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Abstract

The analysis of user behavior provides a large amount of useful information.
After being extracted, this information is called user knowledge. User knowl-
edge plays a guiding role in implementing user-centric updates for software
platforms. A good representation and application of user knowledge can
accelerate the development of a software platform and improve its quality.
This paper aims to further the utilization of user knowledge by mining the
user knowledge that is implicit in user behavior and then constructing a
knowledge graph of this behavior. First, the association between a software
bug and a software component is mined from the user knowledge. Then,
the knowledge entity extraction and relationship extraction are performed
from the development code and the user behavior. Finally, the knowledge is
stored in the graph database, from which it can be visually retrieved. Relevant
experiments on CIFLog, an integrated logging processing software platform,
have proved the effectiveness of this research. Constructing a user behavior
knowledge graph can improve the utilization of user knowledge as well as the
quality of software platform development.
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1 Introduction

During the process of software development, knowledge flows between
developers, projects, and users [1]. After the software is released, its users
often play a role in promoting the improvement of the software platform by
guiding software updates [2]. At the same time, as the development scale of
software continues to expand, software requirements increase and become
more complex. If software developers, particularly developers of large-scale
platforms, want to improve the user experience, meet the needs of users,
and expand the user community, they need to deepen their understanding
of users [3]. Under this premise, knowledge extraction and the proper use
of behavioral information generated at the user level is a better method for
improving the quality and efficiency of software development, and for making
the software platform more user-centric.

However, during the development of the large-scale software platform
Integrated Logging Platform CIFLog [4], the project team found that the
platform was suffering from problems in the areas of knowledge extraction
and utilization of user behavior information, which affected the process
of software maintenance. Through investigation, we find that the current
research on the application of user behavior information can be divided into
three types: user intention analysis based on user behavior [5–7], personalized
recommendation based on user behavior [8–10], and credibility analysis of
user behavior [11–13]. Furthermore, while the research on software knowl-
edge representation in the field of software engineering is still focused
on user demand representation [14–16], software development knowledge
modeling [17, 18], and software development process knowledge manage-
ment [19, 20]. However, research on user behavior knowledge extraction and
representation is still lacking.

The knowledge included at the user level is divided into two types. The
first is the user’s active feedback information. Such feedback can go directly
to the developers. Communicating user expectations for the software and
hearing what they have to say about bugs can quickly improve the software
development project. For this kind of information, it is generally easy to
build rules, so artificial knowledge is usually adopted to build rules, or
modify and perfect on the software platform directly. The second type is
tacit knowledge, which requires mining user behavior information in order to
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extract knowledge such as potential associations between components, bugs
that have not been fixed, and the common usage habits of users. This article
focuses on tacit knowledge.

In summary, in order to increase the acquisition of user knowledge and
mine user-generated knowledge, and to improve the developer’s utilization
of such knowledge for the purpose of improving the software platform,
this paper proposes a user knowledge mining method. This method also
applies knowledge graph technology, which can help developers intuitively
search, browse, and manage user knowledge. For this article, user knowl-
edge refers to software platform-related knowledge that has a greater value
density, including explicit knowledge and tacit knowledge. This research was
carried out on CIFLog, and the effectiveness of the work in this paper was
demonstrated through application examples.

The second section of this paper analyzes the problems and difficul-
ties of user knowledge acquisition and representation and selects relevant
problem-solving technologies. Related solutions are provided in Section 3.
User knowledge mining based on user behavior information is discussed
in Section 4. The construction scheme and application of a user behavior
knowledge graph is explained in Section 5. The conclusions and future work
of this paper appear in Section 6.

2 Related Work

The research on the application of user behavior information can be divided
into three areas: user intention analysis based on user behavior, personalized
recommendation based on user behavior, and credibility analysis of user
behavior.

The related research on user intention analysis based on user behav-
ior is as follows: Kang constructed two-phase reanalysis model for better
understanding user intention [5]. Xin conducted related research on the
relationship between user behavior intent in mobile applications and services,
and clarified selected models related to user intent research [6]. Burkhardt
introduced a new approach for classifying users’ search intentions in big data
applications [7].

The related research of personalized recommendation based on user
behavior is as follows: Priya used consumer behavior analysis to gen-
erate personalized ontology system [8]. Lei used causal association rule
and collaborative filtering based on user behavior to improve personalized
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recommendation [9]. Shaymaa analyzed user online behavior information to
give them personalized recommendation [10].

Relevant research on user behavior credibility analysis is as follows:
Singal estimating the trustworthiness of websites by evaluating the actual
behavioral metrics of the users [11]. Alrubaian evaluated the behavioral
credibility of users on Twitter by build a new model [12]. Zhou proposed
a shilling behavior detection structure based on abnormal group user findings
and rating time series analysis [13].

Despite all of the research on user behavior analysis and application, there
is still a lack of analysis of user behavior for software platforms. The research
on software knowledge representation in the field of software engineering
can be divided into three areas: user demand representation [14–16], soft-
ware development knowledge modeling [17, 18], and software development
process knowledge management (KM) [19, 20].

The research on user demand expression is as follows: Meng Xiangwu
summarized the research progress of mobile user demand acquisition tech-
nology [14]. Wang Chen used multi-dimensional user demand acquisition
and representation using the ontology technology [15]. Wang et al. built
a distributed database to deal with issues related to the changing needs of
users [16].

The research on software development knowledge modeling is as follows:
Maouche’s research was multi-scale knowledge modeling towards software
engineering [17]. Ouriques explored the management of corporate knowledge
by the KM strategy adopted in agile software development [18].

The research on knowledge management in software development pro-
cess is as follows: Vasconcelos adopted software development knowledge
representation and management to software evolution [19]. Goncalves built
demand model to manage software knowledge [20].

The above research has leveraged knowledge about the software develop-
ment process in order to improve the process. However, there is no existing
research that aims to improve and upgrade software platforms by extract-
ing user knowledge based on user behavior, and then applying it to the
software platform. This article proposes to extract implicit user knowledge
based on the behavior information generated by the software platform, and
to represent such knowledge by constructing a user behavior knowledge
graph, in order to improve the utilization rate of user knowledge for soft-
ware developers. At the same time, the knowledge graph of user behavior
makes it easier for developers to retrieve and use the software platform
knowledge.
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3 Problem Analysis

User knowledge is divided into explicit knowledge and tacit knowledge. Of
the two, explicit knowledge is easier to understand, while tacit knowledge
requires analysis and processing of user behavior information in order to
obtain knowledge with greater value density. Through the analysis of user
behavior, the tacit knowledge that we can obtain includes the association
relationship between software platform components such as functional mod-
ules, buttons and interfaces, the bugs not found during software testing, and,
through the association relationship, obtaining common operations for more
users.

The generation of user behavior is based on the user’s interaction with
the software platform. Different users on the same software platform show
different behaviors due to differences in their behavior habits. Even the same
user often exhibits different behaviors under the influence of external factors.
Therefore, it is necessary to obtain the common information mined from user
behavior, and it is very important to select the appropriate analysis algorithm.

At the same time, user behavior information and software platform
knowledge entities are complex and diverse, and the relationship between
them is complicated. Therefore, it is necessary to use appropriate models
to represent knowledge entities and relationships. The characteristics of the
property graph [21] model are suitable for our requirements for user knowl-
edge and software platform knowledge representation. These characteristics
consist of nodes, directed edges, and attributes; each node has a unique
identifier that corresponds to the defined entity type; each vertex has a key-
value pair to represent the attribute; nodes and nodes are connected by edges;
each side has a unique identifier, each edge must have a head node and a tail
node, and each side has key-value pairs to define attribute combinations.

Based on the attribute graph model, different nodes in the software
knowledge graph for user knowledge constructed in this paper correspond
to different knowledge entities; the directed edges in the graph represent
semantic associations; and the key-value pairs in each software knowledge
entity correspond to the entity nodes.

The attribute graph model is the underlying implementation model of
many graph databases. The top four graph databases [22] in the DB-Engines
Ranking list are Neo4j, OrientDB, Titan, and Virtuoso. After comparing these
four databases, this study selected the Neo4j database due to its maturity
and its support of the attribute graph model and rich query language as the
underlying storage of the software knowledge graph for user knowledge.
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When constructing a user behavior knowledge graph based on user
behavior information, four problems need to be solved.

(1) User knowledge entity extraction. The user entity includes a vari-
ety of knowledge entities, including functional modules, buttons and
interfaces. The types of knowledge entities that graph user behavior
information to the underlying code include classes and methods. For
different types of knowledge entities, their forms and characteristics are
also different.

(2) Software component association rule mining. Based on user behavior
information, the association rules between components in the software
platform are mined. Because the component entities included in the
software platform are complex and diverse, and because each user’s
familiarity with the software platform is different, the value of the user
behavior information is also different.

(3) Establishment of the relationship between the user knowledge entities
and the software knowledge entities. Software platform development
code determines the relationships between the software knowledge enti-
ties, and the user behavior information generated by the users of the
software platform also implies the relationship between the components.

(4) User knowledge retrieval and display. This involves determining how to
use the user behavior knowledge graph to provide software developers
with the knowledge they need.

4 Solution

The overall framework for constructing a user behavior knowledge graph is
shown in Figure 1.

First, an appropriate algorithm is selected to obtain two types of user
knowledge: software component associations and bugs based on user behav-
ior information. After that, the graph is constructed.

The data source of the graph is the user knowledge and software platform
development source code obtained based on the user behavior information
generated by the software platform. First, the above two types of user knowl-
edge are extracted from their respective knowledge graphs. This process is
called software knowledge extraction. Then, according to the rules obtained
from mining, association relationships are established among knowledge
entities, and the independent knowledge graphs from these two resources are
organized to form the user behavior knowledge graph. Finally, the knowledge



Construction and Application of the User Behavior Knowledge Graph 393

Figure 1 User behavior knowledge graph framework.

retrieval and presentation mechanism is established to meet the developer’s
retrieval requirements. This paper focuses on the graphical retrieval mecha-
nism, which provides the required knowledge and related knowledge quickly
and visually.

Four aspects are elaborated on in Section 5: user knowledge mining,
software knowledge entity extraction, software knowledge entity association
establishment, and software knowledge retrieval and display.

5 User Knowledge Mining Based on User Behavior
Information

5.1 Knowledge Mining Algorithm

This software platform used in this paper is CIFLog. Therefore, the user
knowledge mining based on the user behavior information generated by
CIFLog is mainly used to mine the association rules between the components
in the software platform. The main goal of knowledge extraction in this
paper is to mine the relationships between components, including the rela-
tionship between modules, the relationship between modules, the relationship
between buttons, and the relationship between modules. The association rules
are divided into two categories according to the application environment:
numerical types and Boolean. In this paper, the association rules between
software platform components are Boolean.
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The most important step in the process of mining association rules
between software platform components is to find frequent item sets with
confidence greater than the minimum confidence threshold in the user behav-
ior information. First, find all frequent items whose support degree meets
the minimum support threshold. Then, find a set of items with a confidence
greater than the minimum confidence threshold. After performing these two
steps, strong associations between software platform components can be
found.

Common association rule algorithms include Apriori algorithm and FP-
growth algorithm. By comparing the two algorithms, this paper chooses
FP-growth algorithm for mining association rules among software platform
components. Because Apriori algorithm has the following disadvantages:
Excessive number of scans to the database may generate a large number of
candidate item sets. However, the tree structure used by FP-growth algorithm
makes it not produce a large number of candidate sets in the face of huge
user behavior data, and it does not cause huge I/O burden by repeatedly
scanning the user behavior information database. It only needs to scan the
database twice. Under the background of this paper, FP-growth algorithm is
more efficient, so this paper chooses FP-growth algorithm to mine Boolean
association rules from the database.

5.2 Knowledge Mining Process Based on User Behavior

First, the behavior information of different users is processed. Each user has a
table in the database. The table id is the time when the user uses the software
(it is a valid reference content for subsequent reasoning), and the table content
is the behavior information of the software user. The user exits the software
as a mark and deletes the invalid operation by repeatedly clicking a certain
button or clicking on a blank space, without getting any feedback from the
software. These are called invalid operations.

After pre-processing, the association rules have been mined based on
the obtained information. Let P = {p1, p2, . . . , pn} be a collection of all
components in the software platform. Data set D is a collection of database
transactions storing user behavior information, and any transaction T is a
collection of some components in the software platform, T ⊆ P . Let A be
a set of components that make up the software platform, then transaction T
contains A as A ⊆ T . The association rules are expressed in the form of
implications. For example, in the software platform, button A and button B
are related to the implied expression of A ⇒ B, where A ⊆ P , B ⊆ P , and
A ∩B = φ.
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Two important concepts in relation mining are support and confidence.
The support degree s is the ratio of the union of the software platform
component item set A and the software platform component item set B in
the database transaction set D, which stores the user behavior information:

s = P (A ∪B) =
count(A ∪B)

|D|
(1)

Confidence c is the ratio of transactions that also containB in transactions
that contain both A in A and transactions that contain only A:

c = P (B|A) = support(A ∪B)

support(A)
=
count(A ∪B)

count(A)
(2)

In relation mining, a set of items whose support degree is greater than or
equal to the minimum support level threshold is called a frequent (or large)
item set. First, the FP-Growth algorithm is used to traverse the database
transaction set, the frequent item sets are obtained, and then arranged in
descending order according to the support degree to form a frequent item
header table. Then, the transaction set is traversed again, the FP-tree is
created, the pointer in the header table is filled, and the mining head is drilled.
The initial suffix pattern in the table constructs a conditional pattern base
consisting of a set of prefix paths, then establishes a conditional pattern tree,
and then recursively mines all frequent K-item sets [23]. The association rule
mining finds the top-K term in the frequent item sets with confidence greater
than the minimum confidence threshold. This process is also the mining
process of strong association rules. The mined association rules will be stored
and represented in the form of knowledge for use by developers.

The confidence between the strong association rules A ⇒ B items is
defined as follows [24]:

confidence(A⇒ B) =
η(A ∪B)

η(A)
(3)

where confidence (A⇒ B) is the confidence between the A→ B item sets,
and η(A) is the number of transactions containing A in the user behavior
information database. The higher the confidence, the greater the likelihood
that B will appear in A.

The degree of lift reflects the relevance of the pre- and post-rules and
excludes rules that are unrelated or less relevant. The degree of elevation
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Table 1 User knowledge entity association information
Strong association Constituent elements = {Relationship between the same

entity types, Relationship between different entity types}

Relationship between the
same entity

Constituent elements = {(Function module, Function
module), (Interface, Interface), (Button, Button)}

Relationship between
different entity types

Constituent elements = {(Function module, Interface),
(Function module, Button), (Interface, Button)}

between the sets of items A and B indicates the extent to which the item set
A is “upgraded” to B. This is calculated using the following formula [24]:

lift(A,B) =
P (A ∪B)

P (A)P (B)
=
confidence(A⇒ B)

support(B)
(4)

If lift > 1, the occurrence of item sets A and B is positively correlated,
and the appearance ofA has a positive effect on the appearance of B; if lift =
1, A and B are independent, and there is no correlation; if lift < 1, then A
and the occurrence of B are negatively correlated.

After performing the above steps, it is necessary to combine the infor-
mation mining and knowledge screening. Based on different rules formed by
frequent pattern analysis, the rules of users are discovered at different levels,
and this knowledge is then stored. The associated information between the
mined user knowledge entities is shown in Table 1.

6 Knowledge Entity Extraction

6.1 Design and Construction of the Schema Layer

Before the knowledge can be extracted, the schema layer needs to be
constructed. The knowledge extraction is then performed according to the
defined schema layer. This process is equivalent to modeling the overall
knowledge framework. Therefore, the schema layer needs to define and
constrain the relationship between classes and classes, that is, define and
constrain the concepts and relationships between the concepts contained in
the knowledge graph.

This paper constructs the schema layer of the user behavior knowledge
graph and defines four basic classes: function modules, interfaces, buttons
and bugs. The properties for the base class are defined as follows:

(1) The properties of the function module include Chinese name, English
name, interface, function, pre-module, and post-module.
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(2) The properties of the interface include Chinese name, English name,
module, button, and function.

(3) The properties of the button include Chinese name, English name, the
interface to which it belongs, response event, front button, and back
button.

(4) The properties of the bug include the number, the prompt information,
the trigger method, and the function.

According to the definition of the four categories, this paper constructs
three semantic relationships: e HasInterface, e HasButton, and e HasBug.
An e HasInterface relationship exists between the function module and the
interface. An e HasButton relationship exists between the interface and the
button. There are e HasBug relationships between the function module, the
interface, and the button.

Note that the entity referred to by the e HasBug relationship here refers
to the location where the bug occurred. The location of the bug should be
in the implementation of the interface and buttons. However, from the user
or non-professional perspective, it seems that there is a bug in the interface
or button, so in this article, the e HasBug relationship is defined in the most
intuitive way from the user’s point of view. The constructed schema layer is
shown in Figure 2.

Figure 2 User behavior knowledge graph framework.
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6.2 Knowledge Entity Extraction for User Behavior Information

The knowledge entity extraction is performed after obtaining the user behav-
ior information. The user behavior information document contains not only
the software component name, but also the name it graphs to in the underlying
code.

After obtaining the user behavior information, it is necessary to first
classify the user behavior information according to the functional mod-
ules and extract the user behavior information corresponding to different
functional modules. In the software platform, different buttons in the UI
interface correspond to different functional modules, according to which
user behavior information is classified. If the user’s behavior information
involves multiple functional modules, such information is useful for mining
the association relationship between modules, and the processing of such
information depends on which module the subject of its operation belongs to.

The user behavior information documentation format is defined in
Table 2.

The entities extracted based on user behavior documentation and their
attributes are shown in Table 3.

6.3 Software Knowledge Entity Extraction for the Underlying
Code

This research is focused on CIFLog, which was developed in the Java lan-
guage. Therefore, this study is based on Java source code for software knowl-
edge entity extraction. According to the Java programming specification,

Table 2 User behavior documentation
Item Explanation

UserID Unique identifier for each user

Function module Function module where the user operates

Behavior information User actions, including clicking buttons or performing operations
on the interface

EName Components’ name in code

CName The name of the component displayed to the user in the
foreground

Date The time when the user was operating

Note If an exception occurs, write it in a note
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Table 3 User behavior information
Entity Attributes Belong to Entity

UI knowledge entity collection {Function module, Interface, Button}

Function module {English name, Chinese name, Interface, Function}

Interface {English name, Chinese name, Module, Button,
Function}

Button {English name, Chinese name, Interface, Response event}

Function module 1 {[Button a]-> [Interface a]-> [Interface
b]->. . . . . . [Button n/Interface n]}

Function module 2 {[Button 1]-> [Interface 1]-> [Interface
2]->. . . . . . [Button N/Interface N]}

. . . . . . . . . . . .

the development source code consists of packages, classes, interfaces, and
methods. This paper uses the QDox parser [25] to extract classes, interfaces,
and method definitions from the software platform development code, and
then obtains other information through recursive methods.

QDox is a small-footprint, high-speed parser that extracts metadata from
a given Java source. When loading a Java file or a folder containing Java files
into QDox, it automatically performs iterations. The QDox process employs
different methods for extracting different kinds of metadata from the source
code. These include:

(1) The getPackage() method lists all available packages for a given source.
(2) The getClasses() method lists all available classes in the package.
(3) The getMethods() method lists all available methods in the class.
(4) The getReturns() method returns the return type of the method.
(5) The getParameters() method lists all the parameters available to the

method.
(6) The getType() method returns the type of the method.
(7) When the getComment() method is used with a package, class, and

method, it returns the corresponding comment.

The output information of QDox stores the metadata in the form of
a string. The information we extract is filled according to the top-level
framework defined by the schema layer. When the user searches the entity,
a large amount of association information of the entity can be obtained, or
the system can quickly lock to the corresponding entity when the description
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Table 4 Source code software knowledge
Software Knowledge Entity Attribute Information

Software Knowledge Entity Collection {Package, Class, Interface, Method}

Package {Name, Comment}

Class {Name, Belonging package, Modifier, Parent
class, Implementation interface, Comment}

Interface {Name, Belonging package, Parent interface,
Comment}

Method {Name, Signature, Class or interface, Modifier,
Parameter, Return value type, Comment}

information is input. The specific extracted entities and their attributes are
shown in Table 4.

6.4 Software Knowledge Entity Association Establishment

There is a complex relationship between software knowledge entities. In this
paper, the relationship is established from two levels: top and bottom. The top
level is the user level. First, a simple relationship is filled at the user level, and
then the relationship between the top-level UI level and the underlying code
is analyzed and built. The code level is the bottom layer. The top layer can be
mapped to the bottom layer, and the bottom layer constitutes the display and
function implementation of the top layer.

In terms of the top-level relationship, in the schema layer, we have defined
the relationship between e HasInterface, e HasButton, and e HasBug. In
addition to these three kinds, there are strong correlation inferences based
on FP-Growth algorithm, that is, rules obtained by FP-growth algorithm are
used to fill the relationship between software knowledge entities. This paper
further divides the strong associations into two types: strong association
between the function modules and strong association between the buttons.
Due to the nature of the interface, it contains more than one button and
function, and it is essentially the function of the carrier and the response
event of the button. Therefore, it does not have much practical significance to
mining the strong association relationship, and so it is not considered here.

Because of the large number of associations between the software under-
lying code knowledge entities, the definition of the relationship in this part
is more complicated. According to the Java programming specification,
this paper divides relationships between software entities into dependency
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Table 5 Software platform development source code entity relationship
Relationship Item Attribute Information

Dependency relationship {(Class, Class), (Interface, Interface)}

Association relationship {(Class, Class), (Class, Interface)}

Aggregate relationship {(Class, Class), (Class, Interface)}

Inheritance relationship {(Class, Class), (Interface, Interface)}

Implementation relationship {(Class, Interface)}

Call relationship {(Method, Method)}

Contains relationship {(Project, Module), (Project, Package), (Module, Package),
(Package, Class), (Package, Interface), (Class, Method)}

Method parameter {(Method, Class), (Method, Interface)}

Return value {(Method, Class), (Method, Interface)}

Reference relationship {(Method, Class)}

relationship, association relationship, aggregation relationship, inheritance
relationship, implementation relationship, call relationship, inclusion rela-
tionship, method parameter, return value, and reference relationship. For
example, dependencies mainly occur in class and interface entities, mainly in
the form of a class relying on another class, or an interface relying on another
interface, namely {(class, class), (interface, interface)}. However, association
relationships mainly occur between classes and between classes, as well as
between classes and interfaces. And the QDox parser is used to parse the Java
file, and the regular expression is read into the data stream iterative search in
order to find the above association relationship.

The relationship attributes are represented in the form of a set in Table 5.

6.5 Knowledge Retrieval and Display

This study is based on the use of the graph database to achieve the visual
retrieval of user knowledge. After evaluating four databases, this paper
selected the Neo4j graph database, which has an efficient and extensible
declarative query language and development model. Neo4j employs Cypher,
a declarative, easy-to-read graph query language that can be retrieved directly
from the knowledge base.

The relational database selects the PostgreSQL open source relational
database for its scalability, strong internal function support, execution of
complex SQL and multiprocessing capability. In addition, during the data
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Table 6 Software knowledge entity statistics
Statistical Item Quantity

Number of entity types 832

Number of relationship types 3927

Number of attributes 3470

Number of functional modules 19

Number of user interfaces 51

Number of buttons 189

Number of bugs 27

Number of packages 22

Number of classes 181

Number of methods 647

Number of interfaces 46

migration process to the graph database, PostgreSQL performs better than
other relational databases when using the ETL tools in Neo4j.

First, based on the defined schema layer, create a concept class and a
relationship class based on the Neo4j creation mode, and then load the entity
node information and relationships. In order to prevent duplicate information
when importing data information, use Cypher query statements to determine
whether to repeat and delete.

Using the Intelligence and HWGeoModel modules under CIFLog as
examples, the statistics of the knowledge entity data obtained based on the
knowledge extraction are shown in Table 6.

Based on user knowledge mining of these two modules, the strong
association statistics obtained are shown in Table 7.

Using the association relationship between the modules as an example,
through mining user behavior information, we find the following: that users
often use the DataManagement module before using the HWGeoModel
module; that they often use the Intelligence module while using the HWGe-
oModel module; and that while using DataManagement, they often use the
Intelligence modules. Therefore, we can say that there is a strong relationship
between them.

Using the example of finding the HWGeoModule using the Cypher lan-
guage, the graphical visualization result of the “HWGeoModule” is shown
in Figure 3. After the association rule mining based on user behavior
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Table 7 Software knowledge entity statistics
Statistical Item Quantity

{(Module), (Module)} 4

{(Module), (Button)} 30

{(Button), (Interface)} 38

{(Button), (Button)} 48

{(User interface), (User interface)} 12

Number of interfaces 46

Figure 3 “HWGeoModule” module graphic visualization search results.

information, there are one-way strong association relationships between that
module and “DataModule” and “IntModule,”, and this knowledge has been
stored in the user knowledge graph. When a strong association search for
“HWGeoModule” is performed in Neo4j, “IntModule” and “DataModule”
are output, and connected by directed edges, and the relationship represented
by the edge is “strongAssociation”.

Since the software platform source code knowledge is also integrated
into the user knowledge graph construction process, the programmer can
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use the user knowledge graph to carry out the relevant knowledge retrieval
for software development. The following is an example of searching the
“baseProperty” class, and the query result is as follows:

Figure 4 “baseProperty” class graphic visualization search results.

The search result modified in Figure 4 includes several entity nodes
and relationship edges, and the information contained therein is “base-
Property” class and its attribute information: “baseProperty” belongs to
“cif intelligence” and the modifier is “public”. The parent class is “Node-
Property”, the implementation interface is “INotice”, and the comment is
“Author: Ding”. Connected directed edges between nodes are used to indicate
the relationship between them, such as: “hasSuperclass”, “hasPackage”, and
“has Annotation”. The different colors in the picture indicate that they belong
to different categories, that is, they have different labels in the graph database.

6.6 Knowledge Update Mechanism

Because user behavior information is generated continuously, new user
knowledge is also generated continuously, and the software platform is
accordingly also updated and maintained. Therefore, the knowledge in the
user behavior knowledge graph needs to be updated, which is also the reason



Construction and Application of the User Behavior Knowledge Graph 405

for using the combination of a relational database and a graph database in this
paper.

The knowledge graph update is divided into two levels: the pattern layer
and the data layer. The software platform discussed in this article, having
been released, is relatively stable, and there will not be too many changes to
the framework. Therefore, this paper focuses on the entity update of the data
layer.

The relational database is directly related to the software platform back-
ground code and user behavior information document, and the user behavior
document storage method is made more convenient through the relational
database. Therefore, this study adopted the method of establishing association
between relational database and graph database, and carried out data migra-
tion from relational database to graph database, so as to update knowledge in
this way. In this paper, PostgreSQL database is used to correlate with Neo4j
database, and data migration is adopted to update knowledge. When new rules
are generated, they are mapped to the database and relational updates are
made in the same way.

7 Conclusions and Future Work

This paper proposes a method for constructing a user behavior knowledge
graph based on user behavior information and software platform development
source code. It also describes in detail the construction process of this knowl-
edge graph based on CIFLog. The knowledge graph is shown to improve the
utilization of user knowledge in both the update and maintenance phases of
the software platform, and to improve the acquisition, retrieval, and use of
user knowledge by developers.

First, based on the user behavior information, the association rules and
the user knowledge are mined. Then, the software entity is extracted from
the user behavior information and the software platform development source
code. Next, the knowledge is extracted from the development source code.
The top-down approach builds the schema layer of the software platform
developed by the Java project, and then builds the entire user behavior knowl-
edge graph framework. This framework defines the semantic relationship
between the concepts in the knowledge graph, and then performs the entity
according to it. Next comes the extraction of relationships and attributes,
and the establishment and filling of relationships between extracted entities,
including entities at the UI level and graphing to entities in the development
source code. Finally, the knowledge is stored in the Neo4j graph database, and
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the formal search provided by Neo4j’s declarative query language Cypher is
used for the developer’s graphical search of user knowledge and software
platform knowledge.

This article has several purposes: to realize the mining, representation,
and utilization of user knowledge; to improve the utilization of user knowl-
edge by constructing a user behavior knowledge graph; and to upgrade the
software platform based on user needs. When using this graph, in addition
to intuitively and orderly searching and managing the user knowledge of the
software platform, it can also infer user behavior trajectories facing different
functions based on the user knowledge contained in the user behavior knowl-
edge graph. Its application significance lies in the ease of operation of the
optimized software, and the role it plays in interface design and operation
guidance. This research group has already started the application work, such
as developing the intelligent operation guidance function for CIFLog. In
addition, related experiments have been completed in the test module. The
experiment proves that the intelligent guidance function that was developed
based on the user behavior knowledge graph has excellent expressiveness on
software platforms for new users or users who are not familiar with some
functions.

Building a systematic and long-term knowledge base is a complex task
because it contains not only intuitive knowledge, but also empirical hidden
knowledge. Therefore, in future work, we will continue to study the update
mechanism of the knowledge graph, infer the development trend of software
platforms based on existing knowledge, build intelligent operation guides,
and improve the utilization of user knowledge graph, while applying it to
more software development projects.
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