T-DSES: A Blockchain-powered Trusted
Decentralized Service Eco-System

Xing Wu'f, Zhenfeng Gao®', Yushun Fan'*, Xiu Li**, Liang Gu?,
Jia Zhang*, Chang Chen®, Hao Zhang® and Qiang Wang®

! Beijing National Research Center for Information Science and Technology
(BNRist), Department of Automation, Tsinghua University, Beijing, China
2Sangfor Technologies Inc., Shenzhen, China

3Graduated school at shenzhen, Tsinghua University, Shenzhen, China
4Department of Computer Science, Southern Methodist University, TX, USA
5Zhigui Technology Inc., Beijing, China

E-mail: wuxingl7 @mails.tsinghua.edu.cn; fanyus @tsinghua.edu.cn;
gzf@sangfor.com.cn; guliang @sangfor.com.cn; li.xiu@sz.tsinghua.edu.cn;
zhangjia @ smu.edu; chenchang @ zhigui.com; zhanghao @ zhigui.com;
wangqiang @ zhigui.com

*Corresponding Author

T Co-first Authors

Received 14 November 2020; Accepted 15 July 2021;
Publication 27 October 2021

Abstract

Existing Web service eco-systems are typically managed in a centralized
manner, which hinders their further development due to inherent disad-
vantages such as trust issues, interest disputes, value separation and so
on. The recently emerged blockchains provide distributed ledgers that
enable parties who do not fully trust each other to maintain a set of
global states, which provide a natural solution. Based on the INKchain,
which is an open-source permissioned blockchain mechanism extending the
Hyperledger Fabric, this paper proposes Trusted Decentralized Service Eco-
System (T-DSES). T-DSES achieves not only fundamental functionalities of

Journal of Web Engineering, Vol. 20_8, 2199-2242.
doi: 10.13052/jwe1540-9589.2081
© 2021 River Publishers

2200 X. Wuetal.

conventional systems, but also offers mechanisms to stimulate participants
to bring trustworthiness to the whole system. The trustworthiness of T-
DSES is realized by three strategies: reliable information of services and
mashups, reliable records of participants’ rights, and reliable measurement
of participants’ contributions. A customized token “SToken” is created to
act as the media of value circulation. In this paper, the overall framework
and detailed design of T-DSES are presented, especially including how to
utilize Kubernetes to establish a cloud-based environment. A tailored Web
front-end ensures the usability of operations. Over real-world data from
ProgrammableWeb.com, analyses and experiments have been conducted to
verify the feasibility and effectiveness of the presented approach.

Keywords: Web service, service eco-system, blockchain, system decentral-
ization, Hyperledger Fabric, INKchain.

1 Introduction

With the wide recognition and adoption of Service-Oriented Architecture
(SOA) and Cloud Computing, the number of published Web services on
the Internet has witnessed a rapid growth [1] in recent years. Service
providers interconnect their offerings in unforeseen ways, which gives rise
to Web service eco-systems [2]. Furthermore, by reusing existing services
(i.e., Application Programming Interfaces or APIs), software developers are
able to quickly create service compositions (i.e., mashups) to meet complex
functional needs and offer additional business values [3]. A Web service eco-
system thus becomes a logical collection of Web services as well as their
compositions. For example, ProgrammableWeb.com,' consisting of more
than 24,000 Web services and 6,400 mashups as of June 2021, represents
by far the largest Web service eco-system [4]. Another example is Sta-
teOfTheDapps,? which has collected over 2,400 decentralized applications
(Dapps) on the Ethereum since its inception in 2015 [S]. StateOfTheDappps
provides users with the information of the DAPPs, including their introduc-
tions, current states, development activities, developers, labels and contract
addresses on the Ethereum.

Most existing service eco-systems typically rely on some centralized
service registries (e.g., ProgrammableWeb.com) as “middle people” to record

"https://www.programmableweb.com
Zhttps://www.stateofthedapps.com

https://www.programmableweb.com
https://www.stateofthedapps.com

T-DSES: A Blockchain-powered Trusted Decentralized Service Eco-System 2201

and track service behaviors (i.e., service interactions in past activities within
the service eco-systems), thus to provide functionalities such as service
discovery, ranking and recommendation [6,7]. Such a centralized architecture
usually comes with issues like trust and scalability. On the one hand, all
records (e.g., information about services, mashups and usage records between
them) are stored at and managed by a centralized server. Only if users
trust the centralized registry, they will participate in contributing to it (e.g.,
provide detailed feedback information about services and utilize services
in the system to create new mashups). On the other hand, people’s active
participation contributes to the reliability of the service registry, based on
which service discovery, ranking and recommendation could be reached with
higher accuracy. In other words, the trustworthiness of the centralized service
registry and people’s participation exhibit a chicken-and-egg situation.

In reality, however, different developers who register services and
mashups in the eco-system may not trust each other. Furthermore, existing
centralized registries typically lack effective incentive mechanisms to encour-
age service providers and users to participate actively. That is to say, the
“value” in the centralized service eco-systems is isolated. Most systems only
play the role of a centralized platform gathering all kinds of information,
but lack mechanisms to realize value circulation according to participants’
behaviors. Such a fact would reduce participants’ enthusiasm to make con-
tributions continuously. For example, when a developer intends to apply for
the access to a specific service, he could “pay” the owner for this service in
exchange for the rights. If the owner does not get the value reward, he will
have less motivation to provide such popular services in the future. In sum,
excessive centralization increasingly becomes the bottleneck and hinders the
further development of the service eco-systems nowadays.

In recent years, the blockchain technologies are taking the world by
storm, largely thanks to the success of Bitcoin [8]. A blockchain, also called
a distributed ledger, is essentially an append-only data structure maintained
by a set of nodes that may not fully trust each other. In its original design,
Bitcoin’s blockchain stores the coins as the system states [9]. Since then,
the technology has grown beyond crypto-currencies to support user-defined
states. Taking the Ethereum [5] as an example, it provides a platform for
people to develop and run any decentralized applications, known as DApps
with the help of smart contracts. In such cases, “token,” known as “BTC”
in a Bitcoin network, or “ETH” in the Ethereum, is the key media to
realize value circulation and systematic stimulation in blockchain systems.
Recently, increasingly more industry organizations from different domains

2202 X Wuetal.

have made efforts to develop customized blockchain platforms where partici-
pants are authenticated. Such systems are called permissioned or consortium
blockchains [10-12]. Particularly, the Hyperledger Fabric [13] realizes the
identity management mechanism required under enterprise scenarios, and has
become a widely-used open-source permissioned blockchain platform aimed
at business uses [14]. In general, a blockchain-based system would create a
trusted environment between participants who may not trust each other. It
could also prevent recorded information from illegal modification by mali-
cious attackers unless they could control most resources in the blockchain
network.

Therefore, to address the aforementioned issues of conventional service
eco-systems, in this paper, we migrate the idea of blockchain into service
eco-system and introduce the framework of Trusted Decentralized Service
Eco-System (T-DSES). Generally, T-DSES refers to a service eco-system
gathering and providing trusted information of services and mashups along
with value circulation through customized token, which is powered by
permissioned blockchain technology and the endorsement of authoritative
organizations. T-DSES keeps the records of participants’ equities (or rights)
about having the access to using a specific service, which brings trustwor-
thiness to the overall eco-system. In sum, the trustworthiness of T-DSES
is mainly reflected from the following three aspects: reliable information
covering all aspects of services and mashups; reliable records of participants’
rights of using specific services in the system; reliable measurement of
participants’ contributions to the system.

In terms of the selection of the underlying blockchain architecture, in
order not to reinvent the wheel, T-DSES leverages the INKchain® for two
major reasons. First, identification and authority controls are the unique
features of permissioned blockchains, which are helpful to allow qualified
organizations to participate in maintaining T-DSES, thus to promote the
quality and reliability of the information stored in the system. Second, the
systematic characteristic of the asset component in the INKchain makes it
possible to issue our customized token “SToken’ as the media of value circu-
lation and realize the incentive mechanisms in T-DSES. To be more specific,
function blocks are implemented as smart contracts (i.e., chaincodes) on a
supervisor level. Whenever an activity occurs in T-DSES, all involved parties
will individually create a detailed record through the designed interfaces in
the chaincode. Illegal operations will be denied and the agreed-upon records

3https://github.com/inklabsfoundation/inkchain

https://github.com/inklabsfoundation/inkchain

T-DSES: A Blockchain-powered Trusted Decentralized Service Eco-System 2203

will be permanently stored and maintained at the local database of each
involved node in the network. Such a distributed-database-oriented solution
will enable services who do not fully trust each other to maintain a set of
global states. In this way, service discovery and recommendation with higher
scalability and maintainability can be realized.

To the best of our knowledge, this paper is the first attempt that designs
and implements a cloud-based “trusted” decentralized service platform. The
contributions of this paper are summarized in three-fold:

(1) A new concept of “Trusted Decentralized Service Eco-System” (T-
DSES) is created, as the first attempt to utilize the blockchain mecha-
nism to bring trustworthiness and address the problems encountered by
conventional centralized service eco-systems.

(2) As aproof of concept, the overall framework of T-DSES is implemented
based on the INKchain. We present how to build a cloud-based ser-
vice eco-system, including the design of the overall logic, details of
the chaincode and the method to establish and manage a cloud-based
network environment. A tailored Web front-end is also provided. The
code of T-DSES has been open sourced in the GitHub repository.*

(3) Over the real-world data from ProgrammableWeb.com, case studies and
tests are conducted to prove the design of T-DSES focusing on its
functionality, performance and robustness.

The rest of this paper is organized as follows: Section 2 introduces back-
ground and motivation. Detailed design of T-DSES is provided in Section 3.
In Section 4, the experimental results based on a cloud-based T-DSES envi-
ronment are presented. Section 5 discusses related work and finally Section 6
concludes the paper.

2 Background and Motivation
2.1 Service Eco-System

Service eco-systems are logical collections of Web services (APIs) as well
as their compositions (mashups) [2]. A typical architecture around a service
eco-system is shown as Figure 1, with the legend on the right.

Generally, a typical service eco-system is a platform that gathers infor-
mation of all kinds of services and mashups. There exist three kinds of major
roles in service eco-system: Developer, User, and System Administrator.

*https://github.com/wuxing610/T-DSES

https://github.com/wuxing610/T-DSES

2204 X Wuetal.

Developer’s Server
where His Services are Deployed

=

ACe_— |
TS
Ca\\?}e s |
!

(Y
IS S L
e EEm s s s s s s s s s

Apply for Access
«—
User Grant Access
Query Information e
o h
‘%‘0\\5\\ Create Mashups

L

Developer

r--—--—---- - - - -=-=-=-=-=--=-=-=-== A
1 Services Invalid Services Mashups |
I | | I
I I I I
Q@ > | !
I [I . i1
| | PN [by _ _Legend _
I . . I \ I [
1 ! 1! |
| | \OO/ | | \OSC“‘W\
[| ~_ __7 *‘ b Mash I
| D ashup |
Y X ¥ o @O ‘
(. - @®_. '@ | ! Color - Domains.
| | \. ./ | | | olor - Domains,
L | v | e !
I . O | _ | 1l
o I - .\\ I I
/
I I I I
! 00 00
I I N - I I
, 'O @ o | ¥
Lo Services of [;
! Different Domains Service
s a1 Eco-system

Provide Infrastructure

Maintain i A Centralized Server Center
) of the Service Eco-system
System Administor

Figure 1 Framework of conventional centralized service eco-system.

Developers (i.e., service providers) register and publish their original soft-
ware services (i.e., APIs), which are the basic components of the service
eco-system. Various services may provide different functions and work in
different application scenarios, which are reflected by different colors in
Figure 1. With the evolution of the service eco-system, some services may
become invalid, while others gradually form different application domains
according to their functions. To meet complex functional needs and offer
additional business values in a faster development cycle, developers reuse
existing services to create mashups (i.e., service compositions). A mashup
may invoke one or more services to implement specific function. The second
role of a service eco-system is User. Users may propose inquiries to search
for services or mashups in the eco-system and then directly utilize them
under different circumstances. In a centralized service eco-system, the third
role, System Administrators also play an important role in maintaining the

T-DSES: A Blockchain-powered Trusted Decentralized Service Eco-System 2205

stability, security and prosperity of the service eco-system. Without their
efforts, the service eco-system could become more vulnerable, inconspicuous
and inactive.

The bottom of Figure 1 illustrates that existing service eco-systems are
usually deployed on centralized servers maintained by system administrators.
The service eco-system only collects information of services and mashups,
while the real available services are usually deployed on the developers’ own
servers. A user could query information in the service eco-system and select
a specific service. However, if he intends to call the service in real scenarios,
the user has to submit an application to this service’s developer for access
to call the service. After being authorized, the user can communicate with
the developer’s server and call the service. In other words, these behaviors
are performed outside the service eco-system. That is to say, most existing
service eco-systems only present related information, but are isolated from
the real value circulation between the participants.

To be more specific, let us take ProgrammableWeb.com as an example.
Since its inception in 2005, ProgrammableWeb.com has aggregated more
than 24,000 Web services and 6,400 mashups up to June 2021. It is a cen-
tralized service eco-system maintained by the official team of the platform.
ProgrammableWeb.com, as the official journal and directory of the API Econ-
omy, aims at building a news and information source as well as a community
of all kinds of API economy stakeholders. Its operating team has established
the website to provide a portal to people to publish and search for various
services and mashups. The real available URLs are provided in the profile of
each service and mashup. For example, a user will find service Google Map
in ProgrammableWeb.com, and intends to call the service when he needs to
query geographical locations. He might need to pay Google for the access,
though. These relevant behaviors are outside of the ProgrammableWeb.com.

2.2 Blockchain Technology

A typical blockchain system usually consists of multiple nodes which do not
fully trust each other [9]. Together, the nodes maintain a set of shared, global
states and perform transactions modifying these states. Figure 2 shows the
typical structure of a blockchain, where each block is linked to its predecessor
via a cryptographic pointer, all the way to the first (i.e., genesis) block. Due
to this structure, blockchain is also called distributed ledger.

A specific transaction in a blockchain is a sequence of operations applied
to global states. The core difference is that blockchain is decentralized,

2206 X Wuetal

Block i-1 Block i Block i+1
-i»lHash of Previous Blockl —)blHash of Previous Blockl -)»lHash of Previous Blockl =
| Block Header | | Block Header | | Block Header |
|Mcrk]c Hash Tree Rootl |Mcrklc Hash Tree Rootl |Mcrklc Hash Tree Rootl
| | |
Transaction i-1 Transaction i Transaction i+1
Metadata Metadata Metadata

Figure 2 Typical blockchain structure.

and each node has its own ledger while having to reach a consensus in
the whole system. Blockchain systems have advantages in decentraliza-
tion, security, anonymity and untamperability. Avoiding the trust issues of
centralized systems, blockchain has enabled a new class of decentralized
applications [18].

Blockchain usually makes a trade-off between performance and trust.
Generally, blockchain systems can be categorized as public, private or
permissioned ones, which are described in details as follows.

(1) Public Blockchain: Public blockchains are maintained across peer-to-
peer networks in a totally decentralized and anonymous manner [5, 8].
Anyone can join the network freely. Bitcoin [8] is the most well-known
example of public blockchains. In order to determine which block to be
appended to the ledger next, peers have to execute Proof-of-Work (PoW)
consensus [19]. Ethereum [5] has grown beyond crypto-currencies to support
user-defined states and Turing Complete state machine models. It enables
any decentralized applications (DApps) with the help of smart contracts.
Public blockchains have advantages of enabling the ledger to be created
anonymously, and promoting peers’ willingness to hold a copy of the ledger
and try to create new blocks.

(2) Private Blockchain: In private blockchains, only specific organiza-
tions are allowed to join the networks. They are widely used in building
blockchain-based underlying systems among multiple specific organizations.
For example, two banks might negotiate to establish a private blockchain
between them to assist with the reconciliation.

(3) Permissioned Blockchain: The definition of permissioned blockchains
falls in between public blockchains and private ones. Only authorized organi-
zations can join in permissioned systems. Permissioned blockchains require a

T-DSES: A Blockchain-powered Trusted Decentralized Service Eco-System 2207

set of trusted nodes tasked with creating new blocks. Moreover, permissioned
blockchains make it possible to control the set of participants tasked with
maintaining the ledger. This feature increases its popularity among industrial
communities. Hyperledger Fabric is an open-source project under the Hyper-
ledger umbrella project,” which targets at business applications [20, 21].
In real application scenarios of permissioned blockchain, the maintenance
tasks for nodes in the network can be assigned to authorized organizations
according to the business logic.

2.3 Motivation to Bring Blockchain

ProgrammableWeb.com has successfully established a community of all
kinds of API economy stakeholders. Developers publish their new services or
mashups on it, and users could find out information related to these services
or mashups. Moreover, ProgrammableWeb.com updates news about APIs
frequently, and sets up an “API University” to provide valuable information
and guidance for users and developers.

However, there exist disadvantages due to the centralization of the system.

(1) Trust Issues: Excessive centralization could result in trust problems. In
a centralized service registry, services provided by different developers may
not trust each other. A developer would play an active part in the service
eco-system (i.e., provides accurate and comprehensive information about
services, and utilizes services to create mashups frequently) only if he trusts
the authority of the centralized service registry. For centralized system, the
security of user’s privacy and the authenticity of the data are guaranteed by
the reputation of the platform. However, this guarantee is limited because
the platform may disclose the user’s data for its own benefit. There have
been some actual cases of personal data leakage and abuse. US cell carriers
(including AT&T, T-Mobile and Sprint) soled access to customers’ real-time
phone location data to a little known company called Securus.® The personal
data of 533 million Facebook users was leaked to the Internet, including
phone numbers, email addresses, hometowns, full names and birth dates.’
Not all centralized platforms have experienced trust crisis, but they do face the
risk of losing people’s trust. Without a service eco-system containing credible
information about all kinds of behaviors, it will be difficult to realize service

Shttps://www.hyperledger.org
Ohttps://www.zdnet.com/article/us-cell-carriers-selling-access-to-real-time-location-data/
"https://www.technologyreview.com/2021/04/07/1021892/facebook-data-leak/

https://www.hyperledger.org
https://www.zdnet.com/article/us-cell-carriers-selling-access-to-real-time-location-data/
https://www.technologyreview.com/2021/04/07/1021892/facebook-data-leak/

2208 X Wuetal.

management, discovery and recommendation with scalability and maintain-
ability. Furthermore, because users may not utilize a distrustful platform to
search information of services, the process of applying for services’ access
between users and developers may not happen in the service eco-system.

(2) Security Problems: Centralized service platforms are usually susceptible
to attack, making the massive data of services easy to tamper with. That is to
say, in a centralized system, if the main servers are invaded, the information
of all the services and mashups may get falsified, which will bring massive
economic losses.

(3) Privacy Control: In a centralized system, it is usually difficult to realize
fine-grained authorization control on a systematic level, especially when the
system is not fully trusted by all the participants.

(4) Lack of Incentive Mechanisms: In existing conventional service eco-
systems, developers publish their services and mashups voluntarily. There
are no explicit incentive mechanisms in the existing systems. As a result,
on the one hand, some service providers (i.e., developers) might have no
motivation to develop new services or mashups actively. On the other hand,
the developers could not get any feedback from the system about the quality
of their published services and mashups, which will have negative impacts on
the stability and prosperity of the service eco-system.

(5) High Cost of Maintenance: The founder of Ethereum, Vitalik Buterin,
said in Ethereum Industry Support that the centralized platforms usually
involved high cost.® Centralized platforms usually need administrator roles,
as well as high infrastructure and human cost. [15] and [16] refer to the
high cost in centralized banking and electricity energy system. Offering a
community-oriented service platform that many community members rely
on will cost billions of dollars in innovation research every year [17].

(6) Separation of Value: As shown in Figure 1 and discussed in Section 2.1,
most existing centralized service eco-systems only gather related informa-
tion, but they are isolated from the real value transfer between participants.
Here, the term “value” refers to a developer/user’s equities in a service eco-
system. On the one hand, when he makes contribution to the system, he
could get equity reward from the system or other developers. On the other
hand, his equities could be transferred when he asks for resources in the
system (e.g., intends to call an service). In short, the value flows between

8https://www.youtube.com/watch?v=mf10IXK- WMO

https://www.youtube.com/watch?v=mf10IXK-WM0

T-DSES: A Blockchain-powered Trusted Decentralized Service Eco-System 2209

different participants to maintain the smooth and healthy operation of the
service eco-system.

Blockchain is an integrated system, including many outstanding tech-
nologies, such as decentralization, cryptography, consensus, and so on.
Blockchain could protect the data from being tampered with by using chain
storage structure, support identification and authority controls, ensure the
automatic execution of transaction flow without the interference of any
third-party with the help of well-designed smart contracts, realize the value
transmission through tokens. And blockchain has the potential to solve trust
issues. As for one of the centralization problems, e.g. privacy control, we
have many alternatives to handle with. However, the objective of our work
is more than providing privacy control, but establishing a trusted service
eco-system. Therefore, we incorporate blockchain technology to build an
integrated system.

2.4 Bring Trustworthiness in Three Aspects

Among the problems mentioned above, the trust problem is the most funda-
mental one. Only if the service eco-system is trusted by participants, could
the prosperity and value circulation of the system be guaranteed.

Generally speaking, the trustworthiness of information in an ideal service
eco-system is mainly reflected from the following three aspects.

(1) Information of Services and Mashups: First, a trusted service eco-
system should provide reliable information of services and mashups, which
will have a positive effect on service management, discovery and recom-
mendation. Based on it, participants will take a more active part in making
contributions to the service eco-system.

(2) Records of Participants’ Rights: Second, reliable records of partici-
pants’ rights of using specific services should also be provided by the system.
Users can pay a service’s developer for the access permission. Then he can
call the service deployed on the developer’s server. After receiving the user’s
access request, the server checks the user’s rights (e.g., how many invocation
times left) and makes response. Note that the developer/server can make
changes to user’s rights according to the invocation behavior.

(3) Evaluation of Participants’ Contribution: Last but not least, related
participants’ contributions to the system should be provided in a trusted way,
which records the credibility degree of different participants. If a user makes
more contributions to the service eco-system (i.e., publishes popular services

2210 X Wuet al.

or mashups), services developed by him should become more valuable and
reliable.

2.5 Blockchain Selection in T-DSES

There are two technical routes to deploy underlying blockchain architecture:
Ethereum and Hyperledger Fabric. Taking into account the needs of service
eco-system, we make a detailed comparison of Ethereum and Hyperledger
Fabric, and finally choose Hyperledger Fabric as our technical solution. The
main reasons are as follows.

(1) Compared with Ethereum, Hyperledger Fabric requires less sources and
is able to reach smaller transaction latency and higher throughput, since
resource-consuming consensus algorithms are not needed.

(2) In T-DSES, complicated smart contracts are designed to support the
complex transaction logic, and smart contracts need to be called frequently
to record a lot of information, such as the published service information. In
Ethereum, the execution of smart contracts requires Gas, which increases
the cost of transactions and restricts the function of smart contracts. These
worries don’t occur to Hyperledger Fabric.

(3) Hyperledger Fabric supports identification and authority controls. With
Hyperledger Fabric, it is possible to allow only qualified developers or users
to participate in T-DSES and avoid hostile behaviors. In realistic scenarios,
the maintenance tasks for nodes in the network can be assigned to spe-
cific authorized organizations. As a result, T-DSES could focus more on
information maintenance instead of worrying about malicious behaviors.

(4) In Ethereum, “SToken” can be generated only in Genesis block or by
mining. But in Hyperledger Fabric, it is a concept defined by smart contracts,
where we could design the “SToken” related rules (like how users obtain
“SToken”) flexibly as service eco-system requires.

Having choosing Hyperledger Fabric as the underlying blockchain, we
further choose the INK consortium blockchain (INKchain), which extends
the Hyperledger Fabric by providing asset accounts, as well as supporting
asset transfer and other enhancements.

The systematic characteristic of asset component in INKchain makes it
possible to issue customized token “SToken” in T-DSES as the media of value
transfer. Furthermore, business logic can be coded in the chaincode. With
systematic interfaces provided by INKchain, incentive mechanisms and the
circulation of “value” in T-DSES can be realized.

T-DSES: A Blockchain-powered Trusted Decentralized Service Eco-System 2211

Trusted Dencentralized Service Eco-System (T-DSES)

———————————————————————————————

I
I
|
I
I
I
I

.o \I

‘o
Y
!
Iy
I
|
I
I
I
I
I

Web
Front-end

Developer/
User

e
® ’
\
call 4
service 4
service ’
.

deployed by developers cloud-based environment
maintained by differernt Orgs

Figure 3 Overall framework of T-DSES.

certificate

Based on its unique and expected features, we select INKchain as
the underlying technique to build the blockchain network and implement
business logic of service eco-systems on top of it.

3 Trusted Decentralized Service Eco-System (T-DSES)

3.1 Overall Framework

Figure 3 depicts the overall framework of T-DSES in a cloud environment,
which realizes trustworthiness and the value circulation among different
participants who may not fully trust each other.

Simply speaking, in this T-DSES-centered architecture, Developer/User
is involved in the related operations of the system, and the key component of
this cloud-based service eco-system is maintained by several Organizations.
A Developer/User can utilize its Software Development Kit (SDK) to make
invocation to update or query states through chaincodes. Meanwhile, a Web
Front-end is provided, making a user/developer interact with T-DSES more
conveniently and user-friendly.

In actual application scenarios, after reaching agreements on the business
logic between entities in the same blockchain network, it is possible to code
the business logic into chaincodes to make sure that everyone obeys it. Peers
and Orderers form the Blockchain Network. The chaincode is deployed

2212 X Wuet al.

at each peer in the blockchain network, which is open and transparent to
everyone. Deployed chaincode defines interfaces for participants to interact
with the network, realizing corresponding business logic and incentive mech-
anisms in the service eco-system. Any illegal operations (e.g., not defined
in chaincodes or beyond the scope of authority) will have no effect on the
global states. Such a distributed database-oriented solution will enable peers
who do not fully trust each other to maintain a set of global states. All the
peers will hold the full history of all activities since the service eco-system is
established, assuring the reliability and authority of the information. T-DSES
will thus provide reliable and sound information for researches on service
management, discovery and recommendation that promises high scalability
and maintainability. Furthermore, T-DSES issues the basic token “SToken”
to realize trusted circulation of value, realizing incentive mechanisms to
encourage participants to make more contributions to the eco-system.
Detailed explanations of the main components are discussed as follows.

Servers: As shown in Figure 3, to maintain normal operations of T-DSES’s
business logic, it is necessary to deploy three kinds of servers. First, after
getting authorization from Certificate Authority (CA), the organizations
maintain the servers where the blockchain network of T-DSES are running.
Second, the Web front-end needs a server, too. It could be provided either by
a third party, or the users themselves. It is convenient for users/developers
to interact with the T-DSES through an easy-to-use front-end instead of
SDK. Third, since the developers only publish the information of services
or mashups in T-DSES, servers are required to deploy these services and
mashups to provide service and make responses to users’ invocation requests.

Developer/User: In the business logic of T-DSES, there are only two types
of participating roles (i.e., Developer and User). Developers/users could
make several kinds of invocations (e.g., publish a new service, query service
information, or create a new mashup), and broadcast them into the T-DSES
blockchain network through SDK directly or using the Web front-end.

“SToken’: The concept of “SToken” borrows from “BTC” in Bitcoin and
“ETH” in Ethereum. However, “SToken” are not mined in T-DSES, since
there are no miners in Hyperledger Fabric. As long as user’s behaviors meet
the setting of the chaincode, a certain amount of “S7oken” would be created
and added to user’s account. Generally, users can obtain “SToken” from the
following two ways: First, when users register in T-DSES, they could get a
certain amount of “SToken” as initial assets; Second, since one of the moti-
vations of designing “SToken” in our T-DSES is to promote the development

T-DSES: A Blockchain-powered Trusted Decentralized Service Eco-System 2213

of service eco-system, users can get “SToken” by actively participating in
T-DSES (e.g. make comments to the service, contribute to the service eco-
system, etc.). And for developers, they could get “SToken” by getting paid
and awarded by users after publishing services or mashups. As typical setting
of blockchain-powerd systems, we could set a large number as total amount.
And as time goes by, the “SToken” that users can obtain from participating
in T-DSES decrease. Also as typical setting, we could give out a certain
proportion of “SToken” to the original contributor and the node maintaining
organizations of T-DSES as initial distribution. The other “SToken” would be
created during the operation of T-DSES.

Web front-end: The Web front-end component provides a more convenient
way for developers/users to interact with the blockchain network. As shown
in Figure 3, essentially, Web front-end also calls the SDK component to
interact with the network part in T-DSES. While in a cloud environment,
it is usually necessary to contain a Web front-end. The codes of the Web
front-end are open source. The server could be provided by an organization,
or any participant in the T-DSES. It should provide conventional function-
alities of centralized service eco-systems (e.g., publish a new service in
ProgrammableWeb.com), as well as operations about value circulation (e.g.,
pay a service’s developer certain “SToken” to get the invocation access to
the service). The operations in the Web front-end are similar with those
in centralized service repositories, bringing no burden for developers/users.
Detailed design will be introduced in the next section.

SDK: The SDK component implements the business logic of the service eco-
system through provided interfaces defined in the chaincode. SDK links the
blockchain network in T-DSES and the outside. This component could run
on any blockchain node, or be deployed on a centralized server. In T-DSES,
it is deployed on the servers maintained by organizations. Developers/users
can directly interact with it, and operations that affect the states will generate
a transaction through related interfaces. INKchain provides a matched SDK
project called INK SDK.? INK SDK also provides means to interact with
INKchain freely, operate customized tokens and invoke INK smart contracts
by large amount of anonymous users using INK Accounts.

CA: The CA component could provide legal identity certifications to autho-
rize qualified organizations to join the maintenance of the blockchain network
in T-DSES.

*https://github.com/inklabsfoundation/inkchain-sdk

https://github.com/inklabsfoundation/inkchain-sdk

2214 X Wuet al.

T-DSES Blockchain Network: The right side of Figure 3 illustrates the
structure of T-DSES blockchain network, which is the core component of
T-DSES. T-DSES blockchain network is a distributed management system
of transaction records in the scheme. All the developers and users contribute
blockchain operations. Similar to the Hyperledger Fabric, blockchain net-
work based on INKchain distinguishes between two kinds of nodes: Peers
and Orderers [14]. Peer is a kind of non-validating node that functions as a
proxy to connect clients (issuing transactions) to validating nodes (orderers).
It does not make real executions of transactions but may execute simulations
and verify them. Chaincode defines basic business logic and provides inter-
faces for invocation, intending to record data in a distributed ledger. The data
to be recorded is called “state” and stored in a key-value form. An orderer
is a node on the network responsible for running consensus, validating trans-
actions, and maintaining the ledger. In practical application scenarios, the
orderers and peers could be run and maintained by different organizations. No
central server managed by a third party is required. Thus there is no need for
System Administrator role to provide maintenance service. Furthermore, in
this paper, we utilize Kubernetes to build a blockchain environment on cloud
servers instead of on a local PC in our previous work [22]. In sum, T-DSES
is built according to the needs of industrial and real application scenarios,
which can meet different participants’ requirements.

3.2 Behaviors between Participants

In order to illustrate behaviors between different participants, we summarize
two typical scenarios in T-DSES: (1) A user intends to call a specific service;
And (2) a developer utilizes an existing service to publish a new mashup.

3.2.1 User and developer

As shown in Figure 4, the first scenario is that user A intends to call service
i which is provided by developer B. In this case, related behavior processes
are listed below.

1. Developer B creates service i, and deploys it on his server to provide
service to others.

2. Developer B registers service i in T-DSES. That is to say, Developer B
publishes service i’s information into T-DSES through the Web front-
end (or SDK).

3. User A finds service i in T-DSES, which exactly meets his needs.
item[4.] User A applies for i’s access. He has to pay with “SToken”

T-DSES: A Blockchain-powered Trusted Decentralized Service Eco-System 2215

(2) Register service il N T-DSES
>
developer B |
I
(3) Query servicei | N Fm\’r\]/‘e_lznd
(1) Create and . [
deploy[service i (4) Apply for i’s access |
user A SToken !

(5) Call i (7) Return response

\
[i
I '
I i
! 1

|

| (6) Query and modify |
> A’s rights I gl CF |

|

B’s server L _ _ _ _ _ ____

Figure 4 Behaviors between user and developer.

in order to acquire the rights to call service i. After verifying the
transformation, A’s rights on service i will be recorded in the global
ledger.

. User A makes an invocation request of service i to the B’s server.

6. After receiving the request, the server checks A’s rights through inter-
faces provided by SDK. If A is qualified, before sending the response,
the server makes a transaction proposal to modify the User’s rights by
reducing one call-time.

7. After confirming A is authorized, the server returns response results to
User A according to his invocation parameters.

9]

In Step 4, after the transformation is successfully executed, A’s rights to
call service i is recorded in the blockchain network and can be verified by
any participant in T-DSES. In T-DSES, if user A thinks service i is of great
help to him, he can also reward developer B by transferring “SToken” with no
strings attached.

3.2.2 Mashup developer and service developer

As shown in Figure 5, by searching information of services in T-DSES, devel-
oper C finds that service i is helpful to realize certain function more easily and
credibly when creating mashups. So the second scenario is that developer C
intends to create a new mashup j which invokes service i developed by B.
Related behavior processes are listed below.

1. Developer B registers service i into T-DSES.
2. By searching information in T-DSES, developer C finds service i helpful
for him to realize complicated functions.

2216 X Wuetal

I T-DSES |

b) [

(1) Register service i | |

> |

! [

developer B | |

! I

| Web >

Create | | Front-end |

(2) Query servicei | |

. | |
S‘l (3) Register mashup j | |
. > |
mashup j developer C SToken | |

Figure 5 Behaviors between mashup developer and service developer.

3. Developer C creates a new mashup j which invokes i. Then he tries
to register mashup j. C has to transfer “SToken” to apply for the right
of invoking i when making a new mashup. After the successful trans-
formation of “SToken”, C is able to publish his new mashup j into
T-DSES.

Through the above processes, a new mashup will be added into the service
eco-system. Its meta information will be recorded in the distributed ledger
successfully, which is not easy to tamper with.

3.3 Blockchain Perspective

From a blockchain perspective, we scrutinize a transaction process. After
being authorized, the user can send a transaction proposal to a peer through
SDK or Web front-end. The peer checks the proposal, simulates to conduct
the transaction, and endorses the results. Then the endorsed proposal will
be broadcast to orderers. The orderers validate the transactions and create
new legal blocks. At last, the peers update their local ledgers according to
the newly-received blocks. Any operation beyond the interfaces declared in
chaincode or the authority setting is considered illegal, which will have no
effect on the global states. In general, the peers and orderers work together to
reach a global consensus and maintain the distributed ledger together.

3.4 Security Requirements

T-DSES blockchain network is a decentralized system. Due to its industrial
application scenario and derivation from the Hyperledger Fabric, T-DSES

T-DSES: A Blockchain-powered Trusted Decentralized Service Eco-System 2217

supports crash tolerance through an ordering service based on Apache Kafka
and Zookeeper to reach a consensus.

INKchain substantially integrates current technological advancement in
the fields of distributed computing and security. It takes advantage of crypto-
graphic primitives such as Hash Function [23], Asymmetric Encryption [24]
and Digital Signature [25].

3.5 Authority Control

Public blockchain platforms usually suffer from lacking of permission con-
trol, and the information is completely exposed to the public. Permissioned
blockchain, equipped with methods to realize authority control, is designed
for industrial scenarios. Based on the INKchain, T-DSES realizes it in three
aspects. First, the CA component implements the PKI service that can issue
identify certification in advance, and distributes it to corresponding entities.
Second, the INKchain could control different entities’ access level of data
and resources through fine-grained policy control. Last but not least, with the
help of INK Account, we design chaincode “service.go” to implement data
access control functionally such as recording participants’ rights on calling
services.

3.6 Cloud-based environment with Kubernetes

Security of cloud-based applications is one of the key concerns. The three
principles of cloud security are availability, confidentiality and integrity. One
of the most efficient ways is to deploy a Container Cluster by using Docker
for container packaging with Kubernetes for multi-host Docker container
management [28].

The deployment of Fabric or INKchain blockchain network is based on
Docker Swarms. All peers, orderers and client programs are containerized.
The peers join a consensus protocol of the blockchain. In our previous
work [22], we have implemented a prototype in an experimental environment
on a local PC. One step further, in this paper, we establish a cloud-based
blockchain network environment based on containers which are managed by
Kubernetes.

In this section, we firstly introduce the Kubernetes. Then the principle of
deploying the cloud-based blockchain environment of T-DSES is illustrated
from aspects of Service and Namespace. Detailed parameters will be listed in
the experimental part.

2218 X Wuetal.

Kubernetes Master
User/Developer Ve

Controller Manager
< f API Server
Scheduler
Web Front-end
etcd

N2
’ Kubelet ‘

Kube-Proxy ‘

I
I
I
Pod Pod :
I
I
I
I
I
|

I
I

I

I

I

I ﬁ]]

: main o cmain!

:) Node Node

I

I

Kubernetes Node

L L L L L D L e e e e e e e e e e e e e e — 1

Figure 6 Architecture of Kubernetes.

3.6.1 Scheme overview of kubernetes

Kubernetes (commonly stylized as k8s) [29] is an open-source container
orchestration system for automating application deployment, scaling, and
management across a cluster of hosts.

The architecture of Kubernetes follows the master-slave architecture
[29, 31, 32]. Basically, there are two kinds of nodes (i.e., Master and Node)
as shown in Figure 6. Each node may correspond to either a local physical
machine or a cloud virtual machine. The number of nodes can be elastically
stretched according to the requirement of the business system.

Master: The Master is the main controlling unit of the whole cluster, which
manages the communication in the system. To support high-availability, in
T-DSES, we deploy a three-node cluster of Master. The main components
of Master contain API server, Controller Manager, Scheduler and etcd. API
Server is a key component and serves Kubernetes API using JSON over
HTTP, providing both the internal and external interfaces [31, 33]. Control
Manager drives actual cluster state toward the desired cluster state [34].
Scheduler tracks the condition of resource usage on each node to ensure
that workload is not scheduled in excess of available resources. Etcd [35]
is a persistent, distributed, key-value data store which reliably stores the
configuration data of the cluster.

Node: One Node, which runs a Docker environment basically, is a machine
where containers (workloads) are actually deployed. Each Node mainly

T-DSES: A Blockchain-powered Trusted Decentralized Service Eco-System 2219

consists of Kubelet, Kube-proxy and Pods. Kubelet is responsible for the
running state of each node, ensuring that all containers on the node are
healthy. The Kube-proxy is an implementation of a network proxy and a
load balancer, supporting service abstraction based on Pods. Pod is the basic
scheduling unit in Kubernetes. Each Pod provides a container environment,
which is the lowest level of a micro-service that holds the running application,
libraries, and their dependencies.

In sum, the architectural style of Kubernetes brings various benefits such
as maintainability and flexibility in scaling and aims at decreasing downtime
in case of failure or upgrade [31]. These benefits will make a contribution to
a high-available blockchain network environment for T-DSES.

3.6.2 Services in Kubernetes
In Kubernetes, Service is a logic set of Pods that works together, making up
a multi-tier application. This set of Pods is defined by a label selector, which
constitutes a service with certain functionality to the outside. It is sometimes
called a micro-service.

To be more specific, in T-DSES, services in Kubernetes are defined as
follows.

CA Service: CA (Certification Authorization) is the default component to
manage certifications in T-DSES. It provides legal PKI-based identity certifi-
cations to authorize organizations or users to make operations that will affect
the blockchain network.

Peer Service: Peer Service maintains the ledgers and runs chaincode con-
tainers to make read-write operations on ledgers.

Orderer Service: Orderer Service is able to rank all the transactions in the
network, create new blocks according to predefined configurations (i.e., fixed
number of transactions or fixed separation of time), and then broadcast them.

Kafka Service & Zookeeper Service: Kafka and Zookeeper are both
projects provided by Apache Software Foundation. Kafka aims to build a
unified, high-throughput, low-latency distributed platform for handling real-
time data feeds [39, 40]. Zookeeper is a centralized service for maintaining
configuration information, naming, providing distributed synchronization,
and providing group services [41]. Here in the cloud-based environment of
T-DSES, Kafka Service and Zookeeper Service usually work together as a
message-oriented middle-ware to generate message queue and help Orderer
Service to reach the global consensus.

2220 X Wuetal.

User/ S — Web Front-end)
Developer .l I l.“l I

I
" Orderer ’ ! !
' Namespace |zookeeper | kafka orderer I
I

Figure 7 Internal logic in cloud-based environment of T-DSES.

Cli Service: Cli (Command Line Interface) provides an environment with
tools like peer, configtxlator, cryptogen and configtxgen, which makes it
more convenient for peer-administrators to check status and debug with the
blockchain network.

Rest Service: SDK component of T-DSES is deployed in Rest Service,
providing interfaces for the outside to interact with the blockchain network.

3.6.3 Internal logic organized by Namespace

Kubernetes utilize Namespaces to partition the resources in the system into
non-overlapping sets. Namespaces help people to build environments with
many users from multiple organizations.

As shown in Figure 7, in T-DSES, Namespaces are adopted to manage
resources among different organizations. To be more specific, in the cloud-
level environment of T-DSES, there is a corresponding relationship between
namespaces and organizations except the orderer namespace. Each organi-
zation deploys its Cli Service, CA Service, Rest Service and several Peer
Services. In the Orderer Namespace, Orderer Service, Kafka Service and
Zookeeper Service are deployed as clusters to provide high availability and
reach the overall consensus in T-DSES. Here the clusters could be maintained
by several authoritative and recognized companies or organizations to bring
more trustworthiness into the system.

T-DSES: A Blockchain-powered Trusted Decentralized Service Eco-System 2221

Generally, the T-DSES environment is of high availability (HA) due to
four reasons:

(1) The internal mechanisms of Kubernetes. For example, the Scheduler in
Master Node tracks the condition of resource usage on each node to
ensure that workload is not scheduled in excess of available resources.
And each service in Kubernetes usually contains redundant Pods to
ensure the high availability;

(2) Cluster deployment of Peer Services in each organization (or names-
pace);

(3) Cluster deployment of Orderer Services in the Orderer Namespace;

(4) The internal mechanisms of permissioned blockchain. The network has
to reach an overall consensus to change the global states.

3.7 Design of Chaincode

In permissioned blockchain architectures such as Fabric and INKchain,
“chaincode” is the implementation of smart contract, spearheaded by
Ethereum [5]. After the investigation on the functionalities of service eco-
systems, in T-DSES, a new chaincode “service.go” is developed to imple-
ment related business logic. Moreover, incentive mechanisms have been
provided to stimulate participants to make more contributions to the service
eco-system.

3.7.1 Data structure
The data structure of T-DSES is designed as shown in Figure 8 with the
following core elements.

INK Account: INKchain has designed and implemented an account system
called “INK Account”, which can cater to a large number of anonymous users
to manage digital assets and interact directly with the blockchain. As shown
in Figure 8, the Address field uniquely identifies a record of INK Account.
The Balance field records all kinds of tokens in an account. Counter is
used for validation. In T-DSES, with the help of INK Account, “SToken”
are issued as the basic media to realize value circulation and incentive
mechanisms.

User: In the design of data structure, we do not distinguish developers from
users and store their information with User structure non-distinctively. The
Name field is the keyword. A user also needs to provide his brief introduction.
Each user is the one-to-one correspondence of an INK Account through the

2222 X Wuetal.

BuyRecord

Address String
Balance String — ServiceCallTimeKey String
Counter String ServiceName String
ServiceCallTime UserName String
User CallTime Int
g | Total Int
Name String String CreateTime String
Intorduction String UserAddress String
Address String CallTimes Int
Contribution Int Total Int
CreateTime String
foetine e
Name String
Type SEine ReduceRecord
Developer String
Description Str?ng —— ServiceCallTimeKey String
;I}e.source IStimg ServiceName String
nee n UserName String
CreateTime String ReduceTime Int
opcecling iR CreateTime String
IsMashup Boolean

Composited ~ Map[String]Int

Figure 8 Design of Data Structure in service.go.

Address field. The Contribution field is designed for recording the degree
of a user’s contribution to the service eco-system, which will be illustrated
later.

Service: Structurally, we design the Service to record information of services
as well as mashups. The Name field is the keyword of Service structure.
There exists a one-to-one correspondence between a service and a spe-
cific user’s name through the Developer field. We utilize a boolean field
IsMashup to distinguish whether the service is a mashup or not. If it is a
mashup, the Composited field would record the services (i.e., APIs) invoked
by the mashup. Specifically, a string field Status is adopt to record the current
status of a service. Furthermore, the field Price defines how many “SToken” it
costs to request permission for one-time call (i.e., invoke the service in a new
mashup, or call the service’s server once). Price is provided by the developer
of this service or mashup.

ServiceCallTime: As explained earlier, if a user intends to call the servers
where the service is deployed, he has to transfer a certain amount of “S7o-
ken” to the developer to get the permission. In service.go, ServiceCallTime
records the rights of users’ accesses to various services. ServiceName and
UserName constitute the composite key of ServiceCallTime. The CallTimes
field records the number of times that the user could call the service. Total

T-DSES: A Blockchain-powered Trusted Decentralized Service Eco-System 2223

field represents for the total amount of “SToken” the user has paid, which
equals service’s Price multiplies CallTimes.

BuyRecord & ReduceRecord: BuyRecord and ReduceRecord are uti-
lized to record the change of users’ rights on the ledger. And each
BuyRecord/ReduceRecord points to a ServiceCallTime through its Service-
CallTimeKey field.

3.7.2 Functional implementation
Based on the design of data structures, we implement the invocation functions
as listed in Table 1.

Generally, the invocation functions are divided into four categories:
user-related functions, service-related functions, right-related functions and
reward-related functions. Leveraging INK Account, we are able to recognize
an invoker’s identity with the help of chaincode stub interfaces such as
Transfer, GetAccount and GetSender. Moreover, based on them, T-DSES
has realized incentive mechanisms. To make better explanation, we will
explain how we design the functions in the chaincode through the logic
of services’ status change, and how the invocation functions are utilized in
typical scenarios.

Table 1 Implemented functions in chaincode service.go

Function Description
RegisterUser register a new user

RemoveUser remove an existing user
QueryUser query info about a specific user
RegisterService register a new service (not mashup)
PublishService publish a newly created service

InvalidateService

invalidate a specific service

CreateMashup create a new mashup, compositing services
QueryService query info about a specific service/mashup

EditService edit info of a specific service or mashup
QueryServiceByUser query all the services developed by one specific user
QueryServiceByRange query services by a name range

CallService request for the access of calling services
GetSpecCallTime query a user’s rights on a specific service
GetCallTimesOfService query all the users’ rights on a service
ReduceCallTime reduce a users’ rights of call times on a specific service
RewardService reward a service’s developer

2224 X Wu et al.

EditService O

PublishService

InvalidateService

Available

RegisterService

@

EditService

Created

InvalidateService

Figure 9 Status change logic of a service in T-DSES.

3.7.3 The logic of services’ status change

As mentioned before, a service in T-DSES has three different statuses. Fig-
ure 9 illustrates how a service’s statuses change with different service-related
functions.

3.7.4 Token circulation in typical behaviors

Two typical scenarios about the interaction of different participants are
summarized in Section 3.2. In this subsection, based on the implemented
functions in service.go, we will discuss the “SToken” circulation in different
scenarios.

In the first scenario between users and developers as shown in Figure 4,
in Step 4, to get the rights to call service i, user A’s operations on Web front-
end will propose an invocation of CallService interface through SDK. After
reaching consensus, in the distributed ledger provided by blockchain network,
certain amount of “SToken” will be transferred into developer B’s account
from A’s account. The amount equals i’s price multiplies A’s expected number
of call times. Specially, Steps 5 and 7 are outside T-DSES, so they do not use
any interfaces in service.go.

In the second scenario between mashup developers and service develop-
ers, in Steps 1 and 3, developers B and C utilize PublishService interface
to register a new mashup or service in T-DSES. In the dealing process of
PublishService proposed by developer C, he has to pay developer B “SToken”
for the permission to integrate A’s function, after which mashup j could be
registered legally.

3.7.5 Introduction of CreateMashup and CallService
CreateMashup is an important invocation function, with which developers
can register new services or mashups. CallService is also important to record

T-DSES: A Blockchain-powered Trusted Decentralized Service Eco-System 2225

or update users’ rights on different services. Users can apply for outside
access to developers’ servers through it. The overall processes of these two
functions are summarized as the tables in Example Function 1 and Example
Function 2.

Example Function 1: CreateMashup

Input: Mashup information and list of invoked services

Output: Transaction record on the ledger

Procedure:

01. Get the mashup’s creator’s address through GetSender

02. Create a mashup record according to Service structure, where:

03. a) Field IsMashup is set true

04. b) Field Composited records all the invoked services

05. For every invoked service

06. Pay to its developer for providing related functionalities
through Transfer(to, “SToken”, amount) '

07. End

08. Store the newly-created service into the ledger

! to is the address of the service’s developer, amount determines how
many “SToken” are paid to the service’s developer. In T-DSES,
amount equals the price defined by developer.

Note that both CreatMashup and CallService utilize inherent interface
Transfer provided by INKchain to make transformation of “S7Token” between
different participants, realizing value circulation in T-DSES.

3.7.6 Incentive mechanisms
Incentive mechanisms are designed from four aspects.

(a) Contribution Record

In the User data structure, Contribution field is adopted to record the
degree of a user’s contribution to the service eco-system, which is calculated
as follows.

Nr; by Np;

contrioution; H(Ti t)+ NTi NTi

ey
where In(Np; + 1) represents the evaluation of quantity. Np; is the total
number of available services and mashups the developer has registered.
Meanwhile, A\ - %—; represents the evaluation of invocation quality (i.e.,

2226 X. Wuetal.

Example Function 2: CallService

Input: Service name and the number of intended call times
Output: Transaction record on the ledger
Procedure:
01. Get the user’s address through GetSender
02. Check the legality of the existence and status of this service
03. Create a ServiceCallTime record
04. Pay for the rights to call the service
Make “SToken” transfer through Transfer(to, “SToken”, amount) !
05. Store the newly-created record into the ledger
06. Create and store a BuyRecord record into the ledger

! o is the address of the service’s developer, amount equals price multiplies
call times.

whether a service is invoked more frequently by other developers when
creating new mashups), and N; is the total times that this user’s services
have been invoked by all the mashups in T-DSES. What’s more, -]X,i Z stands
for the evaluation of practical quality (i.e., whether a service’s server will get
more call request by users outside T-DSES). Np; is the total number of paid
call times of all the users.

Here we introduce coefficient A & to adjust the preference between
the quantity index and quality index. Generally, we pay more attention to the

quality of services and mashups registered in T-DSES.

(b) Token Transfer when Creating Mashups

As mentioned in CreateMashup function, when creating a new mashup,
the developer has to transfer a fixed amount of “SToken” to each invoked ser-
vice’s original developer to get the permission. Thus developers are motivated
to create more general and more valuable services.

(c) Token Transfer when Applying for Call Times

As mentioned in CallTime function, when applying for call times of a
service, the user has to transfer “SToken” to the service’s developer. When
the server outside T-DSES comes with a call request, it will check the user’s
rights to see if he is allowed to get a response. As a result, developers are
motivated to register more practical and easy-to-use services to T-DSES.

(d) Reward from Users
The invocation function RewardService is also part of the designed incen-
tive system in T-DSES. A user can reward the developer of a service or a

T-DSES: A Blockchain-powered Trusted Decentralized Service Eco-System 2227

T-DSES: Trusted Decentralized Service Eco-System

Figure 10 Home page of T-DSES web front-end.

mashup with any amount of “S7oken” as he likes to thank the developer for
the unremitting efforts. Developers would be encouraged, too.

3.8 Design of Web Front-end

The whole front-end project is open source in the GitHub repository. Home
page and service information page will be presented in this section as an
example.

Figure 10 shows the website of Home Page. On the top is the navigation
bar, providing links to home page, owned-service page and user-login page.
There is a service list in the home page, containing profile information of each
service. The price here refers to the amount of “S7oken” needed to pay when
invoking a service to create mashups, or requesting for the call permission
outside.

Through the “View” button on the right of each service item, Service
Information Page can be reached, as shown in Figure 11. Detailed infor-
mation about a service is provided, such as the name, price, create time,
developer, resource, description and so on. Resource refers to the real URL
linked to servers where the service is deployed. In order to acquire the rights
of calling the service, users should pay “SToken” through “Buy” button after
logging in.

What’s more, in Owned-service Page, a user can publish a new service
or mashup. The balance of “SToken” and the value of contribution are also
demonstrated in this page. Other pages are available in the GitHub repository.

2228 X. Wu et al.

T-DSES: Trusted Decentralized Service Eco-System

Figure 11 Service information page of T-DSES web front-end.

3.9 Trustworthiness of T-DSES

In summary, the underlying blockchain technology, the cloud-based network
environment and the detailed design of logic coded in chaincode together
contribute to the trustworthiness. T-DSES provides trusted information in
three aspects as follows.

First, reliable information of services and mashups are provided by T-
DSES through blockchain technology. Problems in conventional systems
(e.g., security problem, authority control and lack of incentive mechanism)
would be alleviated to a certain extent in T-DSES.

Second, reliable records of participants’ rights of calling specific services
are provided. Users can pay a service’s developer with “SToken” for its
access. Then he can call the service deployed on the developer’s server. It
solves the problem of value separation in conventional centralized systems.

Third, related participants’ contributions to the system are provided in
a trusted way. The value of contribution records the credibility degree of
different participants.

4 Cloud-based System, Experiments and Discussions

In this section, we describe the implementation of our production-ready
prototype of T-DSES in a case study, along with analyses on performance
and robustness.

4.1 Data Set

ProgrammableWeb.com is a typical Web centralized service eco-system,
which has been accumulating a variety of services and mashups since

T-DSES: A Blockchain-powered Trusted Decentralized Service Eco-System 2229

established in 2005. We crawled the data from its inception to June 2021,
including over 24,000 services and 6,400 mashups, as the test data set in
T-DSES.

4.2 Cloud-based Implementation

We use INKchain Version 0.13.0 as the basic blockchain library and imple-
ment our design of T-DSES. The versions of software and mechanisms in
T-DSES are listed in Table 2.

We implement a T-DSES cloud-based environment in this paper. Detailed
settings are listed in Table 3. In the scenario, there are three different orga-
nizations, who together maintain the blockchain network. Each organization
has 2 peer nodes. And there are 3 nodes in the orderer cluster defined as
Figure 7. All peers, orderers and client programs are containerized in Docker.
The peers join a consensus protocol of the blockchain. A tailored Web front-
end is also provided in T-DSES. The Kubernetes masters and nodes are
deployed in standard cloud machines with 2c4g.

Table 2 Versions of software and mechanisms

Item Version
INKchain 0.13.0
INKchain SDK 0.17.4

OS of cloud machines
Language of chaincode
Containerization
Container Management
Digital Signature Alg.
Hash Function

Framework of Web Front-end

Ubuntu 16.04

Go 1.9.2 linux/amd64
Docker 1.35
Kubernetes 1.10.11
ECDSA (256 bit key)
SHA-256

Element UI 2.5.2

Table 3 Cloud-based network environment settings

Item Configuration

K8S Master 2c4g * 3 in Public Cloud
K8S Node 2c4g * 5 in Public Cloud
of Orgs 3

of Peers in each Org 2

of nodes in Orderer Cluster 3

‘Web Front-end Server

2c4g * 1 in Public Cloud

2230 X Wuetal.

4.3 Performance Analysis

The goal of T-DSES is to build a well-organized and well-functioning decen-
tralized service eco-system. In T-DSES, the operation requests waited to be
executed can be divided into two types, queries and transactions. Because
data are stored in the form of key-value pairs in the ledger, query opera-
tions refer to checking the value by key. Query operations have no effect
on the recorded data, and the corresponding functions include QueryUser,
QueryService, QueryServiceByUser, etc. Transaction operations refer to the
update of ledger, such as adding, deleting, and modifying key-value pairs.
The functions related to transaction operations include PublishService, Cre-
ateMashup, CallService, etc. Therefore, when considering the performance
of the blockchain network, we conduct experiments towards both query
operations and transaction operations.

4.3.1 Performance analysis of query operations

The performance of query operations is related to two key variables: the
stored data size and the concurrency query numbers. Firstly, we tested the
influence of data size on query performance. We made the number of stored
transaction data vary from 4,000 to 10,000 with separation 2000. The number
of concurrent query requests automatically increased to 200 at a fixed interval
within 20 minutes in each case.

The experimental results are presented in Table 4. Based on the cloud-
based environment, the success rate of request is almost 100% under all the
circumstances. Average response time is approximately 523 ms with 4000
stored data size.

Secondly, we tested the influence of concurrency query numbers on query
performance. We set a fixed data size to be 3000. The response time is
recorded in Figures 12, and 13 records the throughput per second (tps).

From Figure 12, we can see that as the concurrency number increases, so
does the response time. And Figure 13 reveals that after reaching stability,

Table 4 Experimental results on query performance

of Trans. Data 4,000 6,000 8,000 10,000
of Total Request 123,149 126,479 126,066 125,989
of Failed Request 2 3 2 4
Request Success Rate (%) 100 100 100 100

Avg. Response Time (ms) 525.63 1027.07 1021.54 1030.83

T-DSES: A Blockchain-powered Trusted Decentralized Service Eco-System 2231

2000

550

1800 _mI '.‘ i JIM *m' T II
At A alll) AW

1600 I\JA"J’\'N v "W oy 'u_ll"?{“'— ﬁﬂ, va il | I"-Irlih J1 1 I,_"_u o, ll. _IJ
g a0 j B0 [J,\‘||||',|‘| | n| I,' I|I |
; M\] V\
£ 1200 fm.-“\l'llg § wo ;'Jlll |
= 1000 / 5 | |||
S a0 el :E; o I'I
2 w00 / B 300 ||

400 'j/“’_ . |

mf =

s
%o o 2w 0 w0 s s0 70 0 w0 0 0 =0 w0 S0 0 T m0 w0

number of data number of data

Figure 13 Query ¢ps.

Figure 12 Query response time.

2

response time {msec)
2

5
throughput per second {tps)

1000
] B0O 900

400 500 800 700
number of data

100 200 300 400 500 600 OO BOO SMC [} 1m0 200 300

number of data
Figure 14 Transaction response time. Figure 15 Transaction tps.
tps stays unchanged even the number of concurrency increases. In our
experimental network, the average tps of query is 473.
In summary, the network query performance of T-DSES is feasible for
practical use.

4.3.2 Performance analysis of transaction operations

In this experiment, we tested the performance of transaction operations.
Through making transaction requests, we can publish new services, call
existing mashups, etc. The response time and ¢ps are recorded in Figures 14
and 15 respectively.

We can draw a similar conclusion from Figure 14 that as the number
of concurrent requests increases, the overall response time of transactions
also increases. Compared with Figure 12, what’s different is that the average
response time of a transaction is significantly higher than that of a query.
Because transaction operation is a complicated process: it includes SDK
making a request, peer node executing chaincodes, orderer node sorting

2232 X Wuetal.

transaction, etc. Besides, Figure 14 shows that when the number of con-
currency reaches 100, the response time drops significantly. This is because
the maximum transaction number in a block is set to 100 and the block
wait time is set to 2s when configuring the network in our experiment.
When the number of concurrency is less than 100, the transactions will wait
for two seconds to be packaged into a block. And when number = 100,
without waiting, there is an obvious inflection point in Figure 14. The same
phenomenon also occurs when the number is an integer multiple of 100. But
due to the increase in average response time and the noise caused by network
fluctuations, this phenomenon is not easily observed when the number of
concurrency is high.

Figure 15 shows that the average ¢ps of transaction operations is 112,
which is also lower than that of query operations.

4.3.3 The requirement of service eco-system

Take Programmable.com as an example. Since established in 2005, the
average daily service-publishing rate is about 4.10. The peak value of
daily service-publishing is about 110, and the peak value of daily mashup-
publishing is around 40. Above all, operations around a service eco-system
is usually not of high-frequency. And according to our experiment, the ¢ps
index is about 110, which is enough to meet the needs of Programmable.com.
Even in larger business application scenarios, replacing the basic framework
we construct with a larger node cluster can greatly improve the efficiency of
transmission.

4.4 Robustness Analysis

A cloud-based environment should also be fault tolerant to some extent. To
test the robustness of T-DSES, we make faults artificially and then make a
transaction proposal and query the results to see whether the system works
regularly.

Based on the environment in Table 3, the consensus is based on Kafka.
We have set the endorsement policy for service.go as necessary for Org 1. We
shutdown the cloud machines to simulate system failure. As long as one peer
server in Org. 1 and the orderer cluster are under normal operation, T-DSES
could provide service normally.

One step further, we implement another experimental environment based
on BFT consensus. In this scenario, as long as the number of failed peer nodes
is less than half, T-DSES could provide service normally.

T-DSES: A Blockchain-powered Trusted Decentralized Service Eco-System 2233

5 Related Work

A service eco-system is a logical collection of Web services as well as their
compositions [1-3]. Existing works mainly focus on systemic management
or studying related data to make analyses and recommendation [26]. How-
ever, existing service eco-systems typically rely on some centralized service
registries as “middle people” to record service behaviors, which could result
in problems such as trust issues, security, authority control, and high cost of
maintenance [22].

Bitcoin [8] is the first successful attempt to construct a commercialized
decentralized system. Since then, blockchain technology has grown beyond
crypto-currencies to support real applications [36, 37]. Ethereum [5], the
first one realizing chaincode, enables people to develop all kinds of DApps.
In industry scenarios, Hyperledger Fabric [13,20, 21] is the most popular
solution among companies. As an extension of Fabric, INKchain is a newly
open-source permissioned blockchain platform, enabling account systems
and customized token issuance. Permissioned blockchains have advantages
in authority control and higher performance [20]. Thus they have been widely
used to develop decentralized applications [14,27,38]. In this paper, as the
first attempt to design a decentralized service eco-system, we have built the
overall T-DSES framework on top of INKchain.

Both the network component of Fabric and INKchain are containerized.
Generally, cloud-based environments are deployed in public cloud or a hybrid
architecture, where security problems are the main concerns (e.g, availabil-
ity, confidentiality and integrity) [28]. Kubernetes [29] is a state-of-the-art
and open-source container orchestration system for automating application
deployment, scaling, and management across a cluster of hosts. In this paper,
we utilize Kubernetes to build a cloud-level environment of T-DSES, which
provides high availability for the system.

6 Conclusions

In this paper, as the first attempt to bring decentralization and trustworthiness
to service eco-systems, we have described our design and development of the
Trusted Decentralized Service Eco-System (T-DSES) based on a newly open-
source permissioned blockchain called INKchain. We present how to build
a cloud-based T-DSES system along with a Web front-end. To demonstrate
the feasibility and effectiveness of our design, analyses and experiments on
performance as well as robustness have also been conducted based on a real-
world data set. The original codes are open source.

2234 X Wuet al.

In our future work, we will utilize more technologies (e.g., Decentralized
Identifier, or DID) to perfect the design of T-DSES. Furthermore, we will
apply the concept of T-DSES in more practical application scenarios such as
data sharing to verify the effectiveness of our prototype.

Acknowledgements

This research has been partially supported by the National Key Research and
Development Program of China (No. 2018YFB1402500).

References

[1] V. Andrikopoulos, S. Benbernou, and M. P. Papazoglou. On the Evolu-
tion of Services. Transactions on Software Engineering, Vol. 38, no. 3,
pp- 609-628, 2012.

[2] D. M. Barros A. The Rise of Web Service Ecosystems. It Professional,
Vol. 8, no. 5, pp. 31-37, 2006.

[3] X. Liu, Y. Hui, W. Sun, and H. Liang. Towards Service Composition
based on Mashup. Proceedings of IEEE World Conference on Services
(SERVICES), pp. 332-339, 2007.

[4] K. Huang, Y. Fan, and W. Tan. An Empirical Study of Programmable
Web: A Network Analysis on a Service-Mashup System. Proceedings of
IEEFE International Conference on Web Services (ICWS), pp. 552-559,
2012.

[5] Ethereum. Ethereum. In https://www.ethereum.org/.

[6] K. C. Bhardwaj and R. K. Sharma. Machine Learning in Efficient and
Effective Web Service Discovery. Journal of Web Engineering, Vol. 14,
pp. 196-214, 2015.

[7] S. Kamath and AV S. Semantic Similarity based Context-aware Web
Service Discovery Using NLP Techniques. Journal of Web Engineering,
Vol. 15, pp. 110-139, 2016.

[8] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Con-
sulted, 2008.

[9] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and J. Wang.
Untangling Blockchain: A Data Processing View of Blockchain Sys-
tems. IEEE Transactions on Knowledge and Data Engineering, vol. 30,
no. 7, pp. 1366-1385, 2018.

[10] Ripple, Ripple. In https://ripple.com.

https://www.ethereum.org/
https://ripple.com

T-DSES: A Blockchain-powered Trusted Decentralized Service Eco-System 2235

[11] Melonport. Blockchain Software for Asset Management. In http://melo
nport.com.

[12] J. Morgan and O. Wyman. Unlocking Economic Advantage with
Blockchain. 2016.

[13] Hyperledger. Hyperledger Fabric. In https://www.hyperledger.org/proj
ects/fabric.

[14] S. A. Blockchain Based Distributed Control System for Edge Comput-
ing. Proceedings of International Conference on Control Systems and
Computer Science, pp. 667-671, 2017.

[15] L. Cocco, A. Pinna, M. Marchesi. Banking on Blockchain: Costs Sav-
ings Thanks to the Blockchain Technology. Future internet, vol. 9, no. 3,
pp- 25, 2017.

[16] X. Tai, H. Sun, Q. Guo. Electricity Transactions and Congestion Man-
agement based on Blockchain in Energy Internet. Power Syst. Technol,
pp- 3630-3638, 2016.

[17] AnantJhingran. How and Why to Transform Your Business into a Digital
Ecosystem. In https://www.programmableweb.com/news/how-and-w
hy-to-transform-your-business-digital-ecosystem/analysis/2018/01/11.

[18] M. Alj, J. Nelson, R. Shea, and M. J. Freedman. Blockstack: A Global
Naming and Storage System Secured by Blockchains. Proceedings of
USENIX Annual Technical Conference (USENIX ATC), pp. 181-194,
2016.

[19] J. Garay, A. Kiayias, and N. Leonardos. The Bitcoin Backbone Protocol:
Analysis and Applications. Proceedings of the 34th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), pp. 281-310, 2015.

[20] M. Vukoli¢. Rethinking Permissioned Blockchains. Proceedings of
ACM Workshop on Blockchain, Cryptocurrencies and Contracts (ACM),
pp- 3-7, 2017.

[21] C. Cachin. Architecture of the Hyperledger Blockchain Fabric. In https:
/Iwww.zurich.ibm.com/dccl/papers.

[22] Z. Gao, Y. Fan and C. Wu, J. Zhang and C. Chen. DSES: A Blockchain-
Powered Decentralized Service Eco-System. Proceedings of IEEE
International Conference on Cloud Computing, pp. 25-32, 2018.

[23] X. Yi. Hash Function based on Chaotic Tent Maps. IEEE Transactions
on Circuits & Systems Il Express Briefs, vol. 52, no. 6, pp. 354-357,
2005.

[24] M. Bellare, and P. Rogaway. Optimal Asymmetric Encryption. Pro-
ceedings of The Workshop on the Theory and Application of of

http://melonport.com
http://melonport.com
https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/fabric
https://www.programmableweb.com/news/how-and-why-to-transform-your-business-digital-ecosystem/analysis/2018/01/11
https://www.programmableweb.com/news/how-and-why-to-transform-your-business-digital-ecosystem/analysis/2018/01/11
https://www.zurich.ibm.com/dccl/papers
https://www.zurich.ibm.com/dccl/papers

2236 X. Wuetal.

Cryptographic Techniques, pp. 92-111. Springer, Berlin, Heidelberg,
1994.

[25] R. C. Merkle. A Certified Digital Signature. Proceedings of Advances
in Cryptology — CRYPTO ’89, International Cryptology Conference,
pp. 218-238. Santa Barbara, California, USA, 2007.

[26] Z. Gao, Y. Fan and C. Wu and W. Tan and J. Zhang. Service Recom-
mendation From the Evolution of Composition Patterns. Proceedings of
IEEE International Conference on Services Computing, pp. 108-115,
2017.

[27] S. Kiyomoto, M. S. Rahman, and A. Basu. On Blockchain-based
Anonymized Dataset Distribution Platform. Software Practice and
Experience, pp. 85-92, 2017.

[28] A. Modak, S. Chaudhary, P. Paygude, and S. Ldate. Techniques to
Secure Data on Cloud: Docker Swarm or Kubernetes? Proceedings
of Second International Conference on Inventive Communication and
Computational Technologies (ICICCT), pp. 7-12, 2018.

[29] H. V. Netto, L. C. Lung, M. Correia, A. F. Luiz, and L. M. S. de Souza.
State Machine Replication in Containers Managed by Kubernetes.
Journal of Systems Architecture, vol. 73, pp. 53-59, 2017.

[30] K. Goarany, G. Kulczycki, and M. B. Blake. Research on Kuber-
netes’ Resource Scheduling Scheme. Proceedings of ACM International
Workshop on Search and Mining User-generated Contents (SMUC),
pp. 71-78, 2010.

[31] J. Ellingwood. An Introduction to Kubernetes. Retrieved April, 2017.

[32] K. Hightower, B. Burns, and J. Beda. Kubernetes: Up and Running: Dive
Into the Future of Infrastructure. O’Reilly Media, Inc, 2017.

[33] G. Sayfan. Mastering Kubernetes. Packt Publishing Ltd, 2017.

[34] E. Truyen, D. Van Landuyt, V. Reniers, A. Rafique, B. Lagaisse, and
W. Joosen. Towards a Container-based Architecture for Multi-tenant
SaaS Applications. Proceedings of the 15th International Workshop on
Adaptive and Reflective Middleware, p. 6, 2016.

[35] C. Pahl and B. Lee. Containers and Clusters for Edge Cloud
Architectures—A Technology Review. 2015 3rd international conference
on future internet of things and cloud, pp. 379-386, 2015.

[36] R. Li, T. Song, B. Mei, H. Li, X. Cheng, and L. Sun. Blockchain
for Large-scale Internet of Things Data Storage and Protection. /IEEE
Transactions on Services Computing, vol. 12, no. 5, pp. 762-771, 2018.

[37] W. Viriyasitavat, L. Da Xu, Z. Bi, and A. Sapsomboon. Blockchain-
based Business Process Management (BPM) Framework for Service

T-DSES: A Blockchain-powered Trusted Decentralized Service Eco-System 22377

Composition in Industry 4.0. Journal of Intelligent Manufacturing,
pp- 1-12. 2018.
[38] S. Rouhani, V. Pourheidari, and R. Deters. Physical Access Control
Management System Based on Permissioned Blockchain. Proceedings
of IEEE International Congress on Cybermatics, pp. 1078-1083, 2018.
[39] J. Kreps, N. Narkhede, and J. Rao. Kafka: A Distributed Messaging
System for Log Processing. Proceedings of the NetDB, pp. 1-7, 2011.
[40] Apache Software Foundation. Kafka. In https://kafka.apache.org,

pp. 17-24.
[41] Apache Software Foundation. Zookeeper. In https://zookeeper.apac
he.org.

Biographies

&
)

Xing Wu received the BS degree in control theory and application from
Tsinghua University, China, in 2017. He is currently working toward the PhD
degree in the Department of Automation, Tsinghua University. His research
interests include services computing, service recommendation, federated
learning and blockchain.

https://kafka.apache.org
https://zookeeper.apache.org
https://zookeeper.apache.org

2238 X Wuetal.

1 :'I -

Zhenfeng Gao received the PhD degree in control theory and application
in 2018 from Tsinghua University, China. He is currently working as the
postdoctor at the Graduated school at shenzhen, Tsinghua University as well
as the postdoctoral research center at Sangfor Technologies Inc. His research
interests include services computing, service recommendation, big data and
blockchain technology.

Yushun Fan received the PhD degree in control theory and application from
Tsinghua University, China, in 1990. He is currently a professor with the
Department of Automation, Director of the System Integration Institute, and
Director of the Networking Manufacturing Laboratory, Tsinghua University.
From September 1993 to 1995, he was a visiting scientist, supported by
Alexander von Humboldt Stiftung, with the Fraunhofer Institute for Produc-
tion System and Design Technology (FHG/IPK), Germany. He has authored
10 books and published more than 300 research papers in journals and
conferences. His research interests include enterprise modeling methods and
optimization analysis, business process reengineering, workflow manage-
ment, system integration, object-oriented technologies and flexible software
systems, petri nets modeling and analysis, and workshop management and
control.

T-DSES: A Blockchain-powered Trusted Decentralized Service Eco-System 2239

Xiu Li received the PhD degree in mechanical manufacturing and automa-
tion from Nanjing University of Aeronautics and Astronautics in 2000. She
was once a visiting scientist at University of Hong Kong, the Hong Kong
Polytechnic University and Georgia institute of technology. She is currently
a professor with the Department of Information, Shenzhen Graduate School,
Tsinghua University. She has published more than 100 papers in international
transactions and conferences. Her research interests include intelligent sys-
tems, data mining and pattern recognition.

Liang Gu received the PhD degree in Computer Software and Theory from
Peking University in 2010. He worked as an associate research fellow at
Yale university from 2010 to 2015. He is currently the chief scientist and
the director of Sangfor Research Institute at Sangfor Technology Inc. As
the person in charge of r&d technology at Sangfor, he is responsible for
the technical framework improvement of a series of core products, including
NGAF, AC, a Cloud HCI, aSAN and so on. These products have gained a
leading market share in China and have been recognized by users and the
market.

2240 X Wuetal.

Jia Zhang. received her PhD degree in computer science from the University
of Illinois at Chicago. She is currently the Cruse C. and Marjorie F. Calahan
Centennial Chair in Engineering, Professor of Department of Computer
Science at Southern Methodist University. Her research interests emphasize
the application of machine learning and information retrieval methods to
tackle data science infrastructure problems, with a recent focus on scientific
workflows, provenance mining, software discovery, knowledge graph, and
their interdisciplinary applications. Dr. Zhang has co-authored one textbook
”Services Computing” and has published over 170 refereed journal papers,
book chapters, and conference papers. Dr. Zhang has served as an associated
editor of the IEEE TSC since 2008. She served as Program Committee Chair
for IEEE SCC (2020), ICWS (2019), CLOUD (2018), and BigData Congress
(2017). She is a senior member of the IEEE.

Chang Chen. received the BS degree in control theory and application from
Tsinghua University. He once worked at IBM-CRL as a senior researcher. He
is now the CTO of Zhigui Technology Inc, as well as director of blockchain
finance research center, School of Economics and Management, Tsinghua
University. He was an early researcher of blockchain technology. He is a

T-DSES: A Blockchain-powered Trusted Decentralized Service Eco-System 2241

contributor of the Hyperledger open-source project. His research interests
include cloud computing and blockchain technology.

Hao Zhang. received the BS degree from Software Engineering, San-
Jiang University, China in 2014. He is working in Zhigui Technology Inc.
His research interests include blockchain development.

Qiang Wang. received the BS degree from Electronic and Information
Engineering,Shandong Technology and Business University, china in 2012.
He once worked at IBM-CRL, and his main job was to assist researchers
with the realization of blockchain projects. He is now working at Zhigui
Technology Inc. His research interests include DevOps and blockchain
applications.

	Introduction
	Background and Motivation
	Service Eco-System
	Blockchain Technology
	Motivation to Bring Blockchain
	Bring Trustworthiness in Three Aspects
	Blockchain Selection in T-DSES

	Trusted Decentralized Service Eco-System (T-DSES)
	Overall Framework
	Behaviors between Participants
	User and developer
	Mashup developer and service developer

	Blockchain Perspective
	Security Requirements
	Authority Control
	Cloud-based environment with Kubernetes
	Scheme overview of kubernetes
	Services in Kubernetes
	Internal logic organized by Namespace

	Design of Chaincode
	Data structure
	Functional implementation
	The logic of services' status change
	Token circulation in typical behaviors
	Introduction of CreateMashup and CallService
	Incentive mechanisms

	Design of Web Front-end
	Trustworthiness of T-DSES

	Cloud-based System, Experiments and Discussions
	Data Set
	Cloud-based Implementation
	Performance Analysis
	Performance analysis of query operations
	Performance analysis of transaction operations
	The requirement of service eco-system

	Robustness Analysis

	Related Work
	Conclusions

