
ip-geolocation-maxmind script), WHOIS (obtain DNS information
about targets, whois script), MALWARE (uses the Google Safe Brows-
ing API [18] to determine if the target is identified as a malware

Towards Improving Productivity in NMap Security Audits 557

distributor, http-google-malware script), EMAIL ADDRESS (locates
active email accounts, http-google-email script), or WEB (runs a
series of scripts that specifically target web servers and CMSs, such
as http-methods and http-enum (nmap -sV --script=http-enum

<scanned target>)).
• IDS Evasion (evasive scan ANTLR rule): EVASIVE, automatically

uses multiple nmap options and techniques to evade firewalls or IDSs
(-f, --randomize hosts, --badsum, -D RND:10, --spoof-mac 0).

This way, a valid SCAN block may be like this: INSANE ACTIVEONLY

SCAN <profiles or NMap options>. Scan profiles or options have more
priority in case of overlapping with the keywords.

3.1.2 Other blocks
The ON block is used to specify targets. It accepts lists of IPs, networks (CIDR
format) or DNS names. An optional PORT keyword allows to restrict which
ports are going to be scanned.

The EACH block enables task scheduling functionality (see Section 2.2.4),
accepting a number and a time unit (MINUTES, HOURS, DAYS, WEEKS, or
MONTHS). If not specified, the task is run just once. The also optional NOTIFY
block deals with scan notifications, accepting email addresses to send scan
results or a file path to write them to.

The two final optional blocks deal with anomaly detection. WITH block
describes the expected port/service distribution for targets within the range
specified in the ON block. The WITH ONLY variant is similar but treats as
anomalies every port found OPEN outside the ones specified in the script
source code.

Finally, the OUTPUT CONTAINS block allows creating simple AND/OR
logical expressions (optionally prepending NOT) with strings, to check nmap

output against them. Both blocks behave as described in Section 2.2.4.

3.2 Program Validation

Unlike statically typed languages like Java, C# or C++, dynamically typed
languages do not perform type-checking at compile time. Therefore, the
probability of finding errors at runtime increases in exchange for a higher
degree of flexibility. Static typing offers the programmer early detection of
type errors, making possible to fix them immediately rather than discovering
them at runtime [19]. All nmap usage errors are reported at runtime (see
Figure 1, part 2). Therefore, a programming language created to model nmap

558 J. M. Redondo and D. Cuesta

Table 1 Summary of validations and additional features provided by NMapDSL
Validation Types

Script syntax validation Detects misspelled keywords and unwanted characters
Usage of existing options Checks that every used nmap option exists
Types of option parameters Checks the type of the parameters passed to every

nmap option
Usage of existing NSE scripts Notifies if attempting to use a non-installed NSE script
Usage of documented script
parameters

Warns if using non-documented script parameters

Validate NSE script
parameter types

Provides an extension mechanism to enforce robust
validation of NSE script parameter types without modifying
the script source code

Semantic validation Checks multiple conditions that can go wrong during a
scan: target IPs within declared network ranges, usage of
existing DNS, detection of incompatible options. . .

Precise error location Locates each detected error or warning (line and column)
and provides a detailed explanation of its cause

Additional Features
Scheduling (EACH) Schedules scan tasks to be repeated after a predefined

amount of time
Output analysis (WITH) Port, service banner detection, basic keyword search
Special keywords Usage of advanced nmap options with special keywords

without requiring further configuration

auditing tasks will also have this drawback, as potential type errors will be
detected at runtime.

To counteract the lack of robustness due to no early type error detection,
there are several research lines that developed solutions to statically detect
type errors in dynamic languages [20], or when using dynamic metaprogram-
ming features of statically-typed languages [21,22], without losing flexibility.
All of them increased program robustness by enabling early detection of
type errors in dynamically typed scenarios. We followed the same approach,
enabling static type checking of the parameter types of nmap options, along
with a series of static semantic validations of the values of these types. Table 1
summarizes the types of validations NMapDSL performs and enumerates the
described additional features.

This way, the current implementation of NMapDSL validates the syntax
of all nmap options: usage of malformed, misspelled or non-existing options
will be reported. It also detects wrong types in their parameter values.
Semantic errors, like incompatible options and IPs outside scanning ranges,
are also detected and reported (see Figure 10). Warnings are also used; for

Towards Improving Productivity in NMap Security Audits 559

~# ntrans invalid_option.ntrans
ERROR: line 1:8. Extraneous input 'O' expecting ';'

(1) Using an unknown NMap op�on ~# sudo python3 correct_scan.py
* NMapDSL Python3 scan script running with parameters: -sS –O
* LOADS THE FOLLOWING SCAN PROFILES:

* TCP SYN Scan with version detection
* USES THE FOLLOWING NMAP OPTIONS:

SCAN TECHNIQUES:
* -sS: TCP SYN scan

OS DETECTION:
* -O: Enable OS detection

* TARGETS THE FOLLOWING ADDRESSES: 156.35.94.1
* SCAN TASK WILL RUN ONCE
* INCIDENCES WILL BE REPORTED TO: /tmp/correct_scan.txt
* SCANNED SYSTEMS SHOULD HAVE:

+ 156.35.94.1:
- Port(s) [80, 22] must be OPEN
- Service microsoft-ds present on port(s) [445]
- Port(s) [443] must be OPEN

* FINALLY, OUTPUT SHOULD MEET THE FOLLOWING:
- MUST NOT CONTAIN word ‘Windows’
- MUST NOT CONTAIN word ‘netbios’

NMAP RAW OUTPUT:
Starting Nmap 7.60 (https://nmap.org) at 2019-01-17 17:56
Nmap scan report for 156.35.94.1 (156.35.94.1)
(… rest of the Nmap output …)

* ERRORS FOUND WITH SERVICE/PORT INFORMATION:

- No information about port 443 found in host 156.35.94.1
* ERRORS FOUND WHEN CHECKING SPECIFIED KEYWORDS IN OUTPUT:

- Unexpected Keyword 'netbios' found in NMap output

Syntax errors

~# ntrans invalid_option_value.ntrans
ERROR: line 1:18. No viable alternative at input '3;'

(2) Invalid type in Nmap op�on value

Seman�c errors

~# ntrans invalid_port.ntrans
ERROR: Line 2:20. Target port 70000 is invalid: Port
numbers must be between 0 and 65535.

(3) : Specified port out of bounds

~# ntrans tcp_incompatible_scan_techniques.ntrans
ERROR: Line 1:10. The scan technique '-sS: TCP SYN
scan' is incompatible with the previously specified
scan technique '-sA: TCP ACK scan'

(4) Mul�ple scanning techniques

~# ntrans wrong_ip.ntrans
WARNING: Line 2:3. Target IP 192.35.94.1 is not
reachable from this machine. Ensure that this IP can
be accessed from the scanning machine.
WARNING: Line 5:4. Target IP 192.35.94.2 is not
reachable from this machine. Ensure that this IP can
be accessed from the scanning machine.
ERROR: Line 4:0. Target 192.35.94.2 is not the IP
specified on the ON block: 192.35.94.1

(5) IPs cannot be resolved and are incoherent

(6) Generated script output

1 2

Figure 10 Output examples of script generated with NMapDSL.

example, when specifying unreachable IPs or DNS names, as the machine
used to create the script may not be the same running it. Each error is
reported providing a detailed explanation and its location (line and column).
NMapDSL will only translate to a target scripting language those programs
without errors. This way, the resulting scan tasks are less prone to have errors
than manually configured ones, as NMapDSL offers its users a great range of
early error validations. This is also useful in security courses, as the detected
error information will be valuable to learn how to use nmap correctly.

Regarding NSE scripts validation, every script has its own parameters
and acceptable value types. Unfortunately, this information is not properly
documented for our needs. Script descriptions may be extracted from its
source code (parsing description entries), and parameter names are usually
documented via @args or @arg tags. However, parameter documentation is
frequently incomplete, and there is no syntax to specify which are manda-
tory or its expected type. For this reason, NTrans includes a special folder
script info that contains JSON files specifying this information. This way,
if we use the dns-zone-transfer script and a dns-zone-transfer.json
file is present in this directory, NTrans will load the file to read what parame-
ters are mandatory and its expected type (integer, string, url. . .). If the
corresponding .json file do not exist, the script source code will be parsed,
and a warning will be thrown if an undocumented parameter is used (scripts

560 J. M. Redondo and D. Cuesta

could leave some of their accepted parameters undocumented). This way,
we use the available information without compromising scan flexibility, also
enabling a mechanism to provide robust script validation without modifying
the script source code. The initial version of NTrans is supplied with some
.json files corresponding to standard NSE scripts as examples.

As shown in Table 1, additionally to syntax, multiple semantic conditions
are also checked. These are the most important ones:

• SCAN: nmap option syntax (either manually written or extracted from
named scan profiles) is checked, throwing errors if they are malformed
or the parameter types are invalid (see Figure 10).

• ON: an error is thrown if an invalid IP, DNS name or CIDR is specified.
Additionally, a warning is reported if their syntax is correct, but it cannot
be resolved through a DNS query during the translation process. This
could be caused by a temporary network outage or because only the
scanning machine has access to these targets (hence issuing a warning)
but helps to mitigate potential script creation errors. The same type of
validation is done every time an IP, CIDR or DNS is used, such as in the
nmap command-line options of the SCAN block.

• EACH: warns when using time units higher than 1000, considering that it
is way too much time for a periodic task regardless its time unit. Only
unsigned integer types are accepted.

• NOTIFY: if an email is specified, an error is thrown if the address
does not comply with the email Internet Message Format RFC2822
Standard [23], using the validators of the Apache Commons project8.
The existence of the email domain is also checked, although only a
warning is reported if not found for the same reasons we did with IPs
or DNS names. If a file is specified, its path is checked, and a warning is
issued if the specified file will be overwritten, again considering that the
scanning machine might be different than the script creation one.

• WITH: validation of IPs and DNS names is identical to the described in
the ON block. Port numbers are forced to be unsigned integers in the
1..65536 range. Additionally, coherency is checked between the targets
specified in the ON block and the ones present in the WITH block. For
example, if a CIDR is specified in the ON part, and IP addresses are used
in the WITH block, every IP is checked to be within the CIDR range.
Moreover, if the ON block uses a DNS name and the WITH block uses an
IP (or vice versa), both are checked to see it they match.

8https://commons.apache.org/proper/commons-validator/

Towards Improving Productivity in NMap Security Audits 561

Some of these conditions can only be checked if a net connection
is available in the machine running NTrans, giving a warning otherwise.
Validation result examples can be shown on Figure 10 (part 1).

3.3 NMapDSL Architecture

NMapDSL architecture is also represented on Figure 5 (part 2). The first
step is to automatically generate the language parser by creating an ANTLR
grammar [24] (NMAPDSL.g4 file in Figure 5) composed by several sections
(see Figure 8), using the ANTLR features to automatically generate an
adequate parser:

• The six described language blocks.
• Special data types of our problem domain (IPv4, IPv6, MAC

address. . .).
• An entry for each nmap command-line option, grouped according to the

classification used in NMapGUI and the nmap help description.
• Language keywords.
• Lexer rules.

Once the parser is generated (Parser package), all the translation process
is controlled by the NTrans program (NTransMain class), that validates its
options and reads the DSL program source file. If all is correct, it parses the
script using the generated parser, configuring an ErrorListener (Listener
package) to report possible errors. If program parsing is correct, it selects a
target scripting language (depending on the one specified in NTransMain

options) and runs its corresponding code generator (Codegen package, see
Figure 5). Code generation triggers two validation processes:

1. Additional validations of program entities (DNS names, files, IPs,
emails, network connections, NSE scripts, program options, and named
scan profiles) that could not be performed by the parser. These include
ensuring correct IPv4 byte ranges (IPValidation class), or locating
and enforcing the parameter type rules associated to a NSE script
(ScriptValidation class, see Section 3.2) among others. All the
classes modeling these validation rules belong to the Validation pack-
age, and use the features present in the subpackage Validators, as
shown in Figure 5, part 2.

2. Semantic validation. The Semantics package contains a series of
validators, all deriving from the BaseSemanticValidator class. These
check the semantic rules of the program entities shown in Table 1. For

562 J. M. Redondo and D. Cuesta

example, the ValidScanTechnique class checks that no incompatible
options are used in a configured scan like, for example, more than one
TCP scan technique. Reachability of CIDRs, DNS, and IPs, and com-
pliance of the specified targets with the network range of targets to be
scanned are also checked with classes of this package. Other validations
performed by classes in this package include scheduling time limits,
email domain, and provider configuration (if notifications via email are
used), paths of input and output files, valid port numbers, ranges, named
scan profiles and NSE scripts. All these classes give the precise location
(line and column) of the located errors or warnings within the source
code (see Figure 10). The Semantics and Validation packages can
also be accessed from NMapGUI to reuse the same validations.

Once this validation phase is complete, the detected errors are displayed
(see Figure 10). If no error was detected, NTrans proceeds to write the output
program with the modeled scan task in the desired target scripting language.
To do that, we use several classes belonging to the Codegen package (see
Figure 5), taking advantage that every nmap option has its own entry in
the language Abstract Syntax Tree (AST) and, therefore, they can be treated
individually if used in a program.

First, two additional visitors are used to extract information from the
parser-generated AST tree. The first, VisitorScanData, collects informa-
tion about the values of the different nmap options that are going to be
used in the scan task. The second, VisitorOptionsInfo, gathers detailed
information about the used options. The purpose of this second visitor is to
provide users with precise details about the activities of the scan task if it is
run in verbose mode, so they can be useful in learning environments or to
have a precise log of the performed activities. Both visitors are the same
to all target languages, as they gather information in a language-agnostic
way, placing all the information in the SourceGenerationData class. An
example of this detailed information is shown in Figure 10, part 2.

Finally, to generate code in the target scripting language, a class derived
from the CodeGenerator interface is loaded in the corresponding target
language package, and its generateCode method is called. This method
loads a script model with the code of common functions to any gener-
ated task that is created for each target language (in Python it is called
script model.py). Then, joins it with the data gathered from the two
mentioned visitors. Finally, code templates of different processing functions
in the target scripting language syntax are added to finish the generated scan

Towards Improving Productivity in NMap Security Audits 563

task, thanks to helper classes placed in the same package, and loaded from
this main code generation class.

3.4 Scripts Samples and Output

Figure 9 shows sample programs of the current specification of NMapDSL.
Program 1 contains most of the scheduling shown on Figure 4: a subnet
is monitored every two days to check opened ports on certain machines
and ensuring that no machine reports Windows or Nginx installed. In a real
scenario, this may detect unwanted servers or rogue machines. Program 2
scans the machine scanme.nmap.org and ensures that a list of expected port
and service names is strictly observed. In a real scenario, not fulfilling this
might mean that the machine has been compromised. Finally, program 3 just
checks a network for a series of machines. Extra ones in the list may warn
about rogue or unwanted machines (an old server is accidentally brought up)
in a network. Less machines may also indicate that a server has failed or have
been misconfigured and unable to run, detecting outages.

Figure 10 (part 2) shows the typical output of scripts translated by
NTrans and examples of errors detected by NMapDSL (part 1). Apart from
the syntax errors, the error output of using illegal port numbers (3) or
incoherent/unreachable IPs (5) we mentioned in Subsection 3.2 are shown.
Additionally, usage of incompatible options is also detected (4), as nmap

cannot use multiple scan techniques in a single scan. Figure 10 (part 2) also
shows the step by step detailed information provided by translated scripts
about the purpose of every option and NSE script we mentioned, apart from
the nmap raw output. All these features answer research questions that were
described in Section 1.

4 Reviews and Proposed Validation Procedure

We released a preview version of NMapGUI implementing most of the
described functionality to obtain feedback from the community. This preview
version still lacks support to create or load named scan profiles, although
the file format is defined and supported by the current release of NMapDSL.
It does not integrate yet the DSL validation capabilities for nmap options
and values we saw in the previous section, although the DSL do implement
them. Finally, the scheduling interface is under construction, and therefore
not available in the main scan screen yet.

564 J. M. Redondo and D. Cuesta

Several security-related websites made articles reviewing this initial
release of NMapGUI [25–30]. Reviews praise the interface design and
capabilities, especially the ability to supervise parallel commands and the
integrated information about nmap options and NSE scripts. Main concern
about NMapGUI has been the potential security problems that may occur if
a malicious user accesses the interface from an external machine, using the
scanning machine as a pivot to access other networks. This is the reason why
we decided to restrict connections to the GUI to localhost only.

User feedback obtained from social networks also shows a positive
reaction, praising NMapGUI features. However, some users state that nmap
should only be used manually as a command-line tool due to their complexity
and number of options, as a GUI could not capture its complexity. However,
mastering nmap is difficult precisely because its flexibility and complexity,
hence the motivation of creating NMapGUI to lower it. Advanced users can
manually modify nmap commands in NMapGUI if they wish to do so. This
way, they can take advantage of the GUI features while being in full control
of the command structure, as they requested. Additionally, for users that just
use command-line tools, using only NMapGUI to create NMapDSL auditing
tasks is a valid alternative.

A group of users that have reviewed the product also questions the need of
a new GUI, as an official one exists. NMapGUI is an alternative to the official
one, designed to try to solve its deficiencies and increase user productivity in
on-demand scan scenarios. When creating NMapGUI, we primarily target
occasional users, students or users with limited nmap experience. We think
that this GUI facilitates learning how to use nmap and provides adequate and
more efficient ways to explore the different possibilities of the tool. Rawsec’s
Cybersecurity Inventory has added NMapGUI as one of their recommended
tools, so it can be easily found by more security professionals [31].

Finally, we also used the issue tracker of the NMapGUI GitHub repository
to collect feedback and feature requests from users. For example, there is
a feature request to load a scan configuration from a text file that will be
implemented once NMapDSL and NMapGUI are fully integrated, loading
DSL programs into the GUI. A couple of minor visual enhancements have
also been requested and are being implemented, like animation and menu
improvements, scrollable titles, internationalization, and further information
in the tooltips. Another two very interesting requested features are command
cancellation and option incompatibility detection. The latter will be available
when both products are finally integrated, as this kind of early validation is
implemented in NMapDSL (see Section 3.2).

Towards Improving Productivity in NMap Security Audits 565

4.1 Systematic Validation

We are planning to use these tools in higher education security-related
courses, along with other complementary tools [32, 33]. First users will be
students from different courses of the School of Computer Engineering of
the University of Oviedo [34]. The Computer Security (BsC of Software
Engineering), the Web Security Systems, and Web Server Administration
[35, 36] (MsC and Doctorate in Web Engineering) courses are the first
candidates. Next, courses of the infrastructure module of the future Master
on Cybersecurity in Software Engineering (also from the same school) will
also use them to perform infrastructure auditing tasks.

The purpose of applying our tools to education is twofold: facilitate the
usage of nmap as part of their contents and perform an initial systematic
validation of our research. We have generally positive evaluation of experts
in the field and incorporated our experience on increasing the robustness
of dynamically typed languages to improve error detection on audit task
creation. However, we did not perform a systematic validation of the tools
yet. For this reason, we will describe the plan we established to evaluate our
research in the future through the mentioned courses, so we can study its
application in one of its intended usage contexts.

As the first author of this paper is the head teacher of several security-
related courses, using their students will facilitate the implementation of the
systematic validation we are going to describe. This way, we can easily create
groups of students, control the interaction they have with different tools,
and facilitate data collection and analysis using the online platform that our
university provides. Doing this with security experts is not currently possible
in our scenario. However, as described in Section 4, feedback from these users
was used in a previous stage to improve the tool once released.

As our goal is to improve the productivity of nmap security audits, we
will systematically validate our research with use case studies [37]. They
were chosen because the audit processes could only be assessed at a high
level of abstraction, as they can be very complex and variable depending on
its goal. To do a use-case driven systematic evaluation, we will ask several
student groups to perform certain audit tasks of the same difficulty level both
with nmap and with our tools. Users with no previous experience with nmap

will be chosen among BsC students (most of them should be), while students
with average audit experience will be selected upon the MsC courses, as
they received a previous introductory security course. In the first case, an
introductory lesson about nmap goals, basic operation, and examples will be

566 J. M. Redondo and D. Cuesta

given, to provide the students enough materials to a successful start. Once
all is set up, the proposed systematic validation procedure will follow these
steps:

• Design: the objective is to check if the mentioned user groups can
successfully finish several audit tasks faster by using our tools than when
done via plain nmap/Zenmap usage. Use cases will be divided in two
main groups: creating audit tasks with realistic purposes from scratch
and solving problems on supplied audit tasks with known errors. For
example, we can ask students to guess the web server versions installed
into machines present in a custom local network (this can be easily
simulated with Docker using little resources).

In this example, as the users have no clue about how many or where
the machines are, they must first locate active endpoints in the network.
Then, filter those that indeed are web servers and, finally, correctly
guess the web server version. Version guessing could also be made
more difficult by hiding from nmap default guessing techniques. This
way, the proper NSE scripts have to be used to obtain more information
from targets, and therefore a correct answer. This audit task example is
realistic and require the execution of multiple steps. Therefore, students
must check different sets of nmap parameters and scan modes, apply
them, analyze its output and use it as the input of the next step. This
requires practicing or acquiring more knowledge of the tool while they
work towards the result, and some amount of experimentation using
on-demand scans, so it fits with NMapGUI design approach.

• Data collection: BsC and MsC students will be separated in two groups.
We expect an average of 50 BsC students and 20 MsC. Half of the users
in each group will be instructed to do the proposed audit tasks with nmap,
and the other half will do the same with our tools. This is to prevent that
the acquired experience with a tool influences the results of doing the
same things with the other: users in a certain group will always work
with the same tools to finish an audit task set.

We will measure the time spent doing the corresponding work for
every user by using a questionnaire in the online resource website of the
course. Tasks will be proposed as questions, and time will be measured
until the user is able to provide an answer to each one. Once one is
answered, the next question will be presented until all are. At the end
of the questionnaire, a short-answer quiz will be presented to gather
feedback about tool usage and features. For example, users may be asked

Towards Improving Productivity in NMap Security Audits 567

if the tool provided enough information to complete the tasks, if they had
to use external information sources, or if error reporting was considered
adequate, all focusing on validating our initial assumptions.

All data collection will be performed by second degree techniques
to favor automation. Time taken to perform activities can be compiled
offline once a certain number of questionnaires have been done, as it
will be measured automatically by the course online platform. We can
then analyze them at a later stage. Additionally, extra information about
needed GUI adjustments could be obtained by observing random users’
behavior while working with the GUI while doing the audit tasks.

• Analysis of collected data: we are mainly interested in the amount of
time spent by both user groups to perform the same tasks. Ideally, our
tools will be able to reduce the time taken to perform a task for users with
the same knowledge level, while also reducing the amount of failures
due to unsolved errors. Note that precise error reporting should also
reduce time to perform each activity, as it should have a positive impact
on that matter. Geometrical means of task completion times will be used
to calculate the average completion times of the tasks. Additionally,
some of the proposed audit tasks will include performing scheduled
tasks or checking if the output presents certain words. We expect a
substantial time gain here, as students using nmap should create its own
scripts for it, requiring additional knowledge about operating systems or
programming languages.

• Validity: the described procedure has been designed to reduce threats
to validity, although some remain and must be considered. The
construct validity tries to measure the increase of productivity when
designing on-demand audit tasks or when solving predetermined errors
on existing ones, which is directly related with our research questions.
Introduced errors may also reflect the most common ones according to
the experience of the lecturers, so it also helps knowledge transfer. We
have also separated students by its starting knowledge level and isolate
those that work with different tools, to try to minimize casual relations
and thus trying to improve internal validity. However, a casual relation
problem may appear if the students do not correctly estimate their initial
knowledge of nmap. Extra care should be taken to measure it, so we can
correctly analyze the performance of the tools.

We also think that our findings with real student groups can
be directly applicable to other security-related courses in similar

568 J. M. Redondo and D. Cuesta

environments, as the outcome of the results will be largely dependent
on the amount and precision of the information the tools provide. This
increases the external validity of the procedure, although care should
be taken to use environments with the same goals (improve on-demand
audit scans). Finally, the reliability of the collected time data could
be negatively affected if the users have sources of distraction while
doing the intended work: as part of the collected data are time spent to
perform activities, the evaluation environment should favor focusing on
the ongoing activities, avoiding teamwork, unnecessary communication
between students, or limiting access to sources of information to try to
measure only time working with tools.

• Reporting and scheduling: The described tasks will be incorporated as
part of the evaluation activities of the mentioned courses once we reach
the remote system auditing topics. Reports and analysis about student
actions will be compiled and compared to see if there are improvements,
if these are different depending on the previous user experience and
incorporate adjustments to the tools by analyzing the feedback.

5 Conclusions

The work described in this paper enables users with different experience
levels to make better use of the nmap security auditing capabilities with
less effort. NMapGUI is a web application that improves the official nmap
GUI solving the shortcomings we identified. It gives users structured and
immediate access to all nmap features, facilitating performing on-demand
scans without requiring creating a custom scan profile. Its design approach
encourages users to create scan profiles once their options have been tested,
so it is easier to share or reuse tried and tested configurations. Additionally,
it uses these profiles as a base to allow scan scheduling, output analysis,
and usage of advanced capabilities without requiring a deep study of nmap
features.

NMapDSL is a domain specific language created to develop robust,
advanced and portable scanning tasks easier, following the approach imple-
mented by DSLs of popular infrastructure-as-code products. The language
supports common useful nmap features via keywords, facilitating its usage
even without a GUI. This language also incorporates early error validation
of scripts, covering critical areas of the scanning process. This way, the
probability of generating scan tasks that fail at runtime decreases. Error
location is reported precisely, and detailed descriptions of errors facilitates

Towards Improving Productivity in NMap Security Audits 569

task debugging. The detailed information displayed by translated scripts
about its purpose is also a valuable learning, debugging and logging tool, as
the user knows exactly what it is running. Also, modeling robust scan tasks
in a simple DSL eases sharing them between systems or users with different
skill levels, which also is a valuable tool to use in security courses. We believe
that our work may increase the productivity of nmap users, ease the design of
auditing tasks, the analysis of their results, and enable some user types, like
students, to better understand and effectively use the wide set of capabilities
of this highly popular security tool.

In a future iteration of NMapGUI we are considering adding more options
to the interface, such as enhanced reporting options, one-click scan to inter-
mediate nodes in the interactive node graph with the same scan profile as
the target one, and ways to compare scan results performed to the same
machine. Additionally, as we said in Section 2.3, more work using UI patterns
to improve the usability of our GUI can be done [16]. For example, the
scheduling part (see Figure 4) can be enhanced using the Rule Builder pattern
to create search queries based on several conditions, especially when the
output analysis feature acquires more functionality in the future. Shortcut
Dropdown UI pattern can also be applied to dropdowns in the same screen.
Navigation through the whole application can also be improved via the
Keyboard Shortcuts, Breadcrumbs, and Adaptable View UI patterns, while
validation of audit tasks can be easily integrated within the GUI thanks to the
Input Feedback design pattern. Finally, we also plan NMapGUI to achieve the
AA rating according the WAI standards [38], including checking background
and foreground color contrast.

The next evolution of NMapDSL will expand language possibilities by
enabling generated scripts to automatically calculate a security rating of
each scanned target. This will be done extracting each service type and
version information, using the cve-search project features [39] to search
for corresponding CVEs (Common Vulnerability Exposures) containing vul-
nerabilities of the products found. This way, the users will have immediate
feedback about the vulnerability of each scanned machine, also integrating
the features of the CVE-Scan [40] project. This can also be used to prioritize
the machines or infrastructure parts with more critical problems to imple-
ment corrective actions. We are also exploring the possibility of applying
DSLs with early validation of type errors to lower the complexity or other
similar security tools, to incorporate new keywords that further facilitate the
usage of advanced nmap scan options, and to use Perl-Compatible Regular
Expressions (PCRE) [41] in the WITH block. Additionally, we will implement

570 J. M. Redondo and D. Cuesta

the proposed systematic validation procedure described in Section 4.1 in the
mentioned security-related courses.

Future work will also aim apply the same approach followed in this
research to enable early validation in DSLs of common infrastructure-as-
code products. Beginning with Docker, we plan to create a special parser
of the DSL used in its Dockerfiles that provides early validation of their
elements. This way, we intend to identify missing Docker images, external
files, packages to install or, in general, things that may cause conflicts while
executing the program or build invalid containers. The aim will be to run
the actual docker process only over parsed and error-free Dockerfiles,
attempting to reduce runtime problems. If the file contains errors, a detailed
output of the problems found, similar to the output provided by NMapDSL,
will be provided without deploying any infrastructure.

The current version of NMapGUI can be downloaded from https://
github.com/danicuestasuarez/NMapGUI. At the date of writing this paper,
the project has earned 249 GitHub stars, 75 users have cloned it in their
own GitHub account, and 26 have subscribed to project updates and noti-
fications. An alpha version of the NTrans translation tool, able to output
Python language scripts (versions 2 and 3, also compatible with PyPy 2 and
3), can be downloaded from https://www.dropbox.com/s/du0rf0u75k28ny4/
ntrans.alpha.v01.zip. This distribution also includes the full source code,
tests, ANTLR [24] grammar, documentation, and sample scripts. Once the
DSL is finished, both projects will merge into a single product.

6 Related Work

This section describes other products whose aim is also to facilitate working
with nmap, trying to solve shortcomings like the ones described in Section 1.
The focus of these products varies, trying to improve different functionalities
or features needed during an audit task. Some aim for simplicity, while others
favor on-demand scans the same way NMapGUI does. Regarding features,
there are alternatives that focus on facilitate reporting (the final goal of every
audit activity) or also implement additional features that NMapGUI also has,
like scan scheduling. There are solutions that even allow management of users
and groups, to give different scanning rights to people in a company. The main
advantages of NMapGUI and NMapDSL over the alternative solutions are:

• They cover all nmap options and installed NSE scripts, providing
substantial usage information.

Towards Improving Productivity in NMap Security Audits 571

• Includes scheduling and output analysis features. Not all the alternatives
cover scheduling, and output analysis, if available, is typically limited to
compare multiple scan outputs.

• Validates scan tasks and precisely report the found errors (see Table 1).
This is the most important difference, as our research ensures that the
generated scan tasks contain a substantially lower number of potential
errors and, if errors are found, precisely locate and describe the problems
to facilitate their debugging. None of the following alternatives provide
these capabilities.

• Facilitates sharing audit task configurations (DSL source code) and/or
multiplatform ready-to-use audit tasks (translated DSL programs). This,
combined with the previous feature, ensure that the shared information
presents fewer errors, facilitating proper knowledge transfer in produc-
tion or learning environments.

Regarding the concrete related work of our research, additionally to
the nmap official GUI (Zenmap [12]), which is an evolution of a previous
GUI (NMapFE), there are several desktop-based projects that created a
nmap GUI to facilitate its usage to inexperienced users or increase their
productivity. Nmap GUI [42] simplifies performing simple scanning tasks
by just specifying a target a scan profile, like the Zenmap approach. It
also mimics the nmap output and allows the organization of scans using
timestamps.

NMapWin [43] is another GUI with similar capabilities, although aimed
only to Win32 platforms, with an outdated interface and no longer maintained
by their authors. A more advanced GUI for nmap is NmapSi4 [44], that targets
the Qt library. This GUI also favors on-demand scans by offering a series of
options to use nmap in an organized way, grouping the different capabilities
of the tool in a set of sections, like the approach of NMapGUI. Another
similar GUI is NMapW [45], a Windows tool that organizes the main nmap

options in a category tree like the one we used in NMapGUI, but do not have
explicit support for NSE scripts. It also allows users to store different scan
configurations.

There are also web-based GUIs for nmap. WMap [46] allows the user to
execute a limited set of common nmap commands easily, listing them along
with information about its expected output. Additionally, Nmap-webgui [47],
currently under development, is a project that aims to give users advanced
capabilities to handle nmap scans, like scan scheduling, comparison of results
using diff, and review of scan results.

572 J. M. Redondo and D. Cuesta

The nmap-cgi [48] web GUI allows the usage of typical nmap options
(scan IPs, subnets, OS detection. . .) through a very clear and simple inter-
face. It incorporates user and group management, so it can assign different
rights over individual nmap options to them. It also incorporates three types
of scans (single, scheduled and periodic) and exportable output format in
XML. Another example is WebMap [49], a Django nmap web interface
currently under development with several features like NMapGUI, such as the
traceroute graph. It imports and parses nmap XML generated files instead
of working with its raw output, and allows to run and schedule auditing tasks
from its dashboard, with a focus on reporting features and interacting with
external applications. It does not provide the same degree of information than
NMapGUI about nmap options and scripts to maximize its usage potential in
on-demand scans, and requires Docker installed to run.

We can also find GUIs for nmap targeting Android devices. Examples are
nmap-gui [50], Cydia Tweak Nmap GUI [51] and the lightweight pentesting
tool Lightpen [33] that, although it does not allow to directly control nmap
options, it could execute some of its most common scan types as part of its
future plugins.

Finally, the nmap tool itself is also an integral part of more powerful
and popular pentesting tools such as OpenVAS [52], Metasploit [53] or the
IVRE Network Scanning and Analysis tool [54]. However, the complexity of
these tools abstracts the usage of nmap within the pentesting processes they
perform, so users have no direct control over every specific nmap option that
it is used.

Acknowledgements

This work has been funded by the Spanish Department of Science, Innovation
and Universities: project RTI2018-099235-B-I00.

References

[1] D. Harley, L. Myers, S. Cobb, and C. Gutierrez. Cybersecurity trends
2019: Privacy and intrusion in the global village. Technical report,
ESET, 2018. (Dec 10, 2018).

[2] A. Bendovschi. Cyber-attacks trends, patterns and security counter-
measures. Procedia Economics and Finance, 28:24–31, 2015. 7th

Towards Improving Productivity in NMap Security Audits 573

INTERNATIONAL CONFERENCE ON FINANCIAL CRIMINOL-
OGY 2015, 7th ICFC 2015, 13–14 April 2015, Wadham College,
Oxford University, United Kingdom.

[3] Y. Gilad and A. Herzberg. Off-path tcp injection attacks. ACM Trans.
Inf. Syst. Secur., 16(4):13:1–13:32, April 2014.

[4] P. M. Vidhya. Cyber security: Threats and challenges. Int.l J. of
Computer Science and Mobile Computing, 3:586–590, 02 2014.

[5] R. Shay, S. Komanduri, A. L. Durity, P. Huh, M. L. Mazurek, Sean M.
Segreti, B. Ur, L. Bauer, N. Christin, and L. F. Cranor. Designing
password policies for strength and usability. ACM Trans. Inf. Syst.
Secur., 18(4):13:1–13:34, May 2016.

[6] T. Matthews. What DDoS attacks really cost businesses. Technical
report, Imperva Incapsula, 2016. (Dec 10, 2018).

[7] N. A. S. Lima and M. P. Fernandez. Towards an efficient DDoS
detection scheme for software-defined networks. IEEE Latin America
Transactions, 16(8):2296–2301, Aug 2018.

[8] J. Cheng, J. Zhou, Q. Liu, X. Tang, and Y. Guo. A ddos detection
method for socially aware networking based on forecasting fusion
feature sequence. The Computer Journal, 61(7):959–970, 2018.

[9] S. Hsiao and D. Kao. The static analysis of WannaCry ransomware.
In 2018 20th International Conference on Advanced Communication
Technology (ICACT), pages 1–1, Feb 2018.

[10] S. Eskandari, A. Leoutsarakos, T. Mursch, and J. Clark. A first look at
browser-based cryptojacking. In 2018 IEEE European Symposium on
Security and Privacy Workshops (EuroS PW), pages 58–66, April 2018.

[11] D. Kaur and P. Kaur. Empirical analysis of web attacks. Procedia
Computer Science, 78:298 – 306, 2016. 1st International Conference
on Information Security & Privacy 2015.

[12] G. F. Lyon. Nmap Network Scanning: The Official Nmap Project Guide
to Network Discovery and Security Scanning. Nmap Project, 2009.

[13] Linux Journal. Editors’ choice awards. https://www.linuxjournal.com/
article/5525, 2001. (Jul 29, 2019).

[14] OWASP. OWASP Pentesting Guide v4. Open Web Application Security
Project, 2014.

[15] AlienVault. Alienvalut: Threat detection, incident response product.
https://www.alienvault.com/, 2018. (Jan 30, 2019).

[16] A. Toxboe. User Interface Design Patterns Card Deck: UI Patterns. UI
Patterns Education. Anders Toxboe, 2016.

574 J. M. Redondo and D. Cuesta

[17] J. M. Redondo and F. Ortin. A comprehensive evaluation of common
python implementations. IEEE Software, 32(4):76–84, July 2015.

[18] Google. Google safe browsing. https://safebrowsing.google.com/, 2018.
(Jan 30, 2019).

[19] J. M. Redondo and F. Ortin. Efficient support of dynamic inheritance for
class- and prototype-based languages. Journal of Systems and Software,
86(2):278 – 301, 2013.

[20] F. Ortin, B. G. Perez-Schofield, and J. M. Redondo. Towards a
static type checker for python. In European Conference on Object-
Oriented Programming (ECOOP), Scripts to Programs Workshop,
STOP, volume 15, pages 1–2, Prague, Czech Republic, July 2015.
ECOOP.

[21] I. Lagartos, J. M. Redondo, and F. Ortin. Towards a java library
to support runtime metaprogramming. In Ernesto Damiani, George
Spanoudakis, and Leszek Maciaszek, editors, Evaluation of Novel
Approaches to Software Engineering, pages 224–242, Cham, July 2018.
Springer International Publishing.

[22] I. Lagartos, J. M. Redondo, and F. Ortin. Efficient runtime metapro-
gramming services for java. Journal of Systems and Software, 2019.

[23] IETF7. Internet message format. https://tools.ietf.org/html/rfc2822,
2001. (Apr, 2001).

[24] T. Parr. Antlr (another tool for language recognition). http://www.antlr.
org/, 2018. (Jan 30, 2019).

[25] Penetration Testing: Security Training Share. NMapGUI: Advanced
Graphical User Interface for Nmap. https://securityonline.info/
nmapgui-advanced-graphical-user-interface-nmap/, 2017. (Jan 30,
2019).

[26] Div Security. NMapGUI: Interfaz gráfica de usuario para Nmap.
http://security.divdesign.mx/nmapgui-interfaz-grafica-de-usuario-para-
nmap/, 2017. (Jan 30, 2019).

[27] Homputer Security. Découvrez NMapGUI la version graphique de
Nmap. http://homputersecurity.com/2017/10/26/decouvrez-nmapgui-
la-version-graphique-de-nmap/, 2017. (Jan 30, 2019).

[28] 1024Megas. NMapGUI - Graphical User Interface. http://www.
1024megas.com/2017/09/nmapgui.html, 2017. (Jan 30, 2019).

[29] StackTrender. Nmap GUI Java/Web Front End for Nmap –
YouTube. https://stacktrender.com/post/st/nmap-gui-java-web-front-
end-for-nmap-youtube, 2017. (Jan 30, 2019).

Towards Improving Productivity in NMap Security Audits 575

[30] S. De Luz. NMapGUI: Conoce esta interfaz grafica de Nmap basada
en Java. https://www.redeszone.net/2017/09/03/nmapgui-conoce-esta-
interfaz-grafica-de-Nmap-basada-en-java/, 2017. (Jan 30, 2019).

[31] A. Zanni. Rawsec’s cybersecurity inventory: An inventory of tools and
resources about cybersecurity. http://inventory.rawsec.ml/tools.html,
2018. (Jan 30, 2019).

[32] J. M. Redondo and L. del Valle. Filesync and era literaria: Realistic open
sourcewebs to develop web security skills. Journal of Web Engineering,
17(5):1–22, 2018.

[33] I. Llaneza, J. M. Redondo, and L. Vinuesa. Towards lightweight mobile
pentesting tools to quickly assess machine security levels. IEEE Latin
America Transactions, pp, 2019.

[34] U. de Oviedo. Escuela de ingenierı́a informática. https://
ingenieriainformatica.uniovi.es/infoacademica/grado/, 2018. (Jan 30,
2019).

[35] J. M. Redondo. Improving student assessment of a server administration
course promoting flexibility and competitiveness. IEEE Trans. on Ed.,
62(1):19–26, 2018.

[36] J. M. Redondo. Introducción Práctica a la Administración Segura de
Servidores Apache Bajo Linux. Servicio de Publicaciones, Universidad
de Oviedo, 2019.

[37] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and
A. Wessln. Experimentation in software engineering. Springer Science
& Business Media, 2012.

[38] Web Accessibility Initiative. Wai: Strategies, standards, resources to
make the web accessible to people with disabilities. https://www.w3.
org/WAI/, 2019. (Apr 30, 2019).

[39] W. Remes, A. Dulaunoy, and P. Moreels. A tool to perform local
searches for known vulnerabilities. https://github.com/cve-search/cve-
search/, 2018. (Jan 30, 2019).

[40] P. Moreels. Cve scan. https://github.com/NorthernSec/CVE-Scan/,
2018. (Jan 30, 2019).

[41] T. Stubblebine. Regular Expression Pocket Reference, 2nd Edition.
O’Reilly Media, Inc., 2007.

[42] O. Morten. Nmap gui. https://sourceforge.net/projects/nmapgui/, 2016.
(Jan 30, 2019).

[43] G. F. Lyon and J. Vogt. Nmapwin. https://sourceforge.net/p/nmapwin/
wiki/Home/, 2002. (Jan 30, 2019).

576 J. M. Redondo and D. Cuesta

[44] F. Cecconi. Nmapsi4. https://github.com/nmapsi4/nmapsi4, 2015. (Jan
30, 2019).

[45] Syhunt. Nmapw: Free port scanner for analyzing network security or
internet exploration. http://nmapw.software.informer.com/, 2018. (Jan
30, 2019).

[46] E. Suarez. Wmap. https://github.com/ericsuarez/wmap, 2017. (Jan 30,
2019).

[47] R. Savon. Nmap-webgui. https://github.com/savon-noir/nmap-webgui,
2013. (Jan 30, 2019).

[48] J. Delange. nmap-cgi project. http://nmap-cgi.tuxfamily.org/, 2006. (Jan
30, 2019).

[49] Rev3rse Security. Webmap: Nmap dashboard and reporting. https://
github.com/Rev3rseSecurity/WebMap, 2019. (Jan 30, 2019).

[50] F. Dominguez. Nmap-gui. https://github.com/FernandoDoming/nmap-
gui, 2017. (Jan 30, 2019).

[51] IDroid.us. Cydia tweak nmap gui. https://web.archive.org/web/
20121030090623/https://idroid.us/cydia-tweak-nmap-gui-0-93.html,
2012. (Jan 30, 2019).

[52] OpenVAS. Openvas open source vulnerability scanner and manager.
http://www.openvas.org/, 2018. (Jan 30, 2019).

[53] Rapid7. Metasploit: The world’s most used penetration testing frame-
work. https://www.metasploit.com/, 2018. (Jan 30, 2019).

[54] P. Lalet. Ivre official web page. https://ivre.rocks/, 2018. (Jan 30, 2019).

Biographies

Jose Manuel Redondo is an Assistant Professor in the University of Oviedo,
Spain since November 2003. Received his B.Sc., M.Sc., and Ph.D. degrees
in computer engineering from the same university in 2000, 2002, and 2007,

Towards Improving Productivity in NMap Security Audits 577

respectively. He participated in various research projects funded by Microsoft
Research and the Spanish Department of Science and Innovation. He has
authored three books and over 20 articles. His research interests include
dynamic languages, computational reflection, and computer security.

Daniel Cuesta is a Computer Network Attack (CNA) consultant in S2Grupo
(Valencia, Spain). He has worked as a security consultant in CapGemini
Spain and is also a SecurityArtWork Collaborator. We will receive his B.Sc.
in computer engineering from the University of Oviedo (Spain) in 2020. His
main research interests focus in vulnerability discovery and assessment, along
with other projects related with computer security.

