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Abstract

This paper presents ARTEMIS, a control system for autonomous robots or
software agents. ARTEMIS can create human-like artificial emotions during
interactions with their environment. We describe the underlying mechanisms
for this. The control system also captures its past artificial emotions. A
specific interpretation of a knowledge graph, called an Agent Knowledge
Graph, stores these artificial emotions. ARTEMIS then utilizes current and
stored emotions to adapt decision making and planning processes. As proof
of concept, we realize a concrete software agent based on the ARTEMIS
control system. This software agent acts as a user assistant and executes their
orders and instructions. The environment of this user assistant consists of
several other autonomous agents that offer their services. The execution of a
user’s orders requires interactions of the user assistant with these autonomous
service agents. These interactions lead to the creation of artificial emotions
within the user assistant. The first experiments show that it is possible to
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realize an autonomous user assistant with plausible artificial emotions with
ARTEMIS and record these artificial emotions in its Agent Knowledge
Graph. The results also show that captured emotions support successful
planning and decision making in complex dynamic environments. The user
assistant with emotions surpasses an emotionless version of the user assistant.

Keywords: Autonomous agents, artificial emotions, agent knowledge
graphs.

1 Introduction

The development of autonomous agents able to act and decide in complex
environments is one of the essential early visions of Artificial Intelligence
(AI). Such agents should manage unforeseen problem situations and emu-
late human behavior to resolve these problems. (compare [36]) Despite
many advances (e.g., in multi-agent systems and semantic technologies that
improve the interaction between agents), this vision has only partially become
a reality. Specifically, developing autonomous agents capable of adapting to
complex environments is not yet completely solved. In such environments, it
is vital to have the ability to plan and re-plan if necessary (compare [46])
and have the capacity to modulate the execution of the plan by adaptive
decision-making. As Dörner and Güss argue, “The function of emotions
is to adjust behavior considering the current situation” [12, p. 308]. This
idea’s foundation is the observation that humans can often adapt to complex
and dynamic environments quite successfully. Thus, an idea to transfer this
ability from humans to agents is to equip autonomous agents with artificial
emotions.

Problem Statement We address the following two problems: (i) how to
create artificial emotions that are a realistic simulation of human emotions
in certain problem situations and (ii) how to capture these artificial emotions
in a knowledge graph of an autonomous agent.

Proposed Solution We propose ARTEMIS, a robot and software agent
control system, which enables agents to create, capture, and utilize artificial
emotions. ARTEMIS exploits the generated and stored artificial emotions
to modulate behavior and decision making. The PSI theory of the cognitive
psychologist Dörner [12] provides the theoretical foundation for ARTEMIS’s
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general structure. Additionally, the Component Process Model (CPM) of the
emotion psychologist Scherer [39] provides the theoretical basis for essential
aspects of the creation of artificial emotions in ARTEMIS. Thus, ARTEMIS
and its artificial emotions rely on a solid theoretical background, briefly
introduced in Sections 4.1 and 5.1. Knowledge bases are essential compo-
nents of autonomous robots or software agents. They are the cornerstone
for their planning and decision-making. There are several ways to realize
such a knowledge base. We suggest for this purpose a particular version
and interpretation of knowledge graphs. Our interpretation of knowledge
graphs, we call Agent Knowledge Graph, is intended to support autonomous
robots and software agents in planning and decision making in complex
environments by storing artificial emotions.

Our Contributions. We present the design of our robot or software agent
control system ARTEMIS. The control system is capable of creating and
capturing artificial emotions. The basis for creating artificial emotions is
the appraisal of interactions of the agent with other autonomous agents.
Both cognitive processes and need processes are involved in realizing these
appraisals. We demonstrate how ARTEMIS implements both types of pro-
cesses. The ARTEMIS control system contains an Agent Knowledge Graph,
which stores the emotions and makes them available for later planning
and decision-making processes. This paper is an extension of an earlier
paper by us [19]. We enrich the previously presented concepts with further
details. First, give a more extensive overview of state of the art. Furthermore,
we present a revised representation of the architecture of ARTEMIS. We
describe Dörner’s PSI theory in more detail and elaborate on its connection to
ARTEMIS. We also go more in-depth about Scherer’s appraisal patterns and
show how ARTEMIS realizes them. We also provide a more comprehensive
specification about how ARTEMIS generates and stores emotions.

The paper is structured as follows. Section 2 motivates a possible appli-
cation area of ARTEMIS. Section 3 discusses related approaches and their
relevance to the ARTEMIS control system for autonomous agents. In Sec-
tion 4, we look at Dörner’s PSI theory as the foundation of ARTEMIS.
Then we discuss the general architecture of ARTEMIS. In Section 5, we
discuss how ARTEMIS creates emotions. In Section 6, we devise an Agent
Knowledge Graph to model the motivating example’s problem. In Section 7,
we present our experimental study and describe our experimental results. In
Section 8, we discuss our conclusions and our future work.
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2 Motivating Example

We motivate our approach using a typical situation that may be present in
a wide variety of data-driven scenarios. Examples of application scenarios
include selecting (a) machines in future ‘Smart Factories’, (b) means of trans-
port in ‘Supply Chains 4.0’, and (c) information sources by an autonomous
information broker in a ‘decentral dataspace’ like an ‘Industrial Data Space.’
Our exemplary application scenario moves within the context of the so-
called Service Web (see [13]). With this exemplary scenario, we can study
principal problems of service selection without getting lost in the details of
concrete application areas. The process of the exemplary application scenario
is as follows (see Figure 1). An autonomous agent takes on the role of an
autonomous user assistant for its user. The autonomous user assistant accepts
the orders of its human user. To execute an order, the autonomous user
assistant searches its knowledge base for a suitable plan. A plan defines a
list of steps. For each plan step, the autonomous user assistant must find
a suitable service agent that performs the step. Autonomous service agents
offer their services at different prices and are differently trustworthy. The
autonomous user assistant has to decide which service agent fits best with the

Figure 1 Motivating Example. An autonomous user assistant executes a user’s order in a
complex environment. For this purpose, it uses a plan. The user assistant selects the most
suitable service agents to execute the individual plan steps. The service agents are also
autonomous. Several interactions take place between the user assistant and the service agents.
Appraisals of these interactions by the user assistant create artificial emotions.
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current situation. The following conditions form the basis for the exemplary
application scenario:

Condition 1. In complex dynamic environments (e.g., ‘Industry 4.0’ applica-
tions), conditions for cooperation with autonomous service agents can change
from time to time. Present cooperation partners may leave the environment of
the autonomous user assistant, and others may arrive. As a result, the search
for suitable cooperation partners becomes a permanent task.

Condition 2. The cooperation partners of the autonomous user assistant
are autonomous themselves and try to maximize their outcomes. Therefore,
the results of cooperation are often uncertain. It is always possible that
the user assistant’s cooperation partners do not meet the agreements and
provide results that do not fulfill its expectations. Several situations may cause
this violation of the user assistant expectations. One reason could be that
cooperation partners are not capable of delivering their promised services.
Another reason could be that they did not understand the mandate correctly.
Lastly, they may deliberately did not execute the job correctly to gain an
advantage.

These conditions provide the basis for a complex interaction between the
autonomous user assistant and the autonomous service agents. Appraisals of
these interactions create corresponding emotions in the user assistant. For
example, ‘Excited’ when something goes well in contrast to expectations
(and the result was significant) and ‘Disdainful’ when a cooperation partner
performs poorly (and it is possible to balance this out). Through numerous
interactions with the service agents, the user assistant gains experience on
cooperation partners’ reliability. Emotions are created and stored in the Agent
Knowledge Graph of the user assistant. With these emotions, the user assis-
tant gains essential knowledge overtime to help future effective planning and
decision-making. Conventional approaches without artificial emotions would
only determine whether an interaction was successful or not. The emotion-
based approach, on the other hand, is much more differentiated. Emotions
summarize the agent’s assessment of the entire underlying situation. An
essential function of emotions, which we utilize in ARTEMIS, is to adapt
the planning and decision-making of an autonomous actor to a particular
situation. Scherer [39] describes this as follows: “Emotions are mechanisms
that enable the individual to adapt to constantly and complexly changing
environmental conditions” (from [39]). This fact applies to both current and
remembered emotions.
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3 Related Work

Research in computer science and emotions currently focuses on recognizing
user emotions. Other approaches try to recognize emotions in texts, human
faces, or the language (see [18]). This research direction has already achieved
significant results. Emotion analysis will be essential for machines to react
appropriately to their human users’ emotions. Such analyses are, therefore,
crucial for the next step in human-computer interaction (HCI). However,
the approach presented in this paper is not about the recognition of human
emotions. Instead, the focus is on creating and memorizing artificial emotions
in autonomous agents. We use these artificial emotions to adapt autonomous
robots and software agents’ behavior to the respective environment. It is also
crucial that the presentation of these artificial emotions (e.g., face, voice,
or gestures) can help users understand the system’s decisions and actions.
The basis of this understanding is that human users can often imagine that
they probably would have had similar emotions in similar situations and that
they would have acted or decided similarly on this foundation. The approach
ARTEMIS presented in this paper has two results. On the one hand, it serves
to improve the performance of autonomous agents. On the other hand, it is
also a contribution to the research area of HCI.

The basis for generating artificial emotions in agents is research in psy-
chology, cognitive architectures of cognition research, and agent architectures
of artificial intelligence. We briefly describe the essential foundations of these
three research areas. After that, we present a selection of approaches based
on these foundations and discuss their relation to our approach.

3.1 Psychological Emotion Research and Autonomous Agents
with Artificial Emotions

So-called appraisal theories are currently predominant in psychological emo-
tion research. These theories describe emotions as judgments within cogni-
tivism and emphasize the close connection between cognitive and emotional
processes. Appraisal theories deal with appraisals of those characteristics of
events of the environment that are important for an organism [31]. These
appraisals generate emotions and, in this way, corresponding adaptation
reactions. Well-known appraisal theories include the theory from Smith and
Lazarus [41] Ortony, Clore, and Collins [33], and Scherer [39].

Smith and Lazarus. Smith and Lazarus [41] made essential contributions to
stress research and emotion research. They regarded emotions as evolutionary



Creating and Capturing Artificial Emotions 939

strategies that aim primarily at eliminating a threat to an organism’s motives.
Smith and Lazarus distinguished between a primary appraisal, a secondary
appraisal, and a reappraisal. A primary appraisal is assessing the significance
of occurred or future events for the motives of an organism. The assessment of
an organism’s possibilities for action and coping is the subject of a secondary
appraisal. Reappraisal means a re-evaluation of the situation, which can lead
to a modification of the primary assessment. Smith and Lazarus were mainly
engaged in stress research.

OCC. The most widely used model for agents with artificial emotions is the
emotion model from Ortony, Clore, and Collins [33], or the OCC model for
short. The OCC model describes the characteristics of prototypical situations
and associates these situations with emotions. The OCC model defines 22
different emotions and relies on variables that describe their intensity. OCC
appraisals are hierarchical so that they form a decision tree. An important
reason for the OCC model’s popularity is that its fundamentals suggest a
computer implementation [20]. That means this model is quite accessible to
computer scientists. The OCC model describes evaluations at a very high
level of abstraction. The evaluations rely on a purely cognitive assessment of
the consequences of events, agents’ actions, and aspects of objects. It does
not refer to needs or motivational processes.

Scherer. Another critical appraisal theory is the Component Process Model
(CPM) from Scherer [39]. Within his model, Scherer describes the compo-
nents involved in the emotional process, their interaction, and the effects of
different appraisal results. An important detail is that Scherer emphasizes that
realistic emotions require cognitive processes and need processes. (compare
[39]) We use a part of Scherer’s CPM model in ARTEMIS. In Section 5.1 of
this paper, we discuss this separately. To us, the theory of Scherer seems to be
the most promising to realize systems that show believable emotions and use
emotions to modulate the behavior of autonomous agents. For this reason, for
the creation of artificial emotions, we focus our work on Scherer’s theory.

3.2 Classification of Emotion Models

Emotions psychologists distinguish between discrete and dimensional emo-
tion models. We summarized the first contributions in both areas.

Basic Emotions. Several scientists assume that there exist so-called basic
emotions. One of the most prominent representatives of this idea is Paul
Ekman [14]. An essential aspect of basic emotions is that they are discrete,
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which means each emotion is fundamentally different from every other basic
emotion. They represent different essential and often occurring (crisis) situa-
tions and the reactions that have become evolutionarily accepted as the best
solution. (compare [14]) Basic emotions are innate, are present in all people,
and are triggered automatically. Emotions psychologists assume that there are
at least 6, but possibly up to 15 basic emotions in humans. ARTEMIS uses
not a model of basic emotions but a dimensional emotion model.

Dimensional Models of Emotions. The assumption with dimensional mod-
els is that a few independent dimensions can characterize emotions. Points or
regions in the space spanned by these dimensions define emotions. There
are many different dimensional models. Differences exist in the number
of dimensions, the dimensions’ names, and the emotions’ coordinates. In
ARTEMIS, we rely on the 3-dimensional model of Mehrabian [29, 30]. This
model uses the dimensions Pleasure (P), Arousal (A), and Dominance (D).
Therefore, it is commonly called the PAD model.

3.3 Cognitive Architectures and Autonomous Agents with
Artificial Emotions

An important question is how to realize the cognitive processes of
autonomous agents. The best known traditional cognitive theories are Soar
(States, Operators, And Results) [24] and ACT-R* (Adaptive Control of
Thought – Rational) [1]. However, Soar and ACT-R* are pure cognitive
theories. These theories model human behavior as problem-solving with
relation to a given task. However, these two theories do not model needs
or even refer to concepts like motivation or emotion. Soar and ACTR*
can be classified as computer science approaches rather than psychological
approaches. (compare Detje [7, p. 86]) Dörner’s PSI theory, however, is a
general theory of autonomous systems. It describes the interaction between
need processes, cognitive processes, and emotional processes. It describes,
from a psychological perspective, how motives and intentions arise from
needs. Scherer emphasizes in his CPM theory that “The existence of needs
and values in agents are, of course, the central prerequisite of a computational
agent model. Without needs or goals, no real emotions.” (from Scherer [39,
p. 87]). The Dörner’s PSI theory represents a solid framework to realize
autonomous agents with artificial emotions; it provides the foundations for
ARTEMIS.
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3.4 Traditional Architectures for Autonomous Agents From the
Area of Artificial Intelligence

There are four different traditional agent architectures: logic-based, reactive,
hybrid, and BDI agents (compare [21]).

Logic based agents. Logic-based agents operate in worlds which are subject
to restrictions. For example, the world cannot change while the agent decides
what to do. (compare [21]) A logic-based agent architecture is therefore not
suitable for complex dynamic environments.

Reactive agents. A reactive agent selects actions based on the current sensor
information and a set of condition action rules. Local information on its
environment is the basis of the behavior of a reactive agent. Reactive agents
are relatively easy to implement. Unfortunately, the application areas of such
agents are quite limited. (compare [21])

Hybride agents. These architectures are combinations of different agent
types. Robotics research often uses such agent architectures. (compare [21])

BDI agents. The three main components of the BDI architecture for agents
are Belief, Desires, and Intentions. The philosopher, Michael Bratman at
Stanford University, developed 1987 the so-called practical reasoning sys-
tem. According to Bratman, the system of practical reasoning should reflect
the process of human practical thinking. On this basis, Anand Rao and
Michael Georgeff developed in 1991 the BDI architecture for autonomous
agents [34]. BDI agents know their environment (beliefs), desirable states
(desires), and currently pursued intentions. BDI (the currently most crucial
traditional architecture) uses the terms desires and intentions but does not
use motivational processes such as a need system as a basis for that. Also,
the BDI architecture has a philosophical and not a psychological origin. In
contrast, both Scherer’s CPM theory [39] and Dörner’s PSI theory [9] are
psychological theories. Scherer emphasized the importance of a motivational
system with needs to create artificial emotions. An essential part of Dörner’s
PSI Theory is a model of needs, from which motivations and intentions arise.

3.5 A Selection of Already Realized Approaches for Agents with
Artificial Emotions

There are diverse approaches to create agents with artificial emotions. We
only discuss a selection of these (additional references [25, 28], and [23]).
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One line of this research is how to show emotions to improve human-
agent interaction. Examples for this can be found in [2, 5], and [4]. Besides
aspects of communication, some approaches also deal with the influence of
emotions on agent acting and decision-making. In the following, we focus on
some selected approaches and present the main differences in the creation of
emotions between these approaches and our ARTEMIS approach.

Crucial – in both the PSI theory and ARTEMIS – is that intentions are
grounded in motivations and get their meaning through these motivations.
Furthermore, motivations are grounded in needs processes and get their
meaning through these needs processes. The definition of this requires an
appropriate psychological theory. This theory must describe the connec-
tions and interactions between needs, motives, and intentions. In this way,
motivations and intentions can get meaning.

We will briefly discuss several existing approaches for agents with
emotions. None of these approaches models needs or motives based on a
well-founded psychological theory that describes the interaction of need,
motivation, and intention processes. The presented approaches use terms like
need, motivation, or intention purely intuitively or heuristically. Owing to this
reason, they do not fulfill Scherer’s requirement for the creation of emotions.

Abbots. Cañamero [6], based the creation of artificial emotions on a moti-
vational system. The system used drives, motivations, and emotions to select
behaviors. Behavior aims to satisfy needs related to the motives. Although
the approach of Cañamero describes important concepts of agent decision
making, the approach is missing a grounding of the concepts of needs and
a psychological theoretical basis for the interplay of emotional, need-based,
and cognitive processes.

Cathexis. Velásquez [43] is one of the first researchers who dealt with an
emotion-based decision-making system for autonomous robots. Velásquez
used emotions to activate different behaviors, to generate attention, to cre-
ate appropriate emotional expressions, and to make it possible to learn
from past experiences. Velásquez uses drives, motivations, and emotions to
select behaviors. For the realization of autonomous agents with emotions,
Velásquez made many valuable proposals. However, with his approach, the
problem is that a grounding of drives, motivations, and emotions is missing.

Kismet. Breazeal [5] developed a sociable robot named Kismet. The robot
has a simple model of needs, where the needs represent the specialized three
goals of Kismet: engaging with people, engaging with toys, and resting from
time to time. Three dimensions (arousal, valence, and stance) describe the
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emotions of Kismet. Self-crafted appraisals can generate values for these
three dimensions to activate one of nine implemented artificial emotions. The
active emotion then influences the robots posture, facial and vocal expression.
It can also trigger certain emotion specific behaviors. Problematic is that
Breazeal uses the concept of the drive purely intuitively as a mechanism to
switch between the three main goals implemented in Kismet. Therefore, the
need system and the interplay with motivational and emotional influences
have no theoretical foundation.

The ALEC agent architecture. Gadanho [15] presents artificial emotions
that can influence behavior. Her approach uses drives, motivations, and emo-
tions to select behaviors. Emotions provide input to a reinforcement learning
algorithm. The enforcement system takes the emotion with the highest inten-
sity for reinforcement. The approach uses only cognitive appraisal processes
for that purpose.

EDBI. In 2007 Jiang et al. [21] presented EBDI, an architecture for emotional
agents. The goal of the project was to add an emotional component to the
BDI architecture. BDI is the basis of EBDI. BDI does not model needs, and
so does not EBDI. That means there is no grounding of the emotions used in
the approach.

The EMA-Model. Marsella and Grathch [27] presented the EMA-Model.
EMA stands for Emotion and Adaption. The SOAR architecture [24] is the
basis of EMA on the cognitive side. On the emotional side, the EMA-Model
basis is the appraisal theory of Smith and Lazarus [41]. SOAR is a purely
cognitive approach. It does not model needs or motivations.

SOAR-Emote.Model. Marinier et al. [26] presented the SOAR-Emote.Model.
SOAR realizes the cognitive part of the SOAR-Emote.Model. However, the
authors stress that they could just as well have used ACTR*. As emotion
theory, the authors use Scherer’s appraisal theory. Furthermore, the authors
use Newell’s theory of cognitive control PEACTIDM [32] to model the
agent’s decision-making behavior. SOAR is a purely cognitive approach. It
does not model needs or motivations.

An emotion-based decision-making approach. Antos and Pfeffer [3] for-
mulate emotions as mathematical operators that update the agent’s goals
relative priorities. In their approach, artificial emotions can also influence the
importance of goals. This approach presents many excellent ideas. For exam-
ple, agents should adapt to the current situation by acting more cautiously if
there is some danger or acting more bravely if everything seems to run well.
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However, the authors base their system on purely cognitive appraisals of the
situation. The approach does not model grounded intentions, motivations, and
needs. The authors use these concepts, only heuristically / intuitively.

Emotions and their Use on a Decision-Making System. The approach
of Salichs and Malfaz [37] deals with the generation and role of artificial
emotions in the decision-making process of autonomous agents. The basis
of the approach is drives (needs), motivations, and artificial emotions. The
authors regard artificial emotions as fear, happiness, and sadness. In this
approach, agents can appraise the environment and raise an artificial emotion
due to this appraisal. A pure cognitive appraisal is a basis for the evaluation
of the environment.

The WASABI Architecture. Becker-Asano [4] presented the WASABI
architecture for believable agents. WASABI incorporates many different
approaches related to emotions. These are the PAD model, the OCC model,
and Ekman’s basic emotions. The controlling emotion system has three
components – emotions, moods, and boredom. For most of the emotional
concepts, Becker-Asano uses Ekman’s basic emotions. WASABI does not
model grounded intentions, motivations, and needs. The author uses these
concepts, only heuristically/intuitively.

4 The Foundations of ARTEMIS

The basis for essential parts of ARTEMIS is the PSI theory of the cognitive
scientist Dörner [12]. The PSI theory formalizes cognitive, motivational, and
emotional processes and their interaction. The theory defines a computational
architecture for autonomous agents. Dörner implemented virtual agents based
on his PSI theory and showed that they could adapt to a simulated, complex
environment and learn how to reach their own goals within this environment.
We will first provide an outline of Dörner’s PSI theory and then present the
architecture of our approach ARTEMIS.

4.1 Preliminaries: An Outline of Dörner‘s PSI Theory

The PSI theory ( [9, 10, 12]) defines an architecture for autonomous systems
(in the following called PSI agents). The origin of a PSI agent’s behavior
regulation is its motivational processes. The basis for these processes is
a homeostatic system evolving around five basic human needs: existential
needs (energy, water, pain avoidance), a need for sexuality, a social need
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Figure 2 PSI. Dörner’s PSI theory is the basis for the ARTEMIS architecture (see Figure 3)
and realizing Scherer’s appraisal pattern (see Figure 4). This figure shows an overview of the
structure of PSI (cut-out and own translation from [9]). The PSI theory defines an architecture
of autonomous agents. This Figure primarily describes the interaction of need processes,
motivations, intentions, and cognitive processes.

for affiliation, a cognitive need for certainty, and a second cognitive need
for competence. A set of “tanks” – one for each need (see Figure 2) – can
represent this need system. A tank contains a varying amount of “liquid”
that empties over time or by experiencing negative events. When the filling
level falls below a certain threshold called setpoint, a demand arises, which
is stronger, the greater the derivation from the setpoint is. This demand is the
motivational signal for the PSI agent to take action.

When a demand signal appears, the PSI agent creates a motive. A motive
is a structure containing references to the current situation, the associated
need, and a goal to satisfy the present demand. The PSI agent can have
multiple motives at once, but a selection process only chooses one motive
to become dominant as the agent’s current intention. The basis for this
selection is the strength of the indicated needs and the subjectively estimated
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likelihoods to satisfy them. The prerequisite for this is the current situation of
the PSI agent and its knowledge from previous experiences.

For the current intention, the PSI agent initiates a cognitive planning pro-
cess. That means the PSI agent tries to construct an action sequence that leads
from the current situation to the goal associated with the current intention. To
do that, the agent draws on his experiences. If none of its existing knowledge
can be applied, a trial-and-error approach is used, creating new knowledge.
This new knowledge might become the basis for future planning if some of
the executed actions lead to the need’s satisfaction or mitigating the need.

A PSI agent aims to generate pleasure signals when demand is partially
or completely satisfied by an action or event. A pleasure signal increases the
filling level of the respective need tank again. These pleasure and displeasure
signals also reinforce the paths leading to positive, satisfactory, or negative,
need-increasing events as part of a PSI agent’s learning process. In the PSI
theory, learning means that the strength of connections in the PSI agent’s
memory is changed, or new connections are created. The memory of a PSI
agent consists of a particular neural network structure Dörner invented (for
more details on that, see [12]).

PSI models emotional processes not as distinct entities that become
active on certain events. Emotions instead serve as a continuous modula-
tion system, which is highly interrelated with the other processes. Three
modulation parameters realize emotions – activation, resolution level, and
selection threshold. These parameters are derived from the need system,
representing the PSI agent’s current internal state. All of the PSI agents’ core
processes as perception, accessing memory, planning, and executing actions
are adjusted according to the three modulation parameters’ current values.
This solution allows the PSI agent to adapt its behavior to the current demands
dictated by the environment and based on its internal state. In the PSI theory,
“emotions” are considered identical to these modulation parameters’ current
configuration and the resulting adjusted cognitive processes.

4.2 The Architecture of ARTEMIS

ARTEMIS’s core is closely related to Dörner’s PSI architecture of
autonomous systems, especially the processing of needs, selecting motives,
and handling the current intention (see Section 4.1.). However, there are
several own solutions within ARTEMIS, which we discuss in the following.

Memory. An Agent Knowledge Graph realizes ARTEMIS’s memory, not
as a particular form of neural networks, as the PSI theory realizes it. The
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Figure 3 The Architecture of ARTEMIS. Dörner’s PSI theory provides the basis for this
architecture’s essential components. Some new components are specific to the ARTEMIS
architecture. In ARTEMIS, an Agent Knowledge Graph realizes the memory of Dörner’s PSI.
In contrast to Dörner’s approach, ARTEMIS has a specific cognitive appraisal component
closely connected to ARTEMIS’s need system. The need system and the appraisal component
produce values for the parameters ‘Pleasure’, ‘Arousal,’ and ‘Dominance,’ which define
artificial emotions in the PAD cube. These artificial emotions, or better expressed their
Pleasure, Arousal, Dominance components, influence the ‘decision-making/planning’ and
‘goal selection’ components of the control system. The Agent Knowledge Graph captures
these artificial emotions.

reason for this is that we do application-oriented research in the field of
artificial intelligence. PSI’s approach to realizing a memory by a particular
form of neural networks is highly exciting. However, more intensive and
more prolonged basic research is needed before this approach will be ready
for practical application. Therefore, in our opinion, a preliminary realization
based on knowledge graphs seems to be appropriate for the near future.

Appraisals and emotions. In PSI, the realization of emotions relies on the
three needs generated parameters “resolution level”, “selection threshold”,
and “activation” (see [12]). The values of these three parameters lead to
emotions and modulation of cognitive processes. However, PSI does not
address appraisal processes explicitly. ARTEMIS models appraisal through
explicitly described cognitive assessment processes that work closely with
needs. The results of the appraisals act as a very detailed evaluation of
the current situation under different aspects. In ARTEMIS, this also gen-
erates efficiency and inefficiency signals corresponding to the PSI theory’s
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pleasure and displeasure signals. These signals increase or decrease the
filling levels of the need tanks. The needs then create the values of the
three parameters Pleasure, Arousal, and Dominance. We discuss ARTEMIS
needs and appraisals further in Section 5.2. The parameters, Pleasure,
Arousal, and Dominance, are used in ARTEMIS to define artificial emotions
and modulate the autonomous agent’s cognitive and behavioral processes.
Dörner discussed in his book [10] that the three parameters “Lust-Unlust
(pleasure-displeasure),” “Erregung-Beruhigung (excitement-calming),” and
“Spannung-Lösung (stress-solution)” mentioned by Wilhelm Wundt (com-
pare [10, p. 220]) as components of emotions would also fit well to his theory.
Wundt’s parameters are a precursor of the PAD parameters developed later by
Mehrabian [29,30] and can be easily mapped to them. Dörner did not pursue
this idea; however, he recently assured the authors of this paper – in a personal
conversation – the feasibility of this approach.

Modulation. The three parameters, “resolution level,” “selection threshold,”
and “activation,” which are used in PSI to define emotions, are also generated
by ARTEMIS. As in PSI, ARTEMIS uses these parameters to modulate
cognitive processes. However, ARTEMIS additionally uses the ARTEMIS-
specific PAD parameters for modulation. For the definition of artificial
emotions in ARTEMIS, we rely entirely on the three PAD parameters because
scientifically based mappings of emotions exist (see [29, 30]).

5 Creating Artificial Emotions

We focus on describing how ARTEMIS creates artificial emotions. The basis
for creating artificial emotions is the Component Process Model (CPM)
theory of the emotion researcher Scherer [39]. The CPM theory defines
emotions as a result of evaluating external events, objects, or situations by an
agent. This article shows that ARTEMIS can realize the theoretical evaluation
scheme defined by the Scherer‘s CPM theory, and the use of appraisals as a
basis for artificial emotion creation. We present Scherer‘s CPM theory next.

5.1 Preliminary: Scherer‘s Component Process Model (CPM)

Scherer provides a comprehensive appraisal theory with his Component
Process Model (CPM) developed in 1984 [38]. Within the framework of his
model, he describes the various components necessary for creating emotions
in detail. He explains how these components interact with each other. Scherer
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Figure 4 Architecture of Scherer’s Component Process Model of Emotion Scherer [39,
p. 49]. (a) The Component Process Model (CPM) consists of five subsystems that realize
five different functions. These functions are (1) Appraisal of objects, events, or situations
(Cognitive component), (2) preparation and direction for action, (3) signaling of behavioral
intention, (4) Central representation of all components, (5) assignment to fuzzy emotion
categories and labeling with emotion words. (b) The most critical component in CPM is the
appraisal module. Within the appraisal module, the multilevel appraisal component realizes
four appraisal objectives. These appraisal objectives are divided into individual appraisal
criteria, each of which has its check defined. Own figure based on [39, p. 50]).

emphasizes at multiple points that his CPM could be particularly suitable for
computer-aided modeling. However, Scherer also mentions the requirements
and sometimes significant challenges involved if a computer-based agent
should implement his evaluation criteria. The Component Process Model
(CPM) consists of five subsystems that realize five different functions. These
functions are: (compare [39, p. 49])

• Cognitive component: Evaluation of objects and events.
• Motivational component: Preparation and direction for action.
• Motor expression component: Signaling of behavioral intention.
• Neurophysiological component: Regulation of internal Subsystems.
• Subjective feeling component: Monitoring of internal state and exter-

nal environment.

On Outline of Scherer’s Appraisal Pattern for Events. The appraisal mod-
ule is the most basic and most important in the overall architecture (compare
[39, p. 50]). “An event happens, and we will instantly examine its relevance
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by drawing from memory and motivation and attend to it immediately if it is
considered relevant.” (from Scherer [39, p. 47])

Scherer describes the four primary appraisal goals that an appraisal
process of events must realize to enable an organism to react adaptively to
an outstanding event. Evaluation goal 1: How relevant is this event? Does it
directly affect the organism or its social reference group? (relevance). Evalua-
tion goal 2: What are the implications or consequences of this event? How do
they affect the well-being and immediate or long-term goals of the organism?
(implications). Evaluation goal 3: How well can the organism cope with or
adjust to these consequences? (coping potential). Evaluation goal 4: What is
the significance of this event for the organism’s self-concept and social norms
and values? (normative significance) (compare Scherer [39, p. 50]).

Scherer subdivides the four appraisal objectives into more detailed
appraisal criteria. The appraisal criteria include novelty, valence, goal rel-
evance, urgency, goal congruence, responsible agent, coping potential, and
norms (see Scherer [39, p. 51]). With his proposal, Scherer presents a
theoretically sound appraisal pattern. However, he does not give any pre-
cise information on how to realize it. However, Scherer gives hints on the
boundary conditions for implementation; he also emphasizes the existence of
needs and goals as essential prerequisites for the appraisals of events. Further,
Scherer’s criteria point out that computational agents who have no needs or
goals cannot have real emotions (Scherer [39, p. 52]).

5.2 Creating Artificial Emotions in ARTEMIS

We expand the knowledge of events that have taken place to include knowl-
edge about the artificial emotions associated with them. ARTEMIS creates
emotions which are the result of the agent’s appraisals of events (see Fig-
ure 4). First, we further discuss ARTEMIS’s need system, which is directly
influenced by the appraisal results. This need system then generates values for
the parameters ‘Pleasure’, ‘Arousal,’ and ‘Dominance.’ The parameter values
generated by the need system are then mapped to the PAD cube of emotions
and define emotions there (Figure 5). After these foundations, we discuss how
ARTEMIS realizes the appraisal pattern defined in Scherer’s theory.

5.2.1 The need system of ARTEMIS
Here, we present seven needs captured in the ARTEMIS control system. Why
does our control system work with these seven needs as opposed to PSI?
The answer is: Dörner uses the needs shown in Figure 2 in the context of
his psychological research questions. Dörner defines needs for the following
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scenario: “A robot must survive on an island. It needs water and energy
and has the task to collect something”. The motivating example contains
an entirely different scenario. It describes service agents’ assignment to
perform steps of a user assistant’s plan (see the motivating scenario). We have
adapted the user assistant’s needs to this scenario because different needs are
necessary depending on this scenario.

Instead of needs like “water” and “energy,” the user assistant has the
need to “preserve existence.” The need for sexuality has been modified in
ARTEMIS as a need to “be agile.” The other needs proposed in the PSI
theory (pain avoidance, affiliation, certainty, competence) are also used in
ARTEMIS. Additionally, we implemented a need to “avoid damages,” which
extends the need to “avoid pain” so that the agent also avoids to cause pain
or damage to its environment. As a result, the following requirements are
satisfied by ARTEMIS.

1. Preserve existence. That is, being able to execute orders, and make sure
that services can be paid.

2. Avoid pain. For robots, it could mean to avoid structural damages. For
software agents, it could mean not spending too much money.

3. Be agile. Change methods and maybe partners from time to time, also
they should neither get bored nor boring.

4. Affiliation. The need for robust social integration and a good relation-
ship with others.

5. Certainty. Being knowledgeable about the environment. Certainty
results from the ability to explain and predict events based on knowledge
about the environment.

6. Competence. Being capable of effectively and efficiently delaying with
real-world problems.

7. Avoid damages. For robots, it means maintaining machines or buildings
and not overloading machines. For software agents, it represents the
ability of not making decisions that endanger the environment.

These needs are closely related to ARTEMIS’s emotional model. As a
means of internal representation, we use a dimensional theory of emotion,
namely the PAD cube, to characterize emotions. To derive values for the three
dimensions “Pleasure,” “Arousal,” and “Dominance,” we use the ARTEMIS
need system in the following way:

• Pleasure. Rising and falling of the strength of needs determine the level
of pleasure.

• Arousal. A combination of the strengths of all needs determines the
level of arousal.
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• Dominance. The levels in the tank of the need for certainty and the need
for competence determine the agent’s dominance.

The needs’ strength depends on the corresponding levels (represented
with the variable L) of the associated need tanks. ARTEMIS calculates the
levels of the need tanks continuously. The level can only take values between
0 and 1. Let eff, ineff, Cert, Comp be efficiency, inefficiency, certainty,
and competence, respectively. Sig indicates the current amount of efficiency
or inefficiency signals, which are mainly generated from the appraisals of
events. The efficiency and inefficiency signals have a weight of WS , which
models the strength of their impacts. The needs also have a specific weight of
WN , representing their general priority. (see [11])

With these definitions, we give a schematic overview of how ARTEMIS
adjusted needs and derives values for Pleasure, Arousal, and Dominance.

Pleasure := 0

Arousal := 0

for (i := 1 to NumberNeeds)

L[Need[i]] := WS(eff) * Sig(eff) - WS(ineff) * Sig(ineff)

L[Need[i]] := MAX(0, MIN(1, L[Need[i]]))

Need[i] := ln(1 + L[Need[i]])

Pleasure += L[Need[i]]

Arousal += Need[i] * WN(i)

Dominance := Need[Cert] * (1 - Need[Comp])

5.2.2 Realizing Scherer’s appraisal pattern in ARTEMIS
ARTEMIS realizes the appraisal steps that Scherer defined in his CPM theory.
The appraisals defined by Scherer often involve interactions between cogni-
tive processes and need-based processes. Therefore, alongside the necessary
cognitive calculations, the need system also plays an essential role in the
ARTEMIS appraisal system (see Figure 3). The results of these processes
together then form the actual appraisals. The dynamics of the need processes
involved generate values of the PAD parameters (as described above) and
thus the emotions associated with these parameters. Scherer’s CPM theory
describes the information processing in humans that leads to emotions. All
in all, his theory describes very complicated interrelations, and as Scherer
himself stresses, it would be challenging to realize for artificial agents in
all its aspects. However, because our goal is to build artificial autonomous
agents, we first tackle partial areas of the problem. The motivating example
provides the context for such a sub-area. The motivating example helps make
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Figure 5 Generating artificial emotions in ARTEMIS. Scherer’s appraisal pattern [39]
defines appraisal objectives and appraisal criteria for the evaluation of external events.
ARTEMIS uses the results of these appraisals as inputs for the need system which represents
the agent’s internal state, we derive values for pleasure, arousal, and dominance, which
characterize the agent’s current emotional state in the PAD cube of emotions.

the matter manageable; thus, fundamental questions are analyzed here first.
Not all needs are uses for the appraisal steps presented here. Other needs
such as “Avoid pain” or “Be agile” are essential for the modulation of “Motiv
selection” or “Decision making or planning.” Modulation is not the topic of
this paper, but we will present these processes and how the need system is
involved in this modulation in a forthcoming paper. In the following, we
describe how we realized Scherer’s appraisal patterns in ARTEMIS. We
present Scherer’s description of the respective appraisals first. Secondly, we
explain how ARTEMIS can perform the appraisals.

Appraisal Objective 1: Relevance

The first three tests check the relevance of an event, i.e., they check whether it
is worthwhile for the agent to continue to deal with the matter. Such relevance
detectors mainly prepare for further tests.

• A check for novelty
Each new stimulus requires attention and further checks. It may involve
a potential danger or unexpected benefit. (compare Scherer [39, p. 51])
The solution in ARTEMIS. The ARTEMIS system evaluates the novelty
of an event compared to the agent’s expectations. The PSI theory calls an
agent’s expectations regarding the development of the current situation,
“expectation horizon.” Dörner and Stäudel [8] describe this as follows:
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“The expectation horizon is formed based on the given situation and
“reality models.” If x is the case and if I know that x is a concrete form
of X and if usually, X turns into Y, then y will be the case.” This kind of
conclusion, in a straightforward way, creates the horizon of expectation.
Thus, the horizon of expectation represents an extrapolation of the given
situation based on the knowledge of its usual evolution. Own translation
from (from Dörner and Stäudel [8, p. 309]). The better the agent’s reality
model is, the fewer unexpected events for the agent will occur. This
first check for novelty is only a relatively superficial analysis. Detailed
analyses are carried out in the “check for the probable outcome” and
“check of failure to meet expectations.”

• A check for intrinsic pleasantness
This check evaluates whether a perceived stimulus is more likely to
result in pleasure or pain for the system – independently of its current
internal state. (compare Scherer [39, p. 51])
The solution in ARTEMIS. The basis for this check by ARTEMIS is the
stored emotions in the Agent Knowledge Graph. Since in this paper, we
are moving in the motivating example, we deal with emotions associated
with service agents. ARTEMIS represents pleasure and pain by stored
positive or negative emotions in the Agent Knowledge Graph.

• A check for relevance to goals and needs
The system checks how important a particular event is for one’s own
needs or goals. An event can touch for a single or for several needs
or goals at the same time. Different needs and goals can, in turn, have
different importance. (compare Scherer [39, p. 52])
The solution in ARTEMIS. This check identifies whether and if so,
which needs (general) or objectives (specific) the event concerns. This
check selects affected needs for further checks. Needs (and related
objectives) have different importance in ARTEMIS. For example, the
need to “Avoid pain” has a higher priority than the need to “Be agile.”

Appraisal Objective 2: Implications

The second appraisal objective deals with the potential consequences of an
event and how the agent is affected by them. (compare Scherer [39, p. 52])

• A check for cause
Essential information about an event is its cause. Two crucial parts
of this information are about agency and intention. One question is:
who did it? Another question is: why did he or she do it? (compare
Scherer [39, p. 52])
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The solution in ARTEMIS. In the context of the motivating example
(Section 2), only interactions between the user assistant and service
agents are possible. Therefore, the “agency” question is easy to identify:
the answer follows from the interaction protocol. What is interesting
here is an assessment of the intentions. For example, suppose a service
agent fails to deliver. In that case, there is a possibility that the service
agent is attempting to defraud the user agent or that an external problem
has occurred for which the service agent is not responsible. How can
the user agent distinguish between these possibilities? In ARTEMIS, we
have solved this in the context of the motivating example. In the case
of a service agent associated with positive emotion, the user agent first
assumes that it is not responsible for the result. However, if the service
agent is related to a negative emotion, the user agent is more likely to
believe the service agent intended the wrong result. No need is directly
affected by this check.

• A check for probable outcome
This check determines “the probability of inevitable consequences of the
event.” (compare Scherer [39, p. 52])
The solution in ARTEMIS. In this check, the system evaluates how
likely a deviation from the outcome associated with the event is with the
help of its expectation horizon. ARTEMIS associates this assessment for
a probable outcome with the need for “Certainty.” An event that is not
within the range of expectations shows the agent’s internal system that
its reality model is flawed. Thus the agent’s need for certainty increases.

• A check for failure to meet expectations
In this check, the system calculates the probability, whether the situation
caused by the event is consistent with the agent’s expectations or not.
(compare Scherer [39, p. 53])
The solution in ARTEMIS. This check of failure to meet expectations
works similarly to the check for novelty, but provides a more in-depth
an more detailed analysis. As this check is also closely related to the
check for probable outcome, it is associated to the need for certainty in
the same way.

• A check for conduciveness to goals and needs
The more an event contributes directly or indirectly to achieving objec-
tives, the higher is its need or goal conduciveness. Conversely, the
more an event disturbs or even blocks the satisfaction of a need or the
achievement of a goal (compare Scherer [39, p. 53])
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The solution in ARTEMIS. In the context of the motivating example
(section 2), this check is relatively easy to realize. If a service agent com-
municates successful progress or good results, the user agent considers
that as conductive. Any result associated with delays or bad results is
evaluated as obstructive. Primarily involved is the need “Preserve Exis-
tence,” but the need “Certainty” is also affected. If a result is available
earlier than expected, this will reduce the need for “Preserve Existence.”
If the availability of a result is unexpectedly delayed, this increases the
strength of the need. For the need “Certainty,” it is essential whether
the user agent expected the result or not. Suppose the negative result is
entirely unexpected, the need for “Certainty” increases.

• A check for urgency
When an event threatens high priority needs or goals, an organism’s
appropriate response is urgently needed, because a delayed response
could potentially aggravate the situation. (compare Scherer [39, p. 53])
The solution in ARTEMIS. The needs in ARTEMIS have different
weights and ARTEMIS has the necessary information to calculate the
quantities of time course and contingency at all times. These two com-
ponents are combined with the need strength to evaluate this check for
urgency. The need to “Preserve Existence” is affected. If an event is
considered very urgent, this will increase the level of this need.

Appraisal objective 3: Coping potential

Organisms are not required to endure the effects of events that affect them
passively. By taking appropriate action, they may avoid or at least mitigate
the effects of adverse events. To explore the possibilities for action for an
agent, Scherer defines the check for control, power, and coping potential.
(compare Scherer [39, p. 54])

• A check for control
Control is the extent to which any natural agent can influence or control
an event. (compare Scherer [39, p. 54])
The solution in ARTEMIS. This check is purely cognitive. Can the
result be influenced at all, or is it something like a natural phenomenon?
Or better, in the context of the motivating example, is it possible that
the user assistant can change anything? For example, is there even the
necessary time to change something in the result? This check influences
the need for competence.

• A check for power
Power is the ability of the agent to change results according to its
interests. (compare Scherer [39, p. 54])
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The solution in ARTEMIS. This check is purely cognitive. If there is the
possibility for control, which resources are available to the user assistant
to avoid the result. For example, is there still enough money and time to
realize an alternative solution? This check influences the strength of the
need “preserve existence” and the need “competence”.

• A check for potential for adjustment
The adaptive potential is the ability of an agent to adapt to the effects of
an event if they cannot be changed. (compare Scherer [39, p. 54])
The solution in ARTEMIS. This check is purely cognitive. For example,
ARTEMIS checks if it is possible to delay the deadline for the end result
without severe consequences and how fast the next best alternative can
be achieved. This check influences the strength of the need “preserve
existence” and the need “competence”.

Appraisal objective 4: Normative significance

The question is, what an event means compared to a reference group’s
norms and compared to the agent’s norms, values, and self-concept. (compare
Scherer [39, p. 55]) In ARTEMIS’s current state, we define the desirable
norms with which the agent should evaluate events and actions. When some-
one respects or violates these norms, the positive or negative emotions affect
the agent’s relationship with the interaction partner. As the need for affiliation
changes, the values of the PAD parameters change as well.

• A check with external standards
This check for external standards evaluates to what extent an action
is compatible with the standards of a reference group. (compare
Scherer [39, p. 55])
The solution in ARTEMIS. The norms to which ARTEMIS refers in the
context of the motivating example are the principles of the so-called
“honorable merchant” (German: “Ehrbarer Kaufmann”): “The Hon-
ourable Merchant behaves honestly in business dealings with customers
and suppliers. Keeping promises, especially concerning the state of the
art and safety as well as quality, delivery time, and payment terms are the
basis for relationships with customers and suppliers”. (Own translation
from [44]. For a version in English, see [45]).
If someone does not play by the rules, this triggers the negative emotions
of the user assistant. The reverse is also true, but the negative emotions
are more potent than the positive. ARTEMIS searches its memory to
see if there have been similar incidents in the past. If this is the case, it
reinforces the negative evaluation of the event. The system directly links
the negative emotion to the responsible service agent (i.e., it weakens an
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existing positive emotion; it strengthens an existing negative one). This
influences the need for affiliation.

• A check with internal standards
This check evaluates to what extend an action is compatible with the
own norms and values. (compare Scherer [39, p. 55])
The solution in ARTEMIS. The basis for internal standards is currently
the same principles of the “honorable merchant” as external principles.
Possibly we will change this in later implementations. The involved need
is the same as with the check with external standards.

5.2.3 Mapping the PAD parameters to artificial emotions
The PAD parameters form a cube, as shown in Figure 5. The values of these
parameters correspond to different points in this cube. There are different
proposals for mappings the points or regions of the PAD cube to emotions
in the literature. For our approach, we lean on the emotion mapping from
Mehrabian [29,30]. Mehrabian considers only octants (subcubes) of the PAD
cube. However, it makes perfect sense to name the extreme points of the PAD
cube after these octants. So-called dimensional approaches make it possible
to define vague boundaries of emotion categories. In our approach, the
intensity of the eight emotions associated with the octants increases from the
center to the edges of the cube. An essential aspect of our approach is, that the
artificial emotions created by ARTEMIS are not arbitrary character strings,
but the have a meaning or grounding. In fact, there are several layers of
meaning associated with the artificial emotions created by ARTEMIS. These
meanings can be derived as follows: An emotion in ARTEMIS is represented
by its pleasure, arousal, and dominance values in the PAD cube. According to
Gaerdenfors [16] the PAD cube already has the potential to equip emotions
with meaning. In our approach, the PAD values of an emotion are derived
from the agent’s internal state represented by the need processes. The need
processes themselves are influenced by the appraisals of events. That makes
an emotion in ARTEMIS an abstract and meaningful representation of the
agent’s evaluation of events with respect to its internal state.

6 Capturing Artificial Emotions – The Agent Knowledge
Graph

Previously, we described the process followed by ARTEMIS to create artifi-
cial emotions. In this section, we explain how ARTEMIS captures artificial
emotions in an Agent Knowledge Graph. The Agent Knowledge Graph has
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Figure 6 The Agent Knowledge Graph. The Agent Knowledge Graph contains both seman-
tic and episodic information. The semantic part of a Knowledge Graph contains general
knowledge about the environment. The Agent Knowledge Graph’s episodic part contains
information about specific entities and events that have occurred and the artificial emotions
associated with it. (a) The semantic knowledge of the user assistant for the example presented
in the motivating example (Section 2) looks like this. The template for this knowledge
comes from Graupner [17]. It shows an Agent Knowledge Graph for the process scenario
of supplier management. We added the concepts ‘Event’ and ‘Emotion.’ (b) This part of the
Agent Knowledge Graph represents information about instances, actual events, and associated
artificial emotions. The artificial emotions are associated with the Agent Knowledge Graph
with the corresponding interaction events and the causative service providers. The Assistant
thus gains an attitude towards the Service Agents over time, which provides useful information
for its future selections of cooperation partners.

a semantic and an episodic part. The semantic part of the Agent Knowledge
Graph serves to classify information. A protocol of the events that take place
represents the basis for the episodic part, such as interactions between the user
assistant and the service agents (see the motivating example in Section 2). An
Agent Knowledge Graph is an essential part of the ARTEMIS architecture
(see Figure 3). Dörner uses a self-defined type of neural network to realize
the memory of PSI. For practical reasons, however, we have decided that
ARTEMIS will use the established field of knowledge graphs for this purpose.

6.1 Realizing a Semantic Memory in an Agent Knowledge Graph

The semantic memory provides the necessary conceptual information for
the assistant about the problem domain. For the motivating example we use
knowledge specified by Graupner [17] as basis for the assistant’s semantic
part of its Agent Knowledge Graph. Since Graupner’s example is a supplier
management system; it is focused around concepts of a “Supplier” and a
“Contract”, which are both further related to other concepts (see Figure 6a).
ARTEMIS extends this model with the concepts of “Event” and “Emotion”.
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6.2 Realizing an Episodic Memory in an Agent Knowledge
Graph

While semantic knowledge specifies what an autonomous agent’s environ-
ment consists of, episodic knowledge describes what is going on in its world.
In addition to the abstract semantic knowledge, the user assistant possesses
episodic knowledge, such as knowledge about specific service providers,
events, or artificial emotions (see Figure 6b). The assistant’s interactions with
the service providers create episodic knowledge; the user assistant enriches
this episodic knowledge with information about its emotions. Over time
this leads the user assistant to develop a subjective attitude towards the
service providers in its environment. This subjective attitude supports the
user assistant in future problem situations and enables selecting appropriate
cooperation partners in this complex dynamic environment.

6.3 Capturing Artificial Emotions in the Agent Knowledge Graph

The appraisals of events lead to the creation of artificial emotions. The PAD
values represent these artificial emotions, which are initially associated with
the events that caused them. Then they are transferred to the service providers
involved. The emotion associated with a service agent act as a collection point
for all the emotions this service agent has caused over time. Therefore, it is
calculated as the weighted sum of positive event emotions minus the weighted
sum of negative event emotions. Negative emotions have a greater weight
than positive emotions. Note that Kahneman’s Prospect Theory [22] supports
this imbalance. The theory states, among many other things, that the fear of
loss is always more significant than the joy of equal nominal gains.

The Dynamics of Captured Emotions The emotional intensity decreases
over time. However, this is not the case if the emotional intensity exceeds a
certain intensity threshold. In this case, its intensity does not decrease. This
fact applies to emotions associated with events as well as emotions associated
with service agents.

7 Experimental Study

We implemented a prototype of the user assistant to assess the performance of
ARTEMIS. We aim to answer the following research questions (RQ): (RQ1)
Can the user assistant generate artificial emotions that are plausible for human
test subjects? (RQ2) Can captured artificial emotions make the user assistant
more efficient?
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7.1 Experimental Configuration

To address the proposed research questions, we constructed our experimental
configuration as follows:

A Synthetic User Assistant. We implemented a synthetic scenario to eval-
uate the feasibility and behavior of ARTEMIS. A user assistant is created,
which can call 100 service agents. In this scenario, 50 of these service agents
are somewhat reliable, and 50 are rather unreliable without the user assistant
having any information about them. The user assistant selects its cooperative
partners from this pool. It initially selects its cooperation partners at random
following a uniform distribution. It can use the artificial emotions generated
during the individual interactions and recorded in its knowledge graph during
many interactions.

Implementation. We realize the user assistant by a dynamic system based
on difference equations; we implemented the system in Python 3.5.3. We
modeled the Agent Knowledge Graph as an RDF graph using RDFLib [35];
in order to realize the episodic part of the Agent Knowledge Graph, events
are described based on ‘The Event Ontology’ [42].

Experiment. For our experiment, we used two different user assistants based
on ARTEMIS: One assistant with the ability to create and store artificial
emotion, as described in chapter 5. For the other “emotionless” assistant,
we fixed the resulting PAD values as neutral so that the values for pleasure,
arousal, and dominance were zero all the time. Before the experiment, the
user assistants engaged in a learning phase consisting of 300 test tasks to
gather initial knowledge about their environment. During the experiment,
both agents had to execute 300 tasks representing user orders and could use
their respective knowledge from the learning phase.

User Evaluation: For RQ1, we conducted an evaluation where 30 human
test subjects evaluated the user assistant with artificial emotions in the above
described scenario. We asked the participants to assess the plausibility of
the user assistant’s artificial emotions when fulfilling the user’s order. We
presented nine scenarios for each test subject. The basis for the scenarios is
the motivational example in Section 2. We asked the test subjects to assess the
plausibility of the created artificial emotions within the scenarios. We showed
the artificial emotions to the test subjects in both pictorial and textual form.

Evaluation metrics: A way to answer the question of what it means to
be ‘better’ in our application scenario (see Section 2) was the following:
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Autonomous service agents need a certain amount of time to provide their
services. If the user assistant wants to instruct service agents, it must consider
their services’ expected duration. If an autonomous service agent delivers
poor results or no results, the user assistant has a problem, and it is necessary
to find and assign another service agent. Finding and assigning another
service agent costs additional time. The better the user assistant is in selecting
suitable service providers, the less time it takes to fulfill the user’s order. The
time the user assistant needs to complete an order is a practical measure of
the quality of its decisions and its performance. Therefore, concerning RQ2,
we measured the two assistants’ performance based on ARTEMIS as the
elapsed time between the submission of an order to the user assistant and
the completion of the order. In our setup, that was measured with the time
reported by the Python time.time() function.

7.2 Results of the Experimental Study

Results for RQ1. All the users answered the questionnaires independently
and evaluated the presented artificial emotions; 270 evaluations were avail-
able. Five stated that they would tend to the emotion “indifferent” rather
than to the emotion “disdainful” in one of the scenarios in a later optional
interview. In nine evaluations, the test persons indicated that they could not
decide. In 254 assessments, subjects indicated that they could understand the
artificial emotions presented well or very well and imagine having similar
emotions in similar situations.

Results for RQ2. Additionally, we evaluated the user assistants’ performance
in terms of time; we observed the user assistant’s behavior with and without
artificial emotions. Both user assistants completed 300 runs. As a result, we
observed that the effectiveness – in terms of average time – was enhanced by
up to 40% whenever the user assistant could fall back on artificial emotions
for its decision-making process.

Discussion. As far as we have investigated this, the proposed approach opens
up promising research and application fields. These initial results suggest that
ARTEMIS’s approach works and enables autonomous agents to reach their
goals faster. It turns out that remembered artificial emotions help successful
agent planning and decision making in complex environments. Also, the
experiments’ results show that the approach can help make a computer sys-
tem’s decisions more plausible for users. The system can thus make clear its
internal situation on which it grounds its decision making. However, further
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Table 1 Results of the User Evaluation. We evaluated artificial emotions in a user study;
they are represented both as text and as images. In 53.33% of the cases, the users understand
the emotions very well, while 40.74% understand them well

User Question Positive Answers Percentage Positive Answers %

I fail to understand at all 3 1.11%

I fail to understand 4 1.48%

I cannot decide 9 3.33%

I can understand well 110 40.74%

I can understand very well 144 53.33%

studies considering different scenarios and types of goals, must thoroughly
assess the pros and cons of creating and capturing artificial emotions.

8 Conclusions and Future Work

We have tackled the problem of creating and capturing knowledge about
artificial emotions. To generate artificial emotions, a suitable model and a
system that implements this is required. For this purpose, we have developed
the ARTEMIS control system for autonomous agents with artificial emotions.
The PSI theory of the cognitive psychologist Dietrich Dörner is the founda-
tion of the ARTEMIS essential components. We added a specific appraisal
and an emotional component. In ARTEMIS, event appraisals create artificial
emotions. The appraisal pattern described by the emotion psychologist Klaus
Scherer is the basis for this. However, Scherer does not provide any infor-
mation on how to realize this appraisal pattern. ARTEMIS uses Dörner’s PSI
theory to implement Scherer’s appraisal patterns.

For capturing knowledge about artificial emotions, we developed an
Agent Knowledge Graph concept to empower autonomous robots and soft-
ware agents with this knowledge. In addition to knowledge about facts,
Agent Knowledge Graphs also represent subjective knowledge of individual
autonomous agents. Captured artificial emotions form this subjective knowl-
edge. Artificial emotions are collected together with other information (e.g.,
point in time) about events in Agent Knowledge Graphs. As time goes by,
the captured artificial emotions form a subjective world view of the agents.
This subjective world view enhances the agent’s ability to plan and decide
successfully in complex dynamic environments. An essential aspect of the
artificial emotions created by ARTEMIS is that they have a meaning. This
meaning can be derived as follows:
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The basis of the emotions generated is appraisal processes evaluating the
impact of external events on the agent. The appraisals influence the need
processes, which represent the agent’s internal state. These need processes
generate values for the parameters “Pleasure,” “Arousal,” and “Dominance”
that define a so-called PAD space. In our version of the PAD space, each
point represents one of the eight proposed emotions with a specific intensity.
Finally, according to Gaerdenfors [16], the PAD space has the potential to
transmit meaning to the created emotions. That makes ARTEMIS emotions
an abstract and expressive representation of the agent’s evaluation of events
concerning its internal state.

We empirically investigated ARTEMIS’s behavior in a synthetic sce-
nario in which a user assistant selected suitable cooperation partners from a
pool of 100 service agents. In three hundred interactions, the user assistant
developed an emotional attitude toward many of these service providers.
We have evaluated the feasibility of the artificial emotions the assistant
created by a group of thirty human test subjects. The test subjects confirmed
that most of the user assistant’s artificial emotions were plausible to them.
Furthermore, we measured the user assistant’s execution time in settings with
and without remembered artificial emotions. The evaluation results show
that a user assistant can reach their objective on average in 40% less time
than the configuration without remembered artificial emotions. The observed
results reveal the potential of ARTEMIS. Nevertheless, we recognize that
this formalism is still in an initial phase and that further studies are required
to provide a general approach that can represent artificial emotions in various
scenarios.

For the near future, we are planning: (1) To further improve the per-
formance of the system based on more experiments, and (2) to enhance
the communication between ARTEMIS and its human users. Furthermore,
we aim to tackle the problem of tracking down ARTEMIS decisions. Thus,
empowering ARTEMIS to explain the behavior during the achievement of a
user assistant’s objectives is part of our future work.
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