Morpheus Web Testing: A Tool
for Generating Test Cases for Widget
Based Web Applications

Romulo de Almeida Neves*®, Willian Massami Watanabe
and Rafael Oliveira

Federal Technological University of Parana (UTFPR), Cornélio Procopio, Parand,
Brazil

E-mail: romulo.neves @ gmail.com

*Corresponding Author

Received 07 October 2020; Accepted 25 August 2021;
Publication 22 December 2021

Abstract

Context: Widgets are reusable User Interfaces (Uls) components frequently
delivered in Web applications.In the web application, widgets implement
different interaction scenarios, such as buttons, menus, and text input.

Problem: Tests are performed manually, so the cost associated with preparing
and executing test cases is high.

Objective: Automate the process of generating functional test cases for web
applications, using intermediate artifacts of the web development process that
structure widgets in the web application. The goal of this process is to ensure
the quality of the software, reduce overall software lifecycle time and the
costs associated with tests.

Method:We elaborated a test generation strategy and implemented this strat-
egy in a tool, Morpheus Web Testing. Morpheus Web Testing extracts widget
information from Java Server Faces artifacts to generate test cases for JSF

Journal of Web Engineering, Vol. 21_2, 119-144.
doi: 10.13052/jwe1540-9589.2121
© 2021 River Publishers

120 R. de Almeida Neves et al.

web applications. We conducted a case study for comparing Morpheus Web
Testing with a state of the art tool (CrawlJax).

Results: The results indicate evidence that the approach Morpheus Web
Testing managed to reach greater code coverage compared to a CrawlJax.

Conclusion: The achieved coverage values represent evidence that the results
obtained from the proposed approach contribute to the process of automated
test software engineering in the industry.

Keywords: User interfaces, widgets, morpheus web testing, code coverage.

1 Introduction

The User Interface (UI) is an essential part of most applications in use.
Currently, there are three Ul types: Graphical User Interface (GUI), used in
desktop application; Web User Interface (WUI), used in web applications;
and Handheld User Interface (HUI), used in mobile devices [21]. The Uls
are frequently composed by elements (widgets) that can be reused in dif-
ferent [19, 21], such as frames, buttons, menu items, and text box [15]. On
the other hand, software testing is one of the main activities performed to
improve the quality of the software under development. Its main objective is
to detect errors as early as possible in the software development cycle [16],
in order to minimize the cost of delivering fixes to the product [18, 20].
Delamaro et al. (2007) state that a successful testing approach can decrease
testing effort, contribute to improving product quality and reduce the costs of
maintenance [7].

In some development scenarios, tests are performed manually and the
cost associated with elaborating test cases is high, given the high number of
possible user interaction scenarios with applications [17]. In these scenarios,
the test activity can become costly and misleading [1]. Other aggravating
factors for performing the tests are the high complexity of the systems
currently developed and their continuous evolution [2, 12]. Thus, software
testing automation is essential to improve the efficiency of software testing
activity and has become one of the alternatives to obtain a product with a
reduced number of defects [8,11] and to reduce costs, increase test efficiency,
ensure software quality and reduce overall software lifecycle time [9].

This paper has the goal of elaborating strategies for generating auto-
mated functional test cases for web applications. We elaborated a test case

Morpheus Web Testing 121

generation strategy that extracts widgets information from UI configuration
artifacts and uses this information to generate functional tests. We developed
a tool, Morpheus Web Testing, which implemented this strategy using two
WUI component frameworks: the JavaServer Faces (JSF) and Primefaces.
Our strategy focuses on the generation of system-level functional test cases.
A case study was conducted to evaluate how our test case generation strategy
performs in comparison to another state-of-art technique. Moreover, the
case study was conducted in an industrial setting, with a production ready
JSF/Primefaces based web application.

The remainder of this article is organized as follows: Section 2 presents
related works. Section 3 presents the proposal of this paper. Section 4 presents
the evaluation of our proposed test generation strategy. Section 5 presents
discussions. Finally, Section 6 presents final considerations, limitations of
this work and future works.

2 Related Work

In [15], the authors presented a UI’s testing framework denominated GUI-
TAR which generates test cases based on events implemented in the UL
The framework generates application models from Java UI artifacts which
are, then, used in the testing of the application. In the test cases generation
process, GUITAR extracts information about the structure of all windows,
widgets, as well as their attributes and graphical interface events. The frame-
work creates a flow of events with all possible Ul event interactions. These
events are used to generate Ul test cases that are sequences of Ul events.
GUITAR also supports the execution of the generated test cases in a Java Ul
application.

In [14] the authors presented a tool called AutoBlackTest. This tool imple-
ments a process that incrementally generates test cases as a user interacts
with the application. This generation process is divided in two steps. In
the first step, the tool generates a sequence model of events that can be
produced through an interaction with the application UI under test. It is worth
mentioning that model generation occurs through the use of a reinforcement
learning system called Q-learning. Lastly, in the second step, it begins the
generation of a data set of tests that covers the sequences in the model.

In [23], the authors presented a tool called CrawlJax. This tool performs
the test case generation process automatically, analyzing state changes in the
web application interface with Ajax (Asynchronous JavaScript and XML).
This process is divided into two steps: (i) a crawler (controller) that exercise

122 R. de Almeida Neves et al.

client-side code and identifies the clickable elements that change state within
the DOM (DOM stands for Document Object Model) built dynamically in the
browser. Finally in the second step (ii) the creation of a graph of state flow,
called the SFG (State-Flow Graph) that captures dynamically DOM states,
the Ul states, and the possible transitions made between them.

In [6], the development of the WebMate tool is reported. WebMate is
a tool that performs test case generation for web applications. WebMate
explores the functionality of a web application that detects the differences
between web browsers and operating systems. The process test case genera-
tion in the WebMate consists of three steps: (i) the information is extracted
an URL wherein the user interacts with the application by examining all
buttons, links, forms, or any element manipulated by events which can trigger
off interaction with the user. In (ii), usage models are extracted from the
application in a graph form, where the nodes correspond to the different
application states and the edges represent user interactions. In (iii), test are
performed in the Web application, exercising all transitions of the generated
usage model, verifying the compatibility between browsers, conducting code
analysis and regression tests.

In [24], the authors proposed an approach to obtain textual input val-
ues while testing Android apps automatically. This process consists of four
steps:(i) Description matching, in this step is identified and matched descrip-
tive labels with input fields concept extraction, input value acquisition and
input value consumption. (ii) Concept extraction, in this step, natural lan-
guage processing techniques are used for extracting the concept associated
with the label. (iii) Input value acquisition, in this step the concepts are
used to query a knowledge base for candidate input values. (iiii) Input value
consumption clustered, in this step, the Ul elements are filled according to
their functionality into input and actions, filling the input elements first and
then interacting with the actions.

In [10], the authors performed a survey that assists software developers
in making a decision regarding the testing tools, based on black and white
box approaches to use in web/mobile applications. Thereby a set of current
testing approaches were surveyed using four test-key factors, (i) Artificial
Intelligence (Al), (ii)Security focused, (iii) Fully automated and (iv) Heuristic
search.

Differently from these prior works [5,15,23] that used low-level interface
components based on HyperText Markup Language (HTML) to generate test
cases, our work extracts information from complex interface components,
widgets, as defined in the web application. Our test case generation strategy

Morpheus Web Testing 123

was implemented in a tool and uses Extensible HyperText Markup Language
(XHTML) defined in a UI framework for web development: JSF and Prime-
faces. In this context, this paper reports on a investigation of whether this
approach of using higher abstraction level components (widgets defined in
JSF/Primefaces artifacts) for generating functional test cases can enhance the
test case generation process. We identified that the use of the higher level
interface components in the JSF/Primefaces components presents the follow-
ing advantages: (i) the possibility to get more information than an HTML file
and thus predict and improve the interaction levels of the components, and (ii)
the possibility of generating more test case inputs and, consequently, achieve
greater code coverage.

3 Test Case Generation Approach

This paper had the goal of generating automatic functional test cases for web
applications. In order to achieve this goal, we elaborated a test case gen-
eration strategy, which extracts widget semantic information from software
artifacts that define the UI of web applications. As a proof-of-concept, we
implemented this test case generation strategy in a tool called Morpheus Web
Testing which consists of test case generation using two frameworks that
assist developers in web application building: JSF and Primefaces.

In Morpheus Web Testing, the test case generation strategy was divided
into four steps, as shown in Figure 1.

In the first step, Entry (see Figure 1(A)), Morpheus Web Testing receives
as an input a project that uses the JSF and Primefaces frameworks. After the
project entry, the process of generating of usage model is started, extracting
and analysing the Widgets defined in the XHTML code of JSF projects as a
UI definition model (see Figure 1(B)). In this second step, web application
information about the structure of all windows, widgets as well as their
attributes and events of interface graph are extracted. These events are,

io - .. JUnit €
Project

Salenium .+ JUnit

JEF + Primeleces

— (B) Generate the (C} Generate the (D) Execute the test cases
template of use test cases

Figure 1 Proposal of the test model and development of this paper.

124 R. de Almeida Neves et al.

then, used to generate test cases from the WUI that are sequences of WUI
events. Finished the second step, the generation of test cases is started (see
Figure 1(C)), in which JUnit and Selenium WebDriver based test cases are
generated, as output. Finally, in the last step (see Figure 1(D)), the test cases
can be executed.

Selenium is an open source testing tool which isused to automate the test
cases and enhance the testing performance. Selenium is an automated testing
tool for web application. Selenium WebDriver basically work in two ways
first locate the element and then perform some action on them. Selenium
WebDriver locate element by usingid, name,Xpath, CSS, link text, partial
link text. Selenium provides a rich set of functions which is used to testing of
a web application [13].

Test cases can be defined as a way of establishing the inputs to be
informed by the tester (manually or with tool support) and the results
expected from this action. The test cases are composed of three steps: input,
steps and oracles [7,22].

In order to generate the input of a test case, Morpheus Web Testing iden-
tifies the objects and the properties of a WUIL. Then, Morpheus Web Testing
uses different strategies for each type of input (widget), as demonstrated in
Table 1 and detailed below.

* For widgets of type InputTextArea, InputNumber, InputMask, Input-
Text, Password, TextEditor, CKEditor, or Editor, multiple text input
scenarios are generated, such as: randomly generated numbers/texts and
blank input;

* For widgets of type: Button, CommandButton, CommandLink, Link
and LinkButton, test cases in which clicks are performed on these
components are generated;

* For widgets of type SelectBooleanButton, SelectBooleanCheckBox,
SelectOneButton, SelectOneRadio, SelectOneMenu, SelectOneList-
Box, SelectManyButton, SelectManyMenu or SelectManyCheckBox,
multiple test cases which select each possible input are generated; and

* For widgets of type calendar, test cases which insert random dates,
integers, and empty strings are generated.

For the strategies of insertion of texts and random integers, if the
maxLenght property is not specified in the test cases will consider a default
a size of 50 characters for the component. The test case generation process
is performed through instructions defined in templates. In [4] templates are
defined as text files, instrumented with selection and expansion conditions of

Morpheus Web Testing 125

Table 1 Components and strategies used by Morpheus Web Testing
Strategy

Component IRIN | IRGT | TIB | Click | Selection | IRD
InputTextArea X X
InputNumber
InputMask
InputText

Passoword
TextEditor

Editor

ckEditor

Button
CommandButton
ComandLink

Link

LinkButton
SelectBooleanButton
SelectBooleanCheckBox
SelectOneButton
SelectOneMenu
SelectOneListBox
SelectManyButton
SelectManyMenu
SelectManyCheckBox
calendar X X X
IRIN = Insertion of Random Integer Numbers

IRGT = Insertion of Randomly Generated Text

TIB = Text Insertion in Blank

IRD = Insertion of Random Dates

el kel Bl kaibel kel
kel Bl kalbel kel ke
Dl Bl kel kel Bl alle

X P R R <

ol Bl kel Rl el Rl K

code. These instructions are responsible for consulting an input that can be a
program, a textual specification or diagrams and as a result, it’s possible to
get the parameter to produce the source code [3].

Figure 2 illustrates an example of the test case generation process. This
figure illustrates a test case generation for the inputText widget in line 2 of
Figure 2(A), in the XHTML file. The widget definition markup inside the
XHTML file is used to identify the attributes of the widget (id, max length
and type of the widget) and generate test case scenarios associated to that
type of widget. The example illustrates the generation of a test case which
inserts a random string as text input for the widget.

126 R. de Almeida Neves et al.

Code xhtml
(A)

1 <h:outputText value="Simple Text: "/>
2 id="tSimple" value="#{myForm.simpleTexl g 00

3 outputlext value="Editor Text: "/>

4 Kh:inputTextarea id="tEditor" value= #{myFa m. ed 1T O T ngead max Lensth="1600"] >

5 Kh:outputText value="Recipient Email: “/>

6 kh:inputText id="email” value="#{myForm.ema}l}" maxLength="160"/>

7 kh:outputText value="Email: "/> -

8 Kh:selectOneMenu values"#{myForm. email }">

9 <f:selectItem itemLabel="Gmail" itemValle="gmail"/>

10 <f:selectTtem itemLabel="Hotmail"” itemVhlue="hotmail"/>

11K /h:selectOneMenu>

128 h: commandButton id="bt" value="Save" actiok="#{myForm.save}"/> Web page

Simple Text: Text 1
Text2
Editor Text
Recipient Email: test@gmail com
Email Gmail v
Template s
©

1 ghblic String generateSelenium(Element element) {

2 StringBuilder codigo = mew StringBuilder();

3 for (Iterator it = element.elementIterator(); it.hafNext();) {
4

5

6

7

8

Element elenento = (Element) it.next();
String id = elemento.attributeValue("id"

if (elemento.getName().equals 1nputText || el o. getName() equals(passwcr-d N {

codligo.append lodflement(By jd O\ aide ")), 2
int maxLength= Integer. par;srnt lemento.attribute("maxlength"). getValue()
9 codigo.append("\t\t element.sendReys(N " robterNumeroRleatorio (max eng et Y

10 } else if (elemento.getName().contains("Button™)) {
11 codigeo.append("\t\t driver.findElement(By.id(\""+id+"\")).click();\r\n");
12 } else {

13 codigo.append(generateSelenium(elemento));

14 }

15

16 return codigo.toString();

17}

Code Java/Selenium
(D)

public void testOnline() {
driver.get("http://localhofl : 8080/mySite/pages/testonline. xhtml");

WebElement element = nul

1

2

3

4 element = driver disdelalont (By. id("tsimple”));
5 element.sendkeys|" 5

6 element = driver.findElement(By.id("tEditor"));
7 element.sendKeys("Text 2");

8 element = driver.findElement(By.id("email"));

9 element.sendKeys ("test@gmail.com");

10 driver. findElement (By.id("bt")).click();

Figure 2 Java code generation with Selenium framework based on template.

Figure 3 illustrates a snippet of Java code generated by Morpheus Web
Testing (see Figure 2) wherein, for each widget in the XHTML file, a spe-
cific input will be generated. In JSF XHTML templates, input type widgets
must be placed inside a form element, hence, after generating the input test
cases for the input widgets, Morpheus Web Testing generates an action for
activating their respective form element, clicking the submit button of the
form.

The Morpheus Web Testing approach is an open source software is
available for access through the address.! Furthermore was developed using
the following frameworks:

"https://github.com/raneves/morpheus.git

https://github.com/raneves/morpheus.git

Morpheus Web Testing 127

public void instrutor() {
driver.get("http://localhost:8086/helpDesk/instructor.xhtml");
WebElement element = null;
element = driver.findElement(By.id("name"));
element.sendKeys("a text");
element = driver.findElement(By.1id("email"));
element.sendKeys("e@gmail.com");
element = driver.findElement(By.1id("phone"));
element.sendKeys("9999999999");

10 element = driver.findElement(By.id("cell phone"));

11 element.sendKeys("888888888");

12 element = driver.findElement(By.id("login"));

WO e W

13 element.sendKeys("myLogin");
14 element = driver.findElement(By.id("password"));
15 element.sendKeys("nquwehuero");

16 driver.findElement (By.1id("btSave")).click();
17 driver.findElement(By.1id("btClean")).click();

Figure 3 Exemple of Java code generated.

e Java: JDK version 1.8; and
* Domd4j: An open source Java library for parsing the XHTML code,
identifying widgets in the web application.

4 Evaluation

In order to evaluate our test case generation approach, we conducted a case
study for evaluating the quality of the test cases which were generated. In our
study, the quality of test cases was measured in terms of the Code Coverage
metric. The case study design was guided by the following hypotheses Hy
and H;.

* Hy: Code coverage obtained by test cases generated using widget infor-
mation extracted from WUI definition (our approach) does not differ
from state-of-art test cases generation approaches.

* H;: Code coverage achieved by test cases generated using widget infor-
mation extracted from WUI definition (our approach) is superior to
state-of-art test cases generation approaches.

4.1 Methodology

Considering the hypotheses Hy and H; previously described, the method-
ology of this study was designed to compare how our test case generation

128 R. de Almeida Neves et al.

approach performs in comparison with other state-of-art test case generation
tool, in regards to the Code Coverage metric. Our approach was implemented
in Morpheus Web Testing tool, and it focuses on web applications. The
baseline of our case study (control) was the CrawlJax tool, which represents
a state-of-art open source tool for generating test cases for web applications.
However, differently from Morpheu Web Testing, CrawlJax uses semantic
information extracted from the HTML source-code of a web application.
Hence, CrawlJax does not rely on widget information, since these information
are not defined in the HTML code.

For this study, we used a web project called Exactus CRM (a commercial
application with closed source code) and, two automatic test case generation
tools for web applications, Morpheus Web Testing, and CrawlJax (state-of-
the-art technique), with the objective of performing a comparative evaluation
between both applications. Morpheus Web Testing is a tool which uses
widgets information extracted from JSF XHTML code to generate test cases.
Exactus CRM is an industrial, production-ready JSF/Primefaces web appli-
cation, which implements client support, finances and accountability man-
agement functionalities. It was developed by Exactus,? a brazilian software
development company, has 11,168 active users, was first deployed in pro-
duction in 2012 and is currently deployed in Jelastic® Platform-as-a-Service
infrastructure. Exactus CRM was built using the following technologies:

e JSF: version 2.2.8;

* Primefaces: version 6.0;

* Hibernate - Java Persistence API (JPA): version 5.0;
e Maven: version 3.1;

e Cobertura: version 2.1;

* Jetty: version 9.4.9;

e Java: JDK version 1.8;

* selenium-java: version 3.7.1; and

* MySql: version 5.5.

Morpheus Web Testing was first designed to reduce costs associated
to test case elaboration and execution for Exactus CRM. Exactus CRM
architecture was designed accordingly to the Model-View-Controller Design
Pattern and is divided into 4 layers described next:

Zhttps://www.exactus.com.br/
3https://jelastic.com/

https://www.exactus.com.br/
https://jelastic.com/

Morpheus Web Testing 129

» Data access object layer (DAQ): contains all access and execution logic
for the database;

* Plain old java object layer (POJO): maps classes to tables in the
database, that is, a JPA the entity represented by the design pattern
named JavaBeans (the class should have private attributes, a default
constructor without arguments and methods getters and setters for each
attribute);

* ManagedBean layer: contains codes responsible for performing the
back-end, business rules and validation in general. This layer receives
the entered data through the XHTML pages, processes and returns the
results of the operation to the page; and

« Utilities layer: contains code that validates different parameters such as:
Brazilian numeric IDs, passport code, emails, zip code, and phone.

Exactus CRM contains a total of 207 classes and 11415 lines of code.
The number of classes and the total lines of code for each layer are described
next:

* DAOQ layer: 65 classes and 1618 line of code;

» ManagedBean layer: 39 classes and 4857 line of code;
» Utilities layer: 4 classes and 171 line of code; and

* POJO layer: 99 classes and 4769 line of code.

After configuring Morpheus Web Testing and CrawlJax for generating
test cases for Exactus CRM, both approaches were executed. Their execution
were run in an instrumented version of Exactus CRM, which collected
Coverage Metrics for all classes of the web application. Next section, presents
the results of this methodology.

4.2 Results

In this study, Morpheus Web Testing generated 91 test cases. Comparing the
results between our approach and the state-of-the-art can provide evidences
supporting hypothesis Hy or H; . Next, we compare the Code Coverage by line
and branch results for each approach separately, according to each layer of
Exactus CRM, then we provide a general comparison considering all layers:

4.2.1 DAO layer

In the DAO layer, 1062 lines (out of 1618 existing) were covered by test
cases generated by Morpheus Web Testing, totaling 66% coverage. While
for the CrawlJax approach, 543 lines (out of 1618 existing) were covered,

130 R. de Almeida Neves et al.

totaling 34% coverage. Grouping the coverage results for each class of the
DAO layer, for each approach we run a Shapiro-Wilk normality test. The
results of these tests showed evidence that coverage with both approaches do
not match a normal distribution, with w = 0.87864 and p-value = 1.196e~%
for Morpheus Web Testing, and w = 0.89158 e p-value = 3.438e % for
CrawlJax. Then, Mann Whitney Wilcoxon statistical test showed significant
differences between the coverage of both approaches with W=26042 and
p-value = 0.0001478; The probability density of the coverage reported for
the DAO layer using Morpheus Web Testing and Crawljax is illustrated in
Figure 4(A).

In regards to branch Code Coverage, 90 branchs (out of 158 existing)
were covered by test cases generated by Morpheus Web Testing, totaling
56% branch. While for the CrawlJax approach, 44 branchs (out of 158
existing) were branched, totaling 27% branch. Grouping the branch results
for each class of the DAO layer, for each approach we run a Shapiro-
Wilk normality test. The results of these tests showed evidence that branch
with both approaches match a normal distribution, with w = 0.96031 and
p-value = 0.78826 for Morpheus Web Testing, and w = 0.86875 e p-
value = 0.06301 for CrawlJax. Then, Mann Whitney Wilcoxon statistical
test showed significant differences between the coverage of both approaches
with V = 35 and, p-value = 0.02055. The probability density of the branch
reported for the DAO layer using Morpheus Web Testing and Crawljax is
illustrated in Figure 5(A).

4.2.2 POJO layer

In the POJO Layer, 1200 lines (out of 4769 existing) were covered by test
cases generated by Morpheus Web Testing, totaling 25% coverage. While
for the CrawlJax approach, 1081 lines (out of 4769 existing) were covered,
totaling 23% coverage. Grouping the coverage results for each class of the
POJO layer, for each approach we run a Shapiro-Wilk normality test. The
results of these tests showed evidence that coverage with both approaches do
not match a normal distribution, with w = 0.848242 and p-value = 7.137e =%
for Morpheus Web Testing, and w = 0.92879 e p-value = 4.637e~% for
CrawlJax. Then, Mann Whitney Wilcoxon statistical test did not show signif-
icant differences between the coverage of both approaches with W = 5122.5
and p-value = 0.5825; The probability density of the coverage reported for
the POJO layer using Morpheus Web Testing and Crawljax is illustrated in
Figure 4(B).

Morpheus Web Testing 131

In the regards to branch Code Coverage, 74 brachs (out of 390 existing)
were branch by test cases generated by Morpheus Web Testing, totaling 185%
branch. While for the CrawlJax approach, 72 lines (out of 390 existing) were
branched, totaling 18% branch. Grouping the branch results for each class of
the POJO layer, for each approach we run a Shapiro-Wilk normality test. The
results of these tests showed evidence that branch with both approaches do
not match a normal distribution, with w = 0.70793 and p-value = 5.008¢ 96
for Morpheus Web Testing, and w = 0.71375 e p-value = 6.059¢e~% for
CrawlJax.Then, Mann Whitney Wilcoxon statistical test did not show sig-
nificant differences between the coverage of both approaches with V = 1,
p-value = 1. The probability density of the branch reported for the POJO
layer using Morpheus Web Testing and Crawljax is illustrated in Figure 5(B).

4.2.3 ManagedBean layer

In the ManagedBean Layer, 2295 rows (out of 4857 existing) were covered by
the test cases generated by Morpheus Web Testing, totaling 48% of coverage.
While for the CrawlJax approach, 2234 lines (out of 4857 existing) were
covered, totaling 46% coverage. Grouping the coverage results for each
class of the ManagedBean layer, for each approach we run a Shapiro-Wilk
normality test. The results of these tests showed evidence that coverage with
both approaches do not match a normal distribution, with w = 0.92668
and p-value = 0.01408 for Morpheus Web Testing, and w = 0.89555 e
p-value = 0.001648 for CrawlJax. Then, Mann Whitney Wilcoxon statisti-
cal test did not show significant differences between the coverage of both
approaches with W = 854.5 and p-value = 0.3495; The probability density
of the coverage reported for the ManagedBean layer using Morpheus Web
Testing and Crawljax is illustrated in Figure 4(C).

In the regards to branch Code Coverage, 531 branchs (out of 121 exist-
ing) were branched by the test cases generated by Morpheus Web Testing,
totaling 43% of branch. While for the CrawlJax approach, 504 branchs
(out of 1212 existing) were branched, totaling 41% branch. Grouping the
branch results for each class of the ManagedBean layer, for each approach
we run a Shapiro-Wilk normality test. The results of these tests showed
evidence that branch with both approaches match a normal distribution,
with w = 0.95113 and p-value = 0.1228 for Morpheus Web Testing, and
w = 0.94319 e p-value = 0.07004 for CrawlJax. Then, no significant differ-
ences were observed according to a Student T-test between the coverage of
both approaches t = 15.451, df = 69, p-value < 2.2e ~'6. The probability

132 R. de Almeida Neves et al.

density of the branch reported for the ManagedBean layer using Morpheus
Web Testing and Crawljax is illustrated in Figure 5(C).

4.2.4 Util layer

In the Util Layer, 109 lines (out of 171 existing) were covered by test cases
generated by Morpheus Web Testing, totaling 64% coverage. While for the
CrawlJax approach, 77 lines (out of 171 existing) were covered, totaling
46% of coverage. Grouping the coverage results for each class of the Ultil
layer, for each approach we run a Shapiro-Wilk normality test. The results
of these tests did not show evidence that coverage with both approaches
match a normal distribution, with w = 0.95568 and p-value = 0.7518 for
Morpheus Web Testing, and w = 0.84161 e p-value = 0.2001 for CrawlJax.
Then, no significant differences were observed according to a Student T-
test between the coverage of both approaches with t = 2.2479, df = 4.272
and p-value = 0.08358; The probability density of the coverage reported for
the Util layer using Morpheus Web Testing and Crawljax is illustrated in
Figure 4(D).

In the regards to branch Code Coverage, 11 branchs (out of 38 existing)
were branched by test cases generated by Morpheus Web Testing, totaling
39% branch. While for the CrawlJax approach, 14 branchs (out of 38 exist-
ing) were branched, totaling 36% of branch. Grouping the branch results
for each class of the Util layer, for each approach we run a Shapiro-Wilk
normality test. The results of these tests did not show evidence that cover-
age with both approaches match a normal distribution, with w = 0.90977
and p-value = 0.4173 for Morpheus Web Testing, and w = 0.98047 e p-
value = 0.7322 for CrawlJax. Then, no significant differences were observed
according to a Student T-test between the coverage of both approaches with
t =4.3201, df = 5, p-value = 0.00757. The probability density of the branch
reported for the Util layer using Morpheus Web Testing and Crawljax is
illustrated in Figure 5(D).

4.2.5 All layers

In the All Layers, 4641 rows (out of 11415 existing) were covered by
the test cases generated by Morpheus Web Testing, totaling 41% coverage.
While for the CrawlJax approach, 3935 lines (out of 11415 existing) were
covered, totaling 35% coverage. Grouping the coverage results for each class
of all layers of Exactus CRM, for each approach we run a Shapiro-Wilk
normality test. The results of these tests showed evidence that coverage with
both approaches do not match a normal distribution, with w = 0.93908

Morpheus Web Testing 133

and p-value = 1.262e~°7 for Morpheus Web Testing, and w = 0.90323
e p-value = 2.445¢~ !0 for CrawlJax. Then, significant differences were
observed according to a Mann Whitney Wilcoxon test between the coverage
of both approaches with w = 26042 and p-value = 0.0001478; The proba-
bility density of the coverage reported for the all layers using Morpheus Web
Testing and Crawljax is illustrated in Figure 4(E).

In the regards to branch Code Coverage, 710 branchs (out of 1798 exist-
ing) were branched by the test cases generated by Morpheus Web Testing,
totaling 39% branch. While for the CrawlJax approach, 634 branchs (out
of 1798 existing) were branched, totaling 35% branch. Grouping the branch
results for each class of all layers of Exactus CRM, for each approach we
run a Shapiro-Wilk normality test. The results of these tests showed evidence
that coverage with both approaches do not match a normal distribution, with
w = 0.87319 and p-value = 1.562¢=° for Morpheus Web Testing, and
w = 0.89451 e p-value = 1.0225¢~% for CrawlJax. Then, significant dif-
ferences were observed according to a Mann Whitney Wilcoxon test between
the coverage of both approaches with V = 206 and p-value = 0.0001705. The
probability density of the branch reported for the all layers using Morpheus
Web Testing and Crawljax is illustrated in Figure 5(E).

When the sample has a tendency to follow a normal distribution, a para-
metric test is applied Student T-test and in the opposite case, ie non-normality,
wilcox is applied. Shapiro-Wilk normality tests were used for identifying if a
sample is normal or not normal, if its p value is less than 0.05 it means that
there are indications that the sample is not normal.

In Figure 4, it is possible to observe that the coverage distribution was
greater in Morpheus, mainly in the DAO, UTIL and all layers. At the same
time it is also possible to observe that for certain samples (layer util) the
coverage distributions of the approaches are similar to a normal distribution,
on the other hand samples in the layers (Pojo layer, dao and all layers) do not
ressemble a normal distribution.

In Figure 5, it is possible to observe that the coverage distribution was
greater in Morpheus, mainly in the DAO, UTIL and all layers. At the same
time it is also possible to observe that for certain samples (DAO layer and
ManagedBean) the coverage distributions of the approaches are similar to a
normal distribution, on the other hand samples in the layers (Pojo layer, util
and all layers) do not ressemble a normal distribution.

All statistical tests were conducted considering a 0.95 confidence interval.
In regards to the coverage results of both approaches, the test cases generated
by Morpheus Web Testing and CrawlJax failed to reach ManagedBean and

134 R. de Almeida Neves et al.

0.030

= Morpheus
Crawljax
0.025

0.020

0.015

Probability

0.010

0.005

0.000
0 20 40 60 80 100

Coverage

(A) Coverage probability density for the DAO
layer using Morpheus Web Testing and Crawljax

0,030

—— Morpheus.
Crawljax
0.025

0.020

0.015

Probability

0,010

0.005

0.000 +=
0 20 40 60 80 100

(C) Coverage probability density for the
ManagedBean layer using Morpheus Web
Testing and Crawljax

0.030

—— Morpheus
Crawljax
0.025

0.020
0015
0010 /_\//_‘
0.005

0.000
0

Probability

20 40 60 80 100
Coverage

0.030

= Morpheus
Crawljax
0025

0.020 \

Probability
°
2
=

0.010

o k

0.000
0

20 % 60 80 100
Coverage

(B) Coverage probability density for the POJO
layer using Morpheus Web Testing and Crawljax

0.030
— Morpheus

Crawljax
0.025

0.020

0.015

Probability

0.010

0.005 /

0.000 T T
0 20 0 60 80 100
Coverage

(D) Coverage probability density for the Util
layer using Morpheus Web Testing and Crawljax

(E) Coverage probability density for the all layers using

Morpheus Web Testing and Crawljax

Figure 4 Coverage probability density using Morpheus Web Testing and Crawljax.

POJO get and set methods which were not explicitly included in the WUI of
the web application. Moreover, exception handling routines implemented in
the Util and DAO layers were not reached by the approaches as well. Future
works should include ways for testing these components.

Morpheus Web Testing 135

0.030 0.030
—— Morpheus — Morpheus
—— Crawljax — Crawljax
0.025 0.025

0.020 0.020

0015 0.015

Probability
Probability

0.010 0.010

0.005 0.005

0.000 0.000
o 0

20 40 60 80 100
Branch Branch

(A) Branch probability density for the DAO (B) Branch probability density for the POJO

layer using Morpheus Web Testing and CrawlJax layer using Morpheus Web Testing and Crawljax

0.030

0.030

== Morpheus

= Morpheus
—— Crawljax —— Crawljax
0.025 0025

0.020 0.020
E 0:025: % 0.015
& H \
0.010 0.010 L~
N\
0.005 0.005
0.000 0.000 \\
o 20 %0 60 80 100 0 20 40 60 80 100
Branch Branch
(C) Branch probability density for the Managed (D) Branch probability density for the Util
Bean layer using Morpheus Web Testing and layer using Morpheus Web Testing and CrawlJax
CrawlJax

0.030

= Morpheus
—— Crawljax
0.025

0,020
0015
0,010)

0.000
0

Probability

20 40 60 80 100
Branch

(E) Branch probability density for the All
layers using Morpheus Web Testing and CrawlJax

Figure 5 Branch probability density using Morpheus Web Testing and Crawljax.

Considering the case study scenario, the results represent evidences that
support hypothesis Hy, considering that all coverage results were higher when
using Morpheus Web Testing in comparison to Crawljax. Furthermore, H;
was also supported by the significant differences observed when comparing
the coverage of both approaches. More specifically, it was observed that
Morpheus Web Testing coverage results impacted significantly the coverage
of the DAO layer of the web application.

136 R. de Almeida Neves et al.

5 Discussion

This paper presented a strategy for generating functional test cases for
web applications. We proposed a generation strategy which uses widget
information for generating test cases. The test case generation strategy was
implemented in Morpheus Web Testing tool which used widget information
available in XHTML JSF/Primefaces templates for generating the test cases.
Our general hypothesis was that using widget information, which stand for
complex Ul components, could enhance the coverage of the test case gener-
ation process for web applications, in comparison to state-of-art approaches
which used HTML markup for generating test cases. We conducted a case
study for comparing the coverage obtained when executing the test cases
generated by our approach and test cases generated by a state-of-art approach,
CrawlJax.

The CrawlJax execution obtained an average of 35% coverage, while the
Morpheus Web Testing generated test cases averaged 41% coverage. The
results observed in the case study showed statistical differences between
both approaches, and thereby, bringing evidence to support the alternative
hypothesis Hy. One of the factors that contributed to the approach of the
Morpheus Web Testing achieved a coverage greater compared to CrawlJax,
occurred due to the use of the interface components XHTML in the process
of generating test cases that have been defined by the JSF framework together
with the components of Primefaces interface.

Separately analysing the layers of the web application used in the case
study, the DAO layer showed higher significance in the coverage comparison
between both approaches. The factors that determined this disparity was that
when identifying the page components XHTML, the Morpheus Web Testing
approach synthesizes multiple test case input scenarios, while the CrawlJax
approach triggers clicks about the links rather than navigating within complex
widgets or inserting different values for form input elements.

CrawlJax and WebMate use HTML markup for generating events that
are associated with each component. However, Morpheus Web Testing does
not use the markup generic of HTML, but as it is using the JSF XHTML
templates, there is more information than a HTML file. Given that in the
of Morpheus Web Testing analyses the WUI in a higher abstraction level,
through the XHTML template, we argue that it can identify menu or a
calendar widget, while other approaches can only identify a DIV or an INPUT
HTML element.Having identified a menu, Web Testing can predict a type of
interaction that a div would not predict, such as: with a menu, it would be

Morpheus Web Testing 137

necessary a simple click, with right or left button to open other actions.Thus,
given we used complex widgets in the web application used in the case
study, Morpheus Web Testing was capable of identifying more states of the
application, achieving a higher coverage than CrawlJax.

AutoBlackTest [14], uses two strategies to carry out the process of gen-
erating test cases (i) the use of a learning technique named Q-learnig, and
(ii) multiple heuristics to address some common cases such as: filling out
forms and file persistence. On the other hand, Morpheus Web Testing uses
the semantics of XHTML interface components in the test case generation
process. It should be noted that, to effectively compare our work with Auto-
BlackTest [14], further experiments are required and could be realized in
future work.

Crawljax and Morpheus tools still have room for improvement and that,
in future works we could link the generation of test cases using the types of
inputs generated by other approaches as (The Link [24], AutoBlackTest [14]
and WebMate [6]) to in order to improve coverage, potentially improving
coverage in DAO and ManagedBean Layers.

In the area of test case generation for web applications, two related studies
(CrawlJax [23] and WebMate [6]) report the use of the structure HTML of
a web page to generate the test cases. HTML pages have a limited set of
interface components by default: text input, buttons, links, among others.
Morpheus Web Testing, on the other hand, was implemented to use complex
interface components (widgets) from JSF/Primefaces XHTML templates to
generate test cases. In these templates, interface components are specified
using higher level of abstraction definitions such as for example calendar
widget, inputs with validation fields, links and associated buttons to input,
among others.

In this work, we investigated whether the use of interface components
at a higher abstraction level such as menus could generate greater coverage
in test case generation strategies compared to the use of HTML interaction
elements.Our general research hypothesis was that, when a calendar widget
is identified, associated with a text field, specified in the XHTML template
with the Primefaces framework, it is possible to predict more elaborate levels
of interaction (considering the relationship between components, validation
strategies, and message fields) compared to separate identification of HTML
elements, without relationship between widget links and inputs and no iden-
tification of validation strategies in XHTML with the Primefaces framework.
Hence, we argue that using higher abstraction level WUI definition can
enhance the process of test case generation considering that: (i) get more

138 R. de Almeida Neves et al.

information than an HTML file and thus predict and improve component
interaction levels, and (ii) the ability to generate more functional test cases
and thereby achieve greater code coverage.

In the Morpheus Web Testing approach, not all possibilities of interface
components have been exercised. The components that were considered
in the process of the test case generation process were: input with masks
and validation messages; calendar widget; checkbox, links, combobox, text
area, radio buttons. For each widget type, it has been established a set
of test cases many different possibilities of input, considering the mech-
anisms of the specific interaction of each widget and their integration in
the web application. Morpheus Web Testing focused the test case genera-
tion process for these widget, given they were the types of widget used in
Exactus CRM.

The technique used was the generation of input for test cases, within
this, the oracles were not generated, so the faults are not revealed, that
is, only the application is explored. In this case if we consider detecting
the number of failures identified by approaches, others study should be
carried out.

Separately analysing the web application layers, can provide different
insights per layer. Crawljax and Morpheus use different software artifacts
for generating test cases, whereas Crawljax uses HTML and Morpheus
uses XHTML JSF templates. These artifacts are indirectly associated to
the widgets used in the UI of web applications and the user interaction
scenarios. In order to increase the coverage of the different layers, one
possible scenarios is analysing test-case generation strategies for the different
layers.

Our approach is a black box test case generation approach in which
test case generation is performed without having limited access to software
artifacts (we only evaluate XHTML template models). The goal of our tool
is to work with legacy systems (obsolescent platforms that have been in use
within a company for many years), assisting their refactor activities, even
when no automated test cases were implemented for them.

The system (Exactus CRM) in which the tests were performed is a small
size system with approximately (11Kloc), with this, the generation of test
cases was performed in around 1 minute. Generating test cases for other
applications would not be difficult, the execution as it is a selenium script
could take time. However there are options for accelerating the execution
time of these scripts, such as running Selenium distributed in a grid to try to
optimize the execution.

Morpheus Web Testing 139

Finally, The time for executing both approaches was not analysed in
our study. However, the generation of the test cases for Morpheus take
(around 1 minute), considering the number of artifacts that composed our
project. The execution time, on the other hand, averaged 40 minutes for
both approaches, considering they run using the Selenium WebDriver API,
similarly to System/Acceptance test cases.

6 Conclusions

This paper presented a process for generating functional test cases for web
applications, that use complex interface components in the process of gener-
ating test cases. Our approach was implemented in a tool, called Morpheus
Web Testing, and it was developed for identifying interface components in
JSF/Primefaces templates to automatically generate test cases. In terms of
the scope of the proposal, Morpheus Web Testing can be applied to any JSF
project that uses the Primefaces framework for interface components.

We evaluated our approach in a case study, in an industrial setting,
with a production JSF/Primefaces web application. The results indicate that
there is evidence that Morpheus Web Testing achieves greater code cov-
erage compared to state-of-the-art technique, because for all scenarios the
Morpheus Web Testing achieved better coverage on average. Although the
evaluation provided evidence that the approach outperforms state-of-the-art,
more assessments need to be carried out to generalize our findings.

The contributions of this work were:

* Implementing a test case generation strategy which identifies complex
interface components (widgets) and use their information to generate
more elaborate test cases for web applications;

» Reducing costs associated to the testing process, in web applications
that use the JSF frameworks and Primefaces, specifically considering
the industrial setting in which Morpheus Web Testing was used.

The suggestions for future work are:

* Extend the case study to other web applications to possibly further
generalize the findings of this paper;

* Extend the case study to perform oracle generation in order to identify
the number of flaws identified by the approaches; and

* Morpheus Web Testing focus on JSF/Primefaces web applications,
hence its usage is limited in comparisson to CrawlJax which can be used
to any web application. Regardless, our approach for generating test

140 R. de Almeida Neves et al.

cases from higher abstraction level definitions, such as widgets, could be
extended to other Widget libraries, such as Angular,* React,’ jQueryUL®
among others.

The limitations of this work are:

* The case study was conducted using only one application. WUI that uses
the JSF and Primefaces frameworks, in this case the Exactus CRM with
11KLOC;

* The case study was conducted using only one tool of functional test case
generation such as the CrawlJax;

* The usefulness of the proposed tool is evaluated only in terms of the
coverage achieved by the generated test cases (fault detection capability,
for example, is not considered);and

* In the Morpheus Web Testing approach, were not exercised all the
possibilities of interface components of framework Primefaces.

References

[1] Pekka Aho, Nadja Menz, Tomi Rity, and Ina Schieferdecker. Auto-
mated java gui modeling for model-based testing purposes. In Infor-
mation technology: New generations (itng), 2011 eighth international
conference on, pages 268-273. IEEE, 2011.

[2] Robert V Binder. Testing object-oriented systems: models, patterns, and
tools. Addison-Wesley Professional, 2000.

[3] J Craig Cleaveland. Building application generators. IEEE software,
5(4):25-33, 1988.

[4] Krzysztof Czarnecki, Michal Antkiewicz, Chang Hwan Peter Kim, Sean
Lau, and Krzysztof Pietroszek. Model-driven software product lines. In
Companion to the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages
126-127. ACM, 2005.

[5] Valentin Dallmeier, Martin Burger, Tobias Orth, and Andreas Zeller.
Webmate: a tool for testing web 2.0 applications. In Proceedings of the
Workshop on JavaScript Tools, pages 11-15. ACM, 2012.

[6] Valentin Dallmeier, Bernd Pohl, Martin Burger, Michael Mirold, and
Andreas Zeller. Webmate: Web application test generation in the real

*http://www.angular.io
>https://reactjs.org/
Shttps://jqueryui.com/

http://www.angular.io
https://reactjs.org/
https://jqueryui.com/

Morpheus Web Testing 141

world. In Software Testing, Verification and Validation Workshops
(ICSTW), 2014 IEEE Seventh International Conference on, pages 413—
418. IEEE, 2014.

[7] Marcio Eduardo Delamaro, José Carlos Maldonado, and Mario Jino.
Introducdo ao teste de software. 2007.

[8] Kit Edward. Integrated, effective test design and automation. Software
Development, 21(2):36-38, 1999.

[9] Mark Fewster et al. Common mistakes in test automation. In Proceed-
ings of Fall Test Automation Conference, 2001.

[10] Zahra Abdulkarim Hamza and Mustafa Hammad. Web and mobile
applications’ testing using black and white box approaches. 2019.

[11] Elisabeth Hendrickson. The differences between test automation suc-
cess and failure. Proceedings of STAR West, 1998.

[12] Cem Kaner. Improving the maintainability of automated test suites. In
International Software Quality Week, 1997.

[13] Ajeet Kumar and Sajal Saxena. Data driven testing framework using
selenium webdriver. International Journal of Computer Applications,
118(18), 2015.

[14] Leonardo Mariani, Mauro Pezze, Oliviero Riganelli, and Mauro San-
toro. Automatic testing of gui-based applications. Software Testing,
Verification and Reliability, 24(5):341-366, 2014.

[15] Atif M Memon et al. Comprehensive Framework for Testing Graphical
User Interfaces. University of Pittsburgh Pittsburgh, 2001.

[16] Glenford J Myers, Tom Badgett, Todd M Thomas, and Corey Sandler.
The art of software testing, 2004.

[17] Bao N Nguyen, Bryan Robbins, Ishan Banerjee, and Atif Memon.
Guitar: an innovative tool for automated testing of gui-driven software.
Automated Software Engineering, 21(1):65-105, 2014.

[18] Roger S Pressman. Engenharia de software, volume 6. Makron books
Sao Paulo, 1995.

[19] Abdul Rauf, Sajid Anwar, M Arfan Jaffer, and Arshad Ali Shahid. Auto-
mated gui test coverage analysis using ga. In Information Technology:
New Generations (ITNG), 2010 Seventh International Conference on,
pages 1057-1062. IEEE, 2010.

[20] Ana Regina Cavalcanti da Rocha, José Carlos Maldonado, Kival Chaves
Weber, et al. Qualidade de software: teoria e pratica. Sdo Paulo:
Prenttice Hall, 2001.

[21] Marton Sakal. Gui vs. wui through the prism of characteristics and
postures. Management, 5(1):003-006, 2010.

142 R. de Almeida Neves et al.

[22] Ian Sommerville. Software Engineering. Pearson, 10th edition, 2015.

[23] EDC Van Eyk, WJ Van Leeuwen, Martha A Larson, and Felienne Her-
mans. Performance of near-duplicate detection algorithms for Crawl-
Jjax. PhD thesis, Citeseer, 2014.

[24] Tanapuch Wanwarang, Nataniel P Borges Jr, Leon Bettscheider, and
Andreas Zeller. Testing apps with real-world inputs. In Proceedings of
the IEEE/ACM 1Ist International Conference on Automation of Software
Test, pages 1-10, 2020.

Biographies

5
[o

Romulo de Almeida Neves. Agile, eXtreme Programming, TDD, Hexagonal
Architecture, and Flutter enthusiast. Graduated in computer engineering and
master in computing. Over 17 years of experience with the Java platform,
applicatons servers, elaboration of architectures, back-end projects, web solu-
tions, desktop, mobile, solution integrations using rest, soap, microservices,
using proprietary java products, JCP products, Jakarta EE and Spring frame-
work products.

Willian Massami Watanbe. Ex-Yahoo!, Professor and Passionate Soft-
ware Engineer, with experience in development practices associated to Web

Morpheus Web Testing 143

technologies and Web engineering practices (such as: eXtreme Programming,
TDD - Test-Driven Design, Continuous Integration and Continuous Deliv-
ery). Eager to contribute by developing quality assured Web applications,
also considering attributes such as usability, maintenance and multi-platform
characteristic of the Web.

Rafael Oliveira. Is a researcher in Software Engineering and adjunct profes-
sor — The Federal University of Technology — Parand — UTFPR. Interested
in research activities associated with planning/implementing automated soft-
ware testing solutions in different projects, supporting code review processes,
measuring change impact, planning and implementing testing frameworks,
maintaining testing scripts, and reports, supporting API, and manual testing
activities.

	Introduction
	Related Work
	Test Case Generation Approach
	Evaluation
	Methodology
	Results
	DAO layer
	POJO layer
	ManagedBean layer
	Util layer
	All layers

	Discussion
	Conclusions

