Efficient Retrieval of Data Using Semantic
Search Engine Based on NLP and RDF

Usha Yadav'?* and Neelam Duhan?

! National Institute of Fashion Technology, Jodhpur, India

2J.C. Bose University of Science & Technology, YMCA, Faridabad, India
E-mail: Usha.yadav.912 @ gmail.com

*Corresponding Author

Received 19 November 2020; Accepted 15 August 2021;
Publication 27 October 2021

Abstract

With the evolution of Web 3.0, the traditional algorithm of searching Web
2.0 would become obsolete and underperform in retrieving the precise and
accurate information from the growing semantic web. It is very reasonable
to presume that common users might not possess any understanding of the
ontology used in the knowledge base or SPARQL query. Therefore, pro-
viding easy access of this enormous knowledge base to all level of users
is challenging. The ability for all level of users to effortlessly formulate
structure query such as SPARQL is very diverse. In this paper, semantic web
based search methodology is proposed which converts user query in natural
language into SPARQL query, which could be directed to domain ontology
based knowledge base. Each query word is further mapped to the relevant
concept or relations in ontology. Score is assigned to each mapping to find
out the best possible mapping for the query generation. Mapping with highest
score are taken into consideration along with interrogative or other function
to finally formulate the user query into SPARQL query. If there is no search
result retrieved from the knowledge base, then instead of returning null to the
user, the query is further directed to the Web 3.0. The top “k” documents are

Journal of Web Engineering, Vol. 20_8, 2285-2318.
doi: 10.13052/jwe1540-9589.2084
© 2021 River Publishers

2286 U. Yadav and N. Duhan

considered to further converting them into RDF format using 7ext2Onto tool
and the corpus of semantically structured web documents is build. Alongside,
semantic crawl agent is used to get <Subject-Predicate-Object> set from the
semantic wiki. The Term Frequency Matrix and Co-occurrence Matrix are
applied on the corpus following by singular Value decomposition (SVD) to
find the results relevant for the user query. The result evaluations proved that
the proposed system is efficient in terms of execution time, precision, recall
and f-measures.

Keywords: Domain ontology, semantic search engine, SPARQL, natural
language processing, RDF.

1 Introduction

Data over the web is growing exponentially since last decade, so as linked
Open data. There are hundreds of SPARQL end points are available, which
can provide access to trillions of triples across multiple domains such as
movie, sports, commerce, science, technology etc. [1]. The vision of semantic
web is to improve its quality and realization of its full potential to the end
user. However, providing easy access of this enormous knowledge base to all
level of users is challenging. The ability for all level of users to effortlessly
formulate structure query such as SPARQL is very diverse.

Specific purpose interfaces using domain based knowledge base are
usually appropriate to use for their simplicity and homogeneity nature are
known as Knowledge Base Specific Interface. Majority of the web based
form search comes under this category. These interfaces are designed to
cater to the most specific and relevant user queries, which are known to
system in advance. Other drawbacks of using such systems are the effort
needed for specific interface development and its rigidity due to change in
schema.

Faceted browsing technique offers users with the limited facets based
on the available resources they are exploring. As this technique is knowledge
base independent, existing SPARQL endpoints require small or no adjustment
on top of it. The major limitation of this technique is that it restricts the users
with limited set of queries. For example, it is easier to search for objects
specific to class Student, but it lacks to handle complex queries such as Stu-
dent who studies in school in London, it is because of the fact that restriction
in London related to the school not the class student. Although, there are
few tools such as Visual SPARQL Query builder [2] which provides ease in

Efficient Retrieval of Data Using Semantic Search Engine 2287

generating SPARQL queries, still they are not in reach to common users and
usually knowledge developers and engineers are their target users. For using
such tools, common users still require understanding of how SPARQL works
and the construct which needs to be used in formulating the queries and some
knowledge of the core schema.

Although Question Answering system allows users to query his questions
directly such as Ginseng [3], NLP-Reduce [4], still they need to be confined
to a particular domain using models or patterns. The limitation of such
system is that if the user query belongs to cross domain, it could be very
difficult to handle without taking feedback from users. To retrieve the most
relevant answer, Linear SVC has been applied to classify answers along with
the selection technique such as univariate and chi-square for feature space
reduction [5].

Nowadays, many domain dependent search systems use domain specific
ontologies as their backbone for creating knowledge base. Using ontologies
based data repositories over traditional relational database management sys-
tems has lots of advantages. Ontologies can structurally store the concepts
and maintaining the semantic relationship among them instead of using table
and mapping to store the concepts. Using semantic web standard language
such as RDF and OWL, more semantic queries could easily be processed.
Structured Query Language (SPARQL) is a standard which is used for
semantically querying the resource in RDF/OWL format. There are some
challenges faced by common user in understanding the SPARQL query and
framing their requirements as per their need. Although it is again challenging
to understand the user query in natural language and interpreting into the
SPARQL query for semantically searching the resources and returning the
precise and accurate results to the users.

It is very reasonable to presume that common users might not possess
any understanding of the ontology used in the knowledge base or SPARQL.
Interpreting the requirement directly into SPARQL is indeed very challenging
for the common user [6, 7]. Therefore, it is highly required to provide alter-
nate solutions to overcome the problem of semantically searching resources.
Various works have proposed to deal with such issues by creating user
friendly interfaces or developing new techniques [6—8]. The leading tech-
niques provides the system [6, 8] which assists users in creating queries like
SPARQL without perquisite knowledge of SPARQL syntax.

The increasing number of devices allowing voice search is very common
nowadays. User simply put the queries using voice search in natural language,
without being informed about its underlying schema or SPARQL syntax.

2288 U. Yadav and N. Duhan

In contrast to traditional searching which uses keywords to retrieve relevant
results, semantic web search engines should handle the ambiguity of queries
put using natural language, to return precise search results.

There are few challenges which need to be resolved for better and precise
search results. Mapping query words to the proper resources in any domain
specific ontologies has some limitations. There could be case of synonyms;
homonyms etc. which could map query words to number of resources in the
ontology, ending up interpreting very different query.

Another challenge is in understanding the users’ perspectives, consider-
ing they are unaware about the underlying domain ontology schema. Triples
are the subject, predicate and object statement about a resource which are
used to construct SPARQL queries along with where clause. The triple graph
is used to find the matching graph in the ontology. Sometimes, user queries do
not provide complete information for generating the complete graph pattern.
Mostly a missing predicate in user query can affect the search results and
greatly increase the probability of getting the irrelevant results. For examples,
the user put a query, Kangana Ranaut movie, the predicate or the relation
combining the two concepts are missing. Does the user want to search for
movies acted by Kangana Ranaut or directed by Kangana Ranaut, it is
very challenging to deal with missing predicates. Even if users are made
familiar with the underlying schema of domain ontology, it would not be
much helpful. The schema of ontologies is regularly updated and extended or
could be merged with other ontologies.

Motivation: The traditional search retrieval algorithms of Web 2.0 become
outdated in retrieving the precise and accurate information from the growing
Web 3.0, known as Semantic Web. The more advanced and strategic tech-
niques compliant with the semantic web would be highly needed to find the
desired information from evolving semantically linked data. The semantically
enriched information is the need of the hour, it is vital to make this informa-
tion from semantic web accessible to the general user. It is logical to assume
that the general user lacks in understanding the ontology structure of the
system or structured language to retrieve data such as SPARQL. Interpreting
the requirement directly into SPARQL is indeed very challenging for the
common user. Also, knowledge base in some domain specific application
gradually extended and updated. Therefore, there might be cases in which
there is no relevant information present in the KB in accordance with user
query, in such scenarios, alternative methodologies need to be adapted to
retrieve the relevant information from other sources.

Efficient Retrieval of Data Using Semantic Search Engine 2289

Contributions: Below mentioned are the key contributions included in this
work.

(i) Automated formulation of SPARQL queries from the given user query
in natural language.

(i) To reduce ambiguity and improving the top search results, weightage
score assigned to each mapping between the user query word and the
resource in the ontology.

(iii) Formulation of Term Frequency matrix and Co-occurrence matrix for
the RDF triples to improve the context relevance issue and further
decomposing it to generate priority vector.

(iv) Multiphase Search approach: In many domain specific applications
which deals with handling natural language user queries often resulted
into null search results found issue, therefore in this approach, another
search phase to redirect user query further over the semantic structured
web is devised to overcome this issue.

Organization: Rest of the paper is organized as follows: Related work in
the area of semantic search engine and converting user query in natural
language to SPARQL provided in Section 2. Section 3 provides overview of
the proposed system architecture. Sections 4 and 5 explains about the phase
1 and phase 2 of the proposed semantic search engine respectively. Section 6
described all the experiments conducted and its result analysis. Finally, the
conclusion is presented in Section 7.

2 Related Work

It is very challenging for the common user to explore RDF based Linked
Data or knowledge base in an effective manner. Also, it is not expected
from the user to be well versed in writing SPARQL or to know about the
underlying ontology structure. Various related research works are presented
in this section.

Researchers in [9] proposed Semantic Focused Crawler to overcome the
mentioned limitations. It is graph based interface for querying using Subject-
Predicate-Object format. The auto-complete feature of query builder assists
users in choosing the domain ontology related entities without requiring them
to have prior knowledge about ontology or SPARQL. In various scenarios
specially, user query may span to more than one domain which bringing
a necessity for developing cross domain ontology for better search results

2290 U. Yadav and N. Duhan

or recommendation. Authors in [10], the online reviews provided by the
users are analyzed using various natural language processing for developing
domain ontologies. Further, new alignment technique is devised to form cross
ontology by aligning the various domain ontologies.

A novel systematic method is proposed to understand natural language
question rather than using semantic parsers. Large numbers of low budget
binary templates were created automatically. Efficient indexing was used
to facilitate better searching over template decomposition. Two level dis-
ambiguation strategies was designed and performed namely, ‘entity level
ambiguity’ and ‘structure level ambiguity’. Researchers in [11] proposed a
framework which assist users in translating question in Natural Language
into structured query for a specific domain knowledge based system. The new
graph structure, vocabulary and the semantic query graph has been defined
to handle the complexity of compounded questions. The sub graph in the
knowledge base has been identified based on the query expansion and its
semantic graph generation. The sub graph generated is directly converted into
structure query language.

Researchers in [12], Proposed OSCAR, the Open Citations RDF Search
Application, provides user friendly interface by hiding the complexity of
writing SPARQL query by the common user. It provides access to any RDF
triple store with easy to use SPARQL endpoint. Authors in [13] identified
the fragment of first order logic which capture the underlying structure of the
user query by formulating the faceted search interface. The complexity while
answering such queries is well studied for RDF / OWL formats. An efficient
algorithm for interface generation and updating was also proposed. System
was also tested for scalability with relevant results.

Researchers in [14], extended the natural language pattern of user query
by assigning a node known as ‘Query Focus’ for further matching it seman-
tically. To find out the top diversified ‘k’ matches with the ‘query focus’, an
efficient technique was proposed, thereby querying the knowledge graph by
user query in natural language. Many researches allowed user to ask query in
natural language with domain restricted vocabulary [15, 16] . Authors in [17]
proposed SQUALL structure to take user query as input and it is similar to
natural language. The query has been directly mapped to the SPARQL based
upon semantic and syntactic analysis without requiring resource mapping
process.

Authors in [18] proposed Semantic Supported Information Retrieval Sys-
tem (SIRS), it is ontology based and the input query is processed using
Probabilistic Latent Semantic Indexing (PLSI) algorithm. This work also

Efficient Retrieval of Data Using Semantic Search Engine 2291

concentrates on providing the personalized web search using Multi-Criteria
Farticle Swarm Optimisation (MCPSO) for handling personal interest of
user. Traditional content based web page recommendation system had not
utilized the power of semantic knowledge in discovering the patters and
recommendations. Opinion based sentiment analysis approach could be uti-
lized in Collaborative Filtering for providing personal recommendations [19].
Also, researchers in [20] proposed using the semantic knowledge in all
phases of data mining. Sequential Pattern mining algorithm, CloSpan was
used to create frequent sequential patterns over semantic space. Semantically
enriched pattern was generated, further in offline mode, it is provided to the
web page recommendation process for better results.

To improve the quality of search results, web database need to be enriched
and semantic knowledge base should be created. Authors in [21] framework
to rank web pages was proposed known as ONTOPARK, which is based
on ontology. In this work, the Vector Space Model has been combined
with ontology for Information Retrieval. In this framework, RDF knowledge
base was created by annotating the RDF files semantically for each query.
Researchers in [22] the three layer architecture known as SRD-CP was
proposed. In the first layer, document domain was decided by constructing
semantic tree pattern based on RDF. The second layer handles the processing
of complex queries using constrained application protocol and HTTP proto-
col. The third layer uses the generated SPT to include the word co-occurrence
with the help of association frequency. Apriori algorithm was used to find the
association between the documents on web.

Human lacks in refining through large web page result retrieved by
tradition search engine for a query, instead machines can able to process the
required information efficiently. Machines lacks in understanding the under-
line structure and also the context of the user query, which requires users to
brainstorm within large set of results to find the desired one. The semantic
power of Google search engine improve on the search strategy to produce
relevant search results to the users based on creating rules that define a user’s
intent and the contextual meaning of search terms. The schema.org [23] is
a set of vocabulary based on standard syntax allowing used widely to allow
seamless generation and integration of data. The knowledge graph developed
by Google [24] gained popularity as it represents the facts structurally using
entities, relationships and semantic descriptions. The formal specifications
may be used for inference and interpretation over facts [25].

Many researchers presented an approach to rank the web pages based
on its context sensitivity. Domain related ontology was used to generate the

2292 U. Yadav and N. Duhan

ranking factor for web pages [26]. The data properties on a web page were
analyzed with respect to the domain ontology, and higher is the number of
data properties inside the web document, higher would be its ranking factor
value. Author in [27] worked on retrieving the web documents while enabling
the effortless integration of data from multiple sources and also on reducing
inconsistencies. An efficient web search engine framework was proposed
to accurately fulfilling the user requirements by enabling the multiple data
sources integration during retrieval of search results web pages. The tabular
comparison of some of the related research work is presented in the Table 1.

It is observed that most of the semantic search engines are facing chal-
lenges such as handling very specific or limited set of queries, effort required
to develop specific interfaces, inability to handle complex, null search results
and cross domain queries etc. In order to solve the gap stated in the references,
the proposed model focuses on handling user queries based on ontology term
mapping and path generation through weightage assignment technique, mul-
tilayer search approach and overall improved the efficiency taking advantage
of semantic wiki and co-occurrence matrix.

3 Multiphase Semantic Search Engine Framework

The architecture is divided into two phases, Retrieval from domain KB and
retrieval from Web, each of the phases is explained in Figure 1.

Phase 1: (Result Retrieval from created Domain Knowledge base)

1. In this phase, preprocessing is applied on the query submitted by the user
in natural language. The preprocessing involves sentence segmentation,
tokenization, and stop words removal, determining each token’s part of
Speech (POS) and conducting lemmatization. As a result, a set of query
terms QT = {t1,¢2 ..., tn}, which retains the input order, is retrieved.

2. The token generated are analyzed for interrogatives such as when, which,
who and for functions such as how many, max.

3. The interrogatives and the function terms are kept aside to be used while
creating SPARQL structure. Finally, set containing user query terms are
generated.

4. Each term in the query is mapped with the most similar resource in the
ontology using proposed Term Ontology Mapping Technique.

5. A weightage function is proposed to assign weight to each of the
mapping done in previous step.

6. SPARQL is constructed based on the finding of above steps.

2293

Efficient Retrieval of Data Using Semantic Search Engine

wiyoge woudy ‘Aouanbaiy
uoneroosse ‘Jooojoid JIL.ILH

A1onsodar (D woiy
19§ ©IB(J UOTI[[0D

Jlomourer]
uondrosa 20IN0say

uo paseq pasodoid sem JO-QUS uonezo3ane) 3ursn uonezrundQ Axanb qop
SE UMOUY AINJOAIYDIE JOAR] 921y, ON 1X9L, 8251 -1y SOX K1onb JOy onuewas v —[zz] AT OMS
S90INOS
9rdnnw woij eyep jo uoneI3oul JSY pue yoreas A1) “BJep JO [BADLI)AI JUAIOYJO
SSsa}I03Je oy Surqeus UO paseq ‘YoIeas TOV ‘YoIeas Sururojrad 10§ YToMoUIRI} YOILAS
SJUAWINOOP M Y} SUTAILIAI ON Axeren uo sauenb ¢ SOX swidl, A1on) qam Juddiaur uy — [£Z] ASMI
Kyrxordwros oy o[puey 03 2IMONIS
ydei3 mau uo paseq g3 urewop 16991 suonsan®) suonsonb o3enIue [einEU WOIY
oy1oads e 10j A1onb painjonns pue suonsand)qom aSen3ue] uoneroual TOYVIS poseq ydeid
ojur suonisanb JIN dre[sueiy, ON ‘amvo OoN remeN Axenb onuewras — [11] SIN"OOS
Jsaxour euosiad Jurpuey
10§ (OSAOW) uonvsiudQ
ULIDNG 2]O1ADF DIIDILLD) -]
pue (1S1d) Surxepuy SMAN pue [OIBas QoM OTJUBTIAS UT W)SKS
OMUBWIAS JUSYE T ONSI[IqeqoI] QIBD J[EeY ‘uonjEONpH [2AQLI}OI UOTIEULIOJUT OTJUBTIAS
Sursn {(SYIS) WISAS [BALIOY ‘pooy A[owreu splor] paseq a1njea) pue d0uaIjard Josn
uonewIoju] payoddng onuewog SOX Inoj woij souenb || SOX K1onb 198 postfeuosiad v — [81] MISdN
J3e101s
BJEP PUB ADBINOJE ‘AOUIOYJO souonb g3 ‘sourenb
10J pazATeue a1e 2103s o[dLn punoi3yorq aurqinyg, EhlieilieN TOYVIS 01 saLang)
pue JQY ‘SINGAY " 1OUVdS ‘sorronb 2oua1MO0Q o3en3ue] oSenJue] [eInjeN JO UOHR[SURI],
UT 90UQJUAs JIN Suruiojsuely, SOX JuaAq ‘serron() oNeIs SOX [emeN peseg-ASorojuQ — [82] STINLO
pasn anbruyoay, pesegq uotnjen[eAy 10y Aiqeress a3enSuef uonedTqng
A3o101u0 sauend)/urewo(q K1anQ)

JIom [oIeasar pajerar Suowre uosmedwo) | AqeL,

2294 U. Yadav and N. Duhan

User qery i Noture PHASE L ;
uery in Natura
User Query Terms N Ontology Term

Pre-Processing |
Mapping

Language

Interrogative words
and functions

Result
Ret d i
eturnes P SPARQL < Weightage
Construction Assigned
PHASE 2 v
Query in Natural S ti
Language _ | Google Search sl
Page Crawl agent
Semantically Structured f
Corpus of Web
Top k search D(F))cuments . -
results Semantic Wiki

Text-to-Onto
Algorithm

[<S, P, O> Set

Term Frequency Co-occurrence
Matrix Matrix
<
Singular Value Decomposition ‘

Search Result Retrieval ‘

Result Returned |

Figure 1 Proposed Framework for Multiphase semantic search engine.

7. Finally the SPARQL query applied on domain KB using Jena ARQ2
engine and results displayed to user.
Phase 2: (Result Retrieval from Web 2.0)
If the query does not return any result due to lack of related information from
the domain KB, the query is further fired onto Web 2.0.

1. Query in natural language is redirected to the Google search page.
2. Top k search results retrieved are taken into account and converted into

semantically structured document.

Efficient Retrieval of Data Using Semantic Search Engine 2295

3. Text20nto algorithm is applied for converting unstructured web docu-
ment into semantically annotated web documents.

4. The semantically annotated documents are added into the Web docu-
ment corpus.

5. Semantic crawl agent uses the query term generated in first phase and
utilize the semantic wiki to generate the <S,P,0> sets related to the user
query.

6. Considering each term, of the user query, the Term Frequency Matrix is
generated and <S,P,0> set is used to generate Co-occurrence Matrix.

7. Singular value decomposition is used to find out the best possible query
vector and corresponding web documents are retrieved.

8. Finally, results are returned to the user using semantic search retrieval.

4 Phase 1: Semantic Search Engine

In this section, the proposed conversion process from user query in natural
language to SPARQL is explained in detail. The phase mainly explains
the pre-processing, term ontology mapping, weightage assigned and finally
SPARQL conversion process.

The user is not well versed in writing structured query such as SPARQL
to retrieve the desired result, so to all mass participation, there need to find
some way to overcome this problem. So, in the proposed system, user can
comfortably enter his query in natural language. Example Illustration: Sup-
pose User entered query is What is the genre of movie directed by Kangana
Ranaut?.

In this phase, pre-processing is applied on the query submitted by the user.
The pre-processing involves sentence segmentation, tokenization, and stop
words removal, determining part of Speech (POS) of each token and conduct-
ing lemmatization. As a result, a set of query terms QT = {¢1,¢2,...,tn},
which retains the input order, is retrieved. All these pre-processing tasks can
be implemented by NLTK in Python, which is a famous library for NLP [29].

After retrieving set of query terms, function or interrogative terms present
in the query are identified for further conversion process. These identified
terms are kept separately to be used in final SPARQL conversion process.

Interrogatives: The query terms such as where, who, which, when etc are
identified as interrogatives. The interrogatives are considered as search tar-
get and modification in these terms could affect the final SPARQL query
conversions.

2296 U. Yadav and N. Duhan

Functions: The query terms such as maximum, how many are required to
be included in final SPARQL such as ORDER BY, COUNT etc. This allows
aggregating the resources as per the requirement.

Example Illustration: Continuing with the same example, after pre-
processing query terms generated are what Genre movie directed Kangana
Ranaut and the interrogative term is what.

4.1 Term Ontology Mapping

On completion of pre-processing, the terms generated from the user is further
mapped to the domain resources present in the ontology based on similarity
computation. The triple paths mapped with the user’s query terms are iden-
tified and weightage is assigned to each triple path. Finally, the process is
followed by the SPARQL conversion process.

Index is created using the resources present in the domain ontology. The
snippet of the indexed domain ontology for the movie domain is shown in
Table 2. The index created comprises of the URI of the resources, its type
and the annotated values taken from comments, labels, and titles. The URI of
the resources indexed may belong to the Classes, Data or Object Properties,
Instances and the Literals. The literal values represent the value of type inte-
ger, string, numeric etc. The annotation values are mainly intended to assist
humans to understand more about the resources, and therefore considered
as an important parameter to be included in the Index creation. Therefore,
each term in the user query written in natural language are compared with the
values of these annotations for finding the best possible match of the query
term with the resources mapped.

Table 2 Snippet of movie ontology

URI Type Annotation (Comments)

mv:MovieArtist Class Movie Artist, Actor, Hero,Heroine,Actress
mv:Manikarnika Instance Manikarnika, Jhansi ki Rani
mv:KanganaRanaut Instance KanganaRanaut, name of actress, heroine
mv:hasRuntime DataProperty ~ Runtime, Length of movie

mv:hasGenre DataProperty Genre, type, field

mv:directedBy ObjectProperty Director, directed by, direction given by
45 Integer 45, Forty Five

Hindi Literal Hindi Language, Regional Language

Efficient Retrieval of Data Using Semantic Search Engine 2297

It has been proven that “difference should play a less important role on
the computation of the overall similarity” [30]. Therefore each query term
is matched with the annotation values using similarity measure based on
commonality and contextuality (SMCC). The commonality technique is the
normalization of the common substring to the length of the input strings. In
this process, two matching strings are compared and the maximum common
string found is removed. This is a repeated process which executes till
minimum string length is not achieved. Length 2 is chosen as the mini-
mum string length. The length of the generated substrings is scaled to the
string length. The contextual similarity between the terms is calculated using
‘Word2vec’ [31] which creates the vector of the possible contextual terms
related to the given terms and similarity between them is calculated. Consider
‘v’ and ‘g’ as two strings, the similarity among them is described below in
Equation (1).

2% . len(commonstring)

Wi —
SMCC(p, q) = cx len(p) + len(q)

+ B x word2vec(p, q)
(1)

where @« + 8 = 1, a and B are the control values. If any one of the
commonality or the contextuality similarity measure has zero value, then
a=06=1.

Example lllustration

Suppose the two strings are director and directed, the lengthy common strings
is direct which is removed. The leftover string is or and ed, and in next
iteration there is no common string. The length of the total common substring
is 6 as direct is 6 character long.

The computed similarity value between these strings are 2 x 6/(8 4+ 8) =
0.75. And the similarity using word2vec is 0.72. Therefore, the total similar-
ity is (0.5 % 0.75 4+ 0.5 x 0.72 = 0.73). In another scenario, suppose the two
strings are movie and film, there is no similarity based on commonality but
the word2vector calculates (.71 as similarity value.

The query term is mapped to the URI resource of the domain ontology
if the similarity value computed is above threshold value, in this work, it has
been taken (>=0.7). The query terms mapped to the resources are further
taken into consideration for exploring the entire possible triple paths.

2298 U. Yadav and N. Duhan

Table 3 Snippet of triple path data structure

Relation Type Domain Range Triple Path

mv:directedBy Object Property mv:Movie mv:Person mv:Movie —
mv:directedBy —
mv:Person

mv:hasGenre Data Property =~ mv:Movie Rdfs:Literal mv:Movie —
mv:hasGenre —
Rdfs:Literal

mv:HasRuntime Data Property = mv:Movie Rdfs:Literal —mv:Movie —
mv:HasRuntime —
Rdfs:Literal

4.2 Weightage Assignment to Triples

Each triple consists of <S,P,O> subject, predicate and object. Therefore, a
data structure is created to define the triple path, with each row representing
different data or object property/relation value present in the domain ontol-
ogy. The data structure consists of the relation, its type, corresponding domain
and range and the triple path. The triple path composed of domain as its
subject, property/relation as its predicate and the range as its object. Table 3
shows the snippet of the data structure created.

After mapping user query terms to the corresponding resource URI using
indexing and the commonality similarity measure, the probability of each
triple path is calculated which provides the relevancy to the user query.

On the basis of generality [32], each triple path is assigned a weight
W,.. Higher is the generality of a triple path if there are more number of
connections between the edge and node (domain and range) of the path as
compared to triple paths that has less connection. The weight represents ratio
between the number of instance level triples connected with the property of
the path and the total number of triples having the same domain and range
irrespective of the property connecting them using Equation (2).

x(dom,r, range)

W, = 2

x(dom, x, range)

Where ‘x’ is the number of triple paths, ‘7’ is the property containing
the domain and range and ‘*’ is any property connecting the same domain
and range. The interpretation of the generality is the probability of the triple
path present in the user query. In construction of user query graph, the arc
is identified using the triple path whose weight is greater than the threshold

Efficient Retrieval of Data Using Semantic Search Engine 2299

value. To find the shortest path connecting the nodes, A* algorithm has been
used. Finally, it has been converted in the SPARQL query.

4.3 Conversion to SPARQL Query

In this process of conversion, it’s very crucial to deal with the interrog-
ative query terms and the functions terms identified in the Phase 1. The
interrogative terms in the query clearly reflects the user’s intension or aim.
In English language, the interrogatives are placed in the beginning of the
question. On the basis of the interrogatives dependency, they are divided
into two categories namely Dependent Interrogatives and the Independent
Interrogatives. The terms such as which or what are the types of dependent
interrogatives preceding the Class of resources. In such scenarios, the query
is rearranged, the ‘class’ resources are placed at the end of the query and
the dependent interrogative term are removed from it. For example, the user
query terms are what genre movie directed Kangana Ranaut, in this what is
removed and thus the query rearranged as movie directed Kangana Ranaut
genre.

The terms such as where, who, when or which that are not preceded by
class resources. All such interrogative terms are removed from query and
owl:Thing is added at the end as the mapped resources. For example the
user query is, Who is the manager of Royal club?, so in this query, who
is removed and the owl:Things is added at the end as mapped resources.
Although particular class could be referred, such as who, class is foaf: Person,
but owl:Things is the suitable option is the class representing people is not
known in any ontology. Therefore, interrogative describes the target of the
given user query and it is required while creating the basic structure of
SPARQL query.

The basic structure of SPARQL query contains two clauses namely select
and where. The target which needs to be searched is specified by the clause
select and corresponding to it, a variable was assigned. The triple set which
could restrict the target variable is specified in where clause. The shortest path
derived using the A* algorithm in previous section is directly translated into
the conditional triples.

After the basic structure of the query has been formed, the function terms
identified in pre-processing phase such as FILTER, LIMIT, OFFSET, ORDER
BY etc is added in the structure of the SPARQL query, if required. All the time
related constraints of the query could be processed using the SPARQL time
related functions such as days(), months() and year(). If there is requirement

2300 U. Yadav and N. Duhan

? target

Figure 2 Creation of query graph.

for number of result information, the COUNT function could be used in the
‘select’ clause. Other function terms such as LIMIT or ORDER BY could be
added in the SPARQL structure.

As shown in Figure 2, the conversion into a SPARQL query is repre-
sented. The example shows that the select clause uses the target variable
belonging to the class Genre. Also, the where clause represents the shortest
path which has been translated directly. The relationship among the nodes has
already been defined as per the unit path triples. For example, the property
p1 is binding the node x; with ?m; and has direction from m; fo x;. This
relationship could be described using triple (?my, p1, x1).

Finally conversion of query graph into its SPARQL query is represented
below:

SELECT ?genre

WHERE {

?my p1 X1
m, P2 Narget
m, rdf:type ny

MNarget rdf:type n3

}

Example lllustration

SELECT ?genre

WHERE {

movie ... directedby. ... KanganaRanaut
movie.. .. hasGenre.7genre

Tmovie rdf:type.. Movie

target. rdf:type...... Genre

}

Efficient Retrieval of Data Using Semantic Search Engine 2301

Finally, the query generated in SPARQL is processed by the Jena ARQ2
Engine. There is a Jena model uploaded corresponding to the domain ontol-
ogy, therefore the Jena ARQ2 Engine could access this model and execute
the query. The search results generated due to processing the SPARQL query
on the knowledge base are returned to the user. The algorithm for the Phase
1 is shown in Figure 3.

5 Phase 2: Semantic Search Engine

In this phase, if no search results are retrieved from the domain Knowledge
base related to user’s natural language query in phase 1, the query would be
directed to Phase 2 for further processing from the Web 2.0.

5.1 Retrieval from Web 2.0

The user query in natural language is redirected further to the Google search
engine page, if no result is returned from the developed domain KB. The top
k results are the only relevant results. So, any value of k could be assigned,
for this work, the value of k is taken as 10, as suggested that the search result
after 10th position gets less than 5% of traffic [33]. The top k search results
are crawled and parsed by the proposed system.

5.2 Text20nto

Text20nto [34], is an improvised version of Text20Onto, it is developed at the
AIFB Institute of University, Karlsruhe, Germany. Combination of various
machine learning techniques along with linguistic processing approaches
has been used by Text20nto. GATE framework was used for linguistic
processing by the Text2Onto. In Text2Onto, Linguistic processing starts with
tokenization followed by sentence splitting. The annotation set created, is
given as input to POS tagger which allocates to all tokens its suitable syn-
tactic categories. Lastly, lemmatizing is done using morphological analyzer
and stemming using stemmer. Learning process is then begun to recognize
the concepts and the relations based on linguistic and machine learning
heuristics.

Several measures have been adopted by Text2Onto to analyze the rel-
evance of a particular term with the corpus. Various algorithms have been
used by Text2Onto to calculate the measures such as entropy, Term Frequency
Inverse Document Frequency (TFIDF) and Relative Term Frequency (RTF).
Further, there are several algorithms for utilizing the hyponym of Word Net

2302 U. Yadav and N. Duhan

ALGORITHM: PHASE 1
Input: User Query in natural language (Unt)
Output: Result generated from SPARQL query.
begin
ValidURL = null;
P query= null;
STEP 1: Load user query Un.
STEP 2: For preprocessing, apply NLTK on Uni from python library and generate

Query Terms Qr = {t; , to, Lt}
Interrogative Terms It = {ii , iz, , iy}
Function Terms Fr= {fi, 5, , 2}

STEP 3: Generate indexes for URI from the domain ontology in the form
<URI, Type , Annotations>
STEP 4: Load Qr= {t; , t, , tx} and URI indexes for Term Ontology Mapping
STEP 5: // Calculating Term Ontology Mapping
For each URI (URIy), from URI set
For each query term p from Qr
For each word ¢ from annotations A(q)
R
Similarity (p.A(q)) = max (Xizo SMCC(®, @)y)
if (Similarity (p,A(q)) > Threshold (0.7))
ValidURL = ValidURL U URI,
endif
endfor
endfor
endfor
STEP 6: Load triple path store, St from domain ontology represented using data structure
<Relation , Type , Domain, Range, Triple Path>
STEP 7: // Finding Possible Triple Path
For each URI; in valid URI set, ValidURI
For each Triplet path Tjfrom Triple Store, St

If (URIipresent in Tj)
Possible Triple Path,
TP,= TP,UT;

Endif

Endfor
Endfor
STEP 8: // Assign Weightage
For each path r in Possible Triple Path, TP,
Calculate the weightage, I, for each path r
_ x(dom,r,range)
o x(dom,x,range)
If (W.> Threshold value)
User Query Path,
Pquery: PqueryUWr

7

Endif
Endfor
STEP 9: Apply A* algorithm to find the shortest path between the identified path’s nodes to form Query Graph
STEP 10: Conversion of Query Graph into SPARQL query syntax

STEP 11: SPARQL query processed by Jena ARQ2 Engine and result returned to the user.
end

Figure 3 Algorithm for phase 1 semantic search engine.

Efficient Retrieval of Data Using Semantic Search Engine 2303

structure, employing linguistic heuristics and matching Hearst patterns for
learning about relations. Text2Onto uses sources such as databases, dictio-
naries, free texts, legacy ontologies and semi-structured texts as its input.
This learning process outcome is the domain related ontology containing its
specific and not related concepts. The non-related concepts are removed to
fine tune the domain ontology. Therefore, only the domain related concepts
are present in the resultant ontology generated after the learning process. The
complete process is iterative and administered by the ontology engineers to
better refine and complete the ontology.

5.3 Generating RDF

The semantic web is all about storing the semantically structured data, and
the RDF triples are the strong metadata which represents the data on the
web. RDF snippets are suggested as the strong indicators for retrieving the
useful and required information form the web. The RDF structure indicates
the context of the content and helps in filtering the ambiguous web page based
on its context. The triple structure of RDF is <Subject-Predicate-Object>,
ie. <S,PO>.

In this process, Semantic crawl Agent has been used which take each
unique user query terms as an input to obtain its relevant RDF structure
<S,P,O> from the Semantic Wikis. The semantic crawl agent is considered
as intelligent software which is able to retrieve RDF entities from the Seman-
tic Wikis. Semantic wiki consists of the RDF triple structure which represents
the content on the pages. It is also the reflection of the real world Semantic
Web. RDF triples <S,P,O> are extracted from the Semantic Wiki with the
aim of fetching all the contexts of the user query.

The individual entities forming triples, may have high correlation with
many closely linked domain, but taking the triples together, means the co-
occurrence of the <S,P,O> pattern when searched, they reflects the clear
domain indication. Therefore, instead of querying individual entities, their
triples co-occurrence are considered for querying which represents the clear
domain which the user query belongs to. This eventually removes the ambigu-
ous results and the most related results retrieved by the user. The output
generated from this process is the set of <S,P,O> set according to the user

query.

2304 U. Yadav and N. Duhan

Table 4 Term frequency matrix (T Fow)

WebDocl WebDoc2 WebDoc3 WebDoc4d Web Doc y
Query T1 N11 N12 N13 N14 le
Query T2 N21 N22 N23 N24 Nzy
Query T3 N31 N32 N55 N34 N3y
Query Tx le Nxz ng Nx4 ny

5.4 Term Frequency Matrix

The general structure of the Term Frequency Matrix(TFgy) is shown in
Table 4. In Term Frequency matrix, each query term generated after pre-
processing has been evaluated for its frequency in every web document page
of the corpus. Many traditional approaches formulate the Term Frequency
Matrix using query terms for the purpose of Information Retrieval from the
web pages. However, in this work, Term Frequency matrix along with the Co-
occurrence matrix created using RDF triple <S,P,O> has been used which
restricts its co-occurrence in number of web pages. The matrix in Table 4
represents the ‘x’ number of unique user query terms on the one rows and
‘y’ number of web pages along the columns from the corpus. The cell value
‘Nyy~ represents the frequency of query term ‘X’ in web document ‘y’.

5.5 Co-occurrence Matrix

The general structure of Co-occurrence Matrix (COgy) using RDF triple
<S,P,O> is depicted in Table 5 which is the novel approach of the proposed
work. The matrix represents the frequency of co-occurrence of the triple i.e.
the occurrence of the <S-P-O> together in each web page from the corpus.
This process removes the terms that are irrelevant to the domain represented
by the user query due to restricted co-occurrence of the RDF triples. This
strategy of co-occurrence of the Subject-Predicate-Object is formulated due
to the triple structure of the RDF schema. The co-occurrence of the RDF
triple acts as a strong indicator and thus contributes indirectly in handling
context irrelevance and reduces search results ambiguity. The co-occurrence
matrix in Table 5 shows the ‘x’ number of RDF triple set generated by the
semantic crawl agent represented on the one rows and ‘y’ number of web
pages represented along the columns from the web corpus. The cell value
‘Nyy~ represents the frequency of RDF triple <Sx,Px,Qx> co-occurrence in
web document ‘y’.

Efficient Retrieval of Data Using Semantic Search Engine 2305

Table 5 Co-occurrence matrix (COgrw)

WebDoc1l WebDoc2 WebDoc3 WebDoc4d Web Doc y
<S1-P1-O1> CN11 CNi2 CNis CNiyi4 ... Cle
<S2-P2-02> CN2; CNoo CNos CNoy ..., CNzy
<S2-P2-02> CN3; CN3sso CN3s CNs3gs ... CNgy
<Sx-Px-Ox> CNy1 CNy2 CNy3 CNysa CNXy

Like in traditional schemes, relying on term frequency or on Inverse Doc-
ument Frequency, the combination of the co-occurrence matrix using RDF
triple and ferm frequency matrix has been included in this work. Therefore,
it resulted into reducing the irrelevancy in such semantic environment and
further helps in decreasing the computational complexity. Thereafter, both the
matrix, i.e. Term Frequency and the co-occurrence are subjected to Singular
Value Decomposition, which could further condense the matrices into Query
Term Priority Vector (PVqr). The Query Term Priority Vector represents the
terms that are most relevant to the user query.

5.6 Singular Value Decomposition

Singular Value Decomposition has been applied to the Term Frequency
Matrix along with the Co-occurrence Matrix of RDF triple. This technique
further reduces both the matrix into Query Term Priority Vector. The gener-
ated Query Term Priority Vector has been linked to the most relevant query
terms. The algorithm depicted in Figure 4 considers RDF triple generated
using semantic crawl agent and the web pages corpus as an input and generate
the Query Term Priority Vector as an output.

5.7 Search Result Retrieval

The reason behind enriching the top search results to the users through
this approach is that it does not take into account blindly the frequency of
occurrence of user query term in the web documents. However, the knowl-
edge hidden in the schema level has been used for the solution and it is
retrieved from the metadata structure linked to it. The derivation of the co-
occurrence matrix using RDF structure <S,P,O> act as a strong indicator for
the query term as it has been obtained from the Semantic Wiki knowledge
base.

2306 U. Yadav and N. Duhan

Moreover, the focus is on formulating the Query Term Prioritization
Vector based on the convergence of co-occurrence RDF triple matrix and
the Term Frequency Matrix using Singular Value Decomposition. The query
term frequencies {N11,Ni2,Ni3,... Ny} of the Term Frequency Matrix
are shown in Table 4. However the frequencies of Subject-Predicate-Object
co-occurrence {CN7;,CN12,CNy3, ... ,CNyy } are depicted in Table 5. It is
obvious that the frequency of co-occurrence ‘CX’ is very less as compared to
the query term frequency ‘X’, i.e. CNy, <Nyy. Therefore, it removes the less
related web pages and thus improves the relevancy while obtaining Query
Term Prioritization Vector which considers the incidence between the co-
occurrence RDF matrix and the Term Frequency Matrix. Moreover, as the
co-occurrence matrix provides strong indication while retrieving document
from the semantic web, it overtakes other traditional approaches such as Page
Rank, TF-IDF etc.

The Query Term Priority Vector generated provides the highly relevant
query terms. The web document containing <S,P,O> RDF triple belonging
to the highly relevant terms are retrieved and shown to the user in the order
of highest frequency. Therefore, the all the web documents which contain
relevant query term triples and have frequency greater than the threshold are
presented to the user. The detailed algorithm for Phase 2 semantic search
engine is described in Figure 4.

ALGORITHM: PHASE 2
Input: Preprocessed User Query Terms (Uqr)
Output: Relevant Web Pages URL.
begin
STEP 1: User query redirected on Web 2.0
STEP 2: Process Top k search results and placed in document corpus Dx
STEP 3: Semantically structured web document corpus, Dg= null
for each document diDx
Apply Text20Onto algorithm
Dss=DgU d;
endfor
STEP 4: Extract RDF triplets from Semantic Wiki using Uqr
STEP 5: Load each RDF triplet from Triplet Store Tr
STEP 6: for each triplet in Tr
LookUp web document in Dgand generate
a) Term Frequency Matrix (TFow) depicting the occurrence of query terms in Dy,
b) Co-occurrence Matrix (COrw) depicting the occurrence of RDF triplet Tr in Dys.
STEP 7: Apply Singular Value decomposition on above matrix.
STEP 8: Formulate the Query Term Prioritization Vector (PVqr) depicting highly related terms.
STEP 9: Web document URLSs containing highly relevant terms <S,P,O> triplet are returned to the user.
end

Figure 4 Algorithm for phase 2 of semantic search engine.

Efficient Retrieval of Data Using Semantic Search Engine 2307

6 Experimental Evaluation

In this section, the detailed experimental evaluation has been done to com-
pare the proposed approach of semantic search engine with the existing
approaches. The proposed system prototype was implemented in using Java
8, under 4 GHz processor, 8GB RAM and 64-bit Microsoft Windows 2010.
Various libraries and plug-ins has been used such as Jena for accessing
ontology, Text20nto for converting web documents in structured format,
AgentSpeak extension Jason for semantic crawl agent and Lucene library
for indexing the resources of the domain ontology. Ontology was created
for the Movie domain and Books domain using our other research work,
“EasyOnto”, a platform for developing domain ontology. The Movie and
Book domain ontology respectively consists of 35/28 classes, 44/42 data
properties, 53/50 object properties and 633/549 individuals, comprising total
of 3,933/2845 axioms. The performance metrics parameters are represented
in Equations (3)—(7).

Number of documents retrieved and relevant

3)

Precision =
Number of documents retrieved

Number of documents retrieved and relevant

Recall = “4)

Number of documents relevant

2 x Precision * Recall
F-measure = — (5
Precision + Recall

Precisi Recall
Accuracy — reczs10n2—|- eca ©)

FP
FDR (False Discovery Rate) = FPL TP ()
where FP is False Positive and TP is True Positive.

We had done interaction with 178 people and 128 people and requested
them to provide the natural language query for the Movie domain and Books
domain respectively. All these people were unfamiliar of the term ontol-
ogy, semantic web and SPARQL. 135 queries and 102 queries in Movie
and Book domain respectively had been collected and few people were
reluctant in responding properly. Three domain experts were given task for
manually evaluating the system. The experts analyzed the feasible answers
that should be generated from the user queries; also, they analyzed the
correctness of the SPARQL query generated by the proposed system. To

2308 U. Yadav and N. Duhan

measure the performance metrics such as precision, recall, f-measure etc,
manual evaluation was necessary.

The experiment was done based on various criteria and generated
results are analyzed with other existing semantic web or Knowledge base
search approaches such as OTNLS [28] , SQG_NLS [11], SWQ_RDF [22],
UPSIR [18], IWSF [27].

Experiment 1 (Performance Metrics): The experiment to evaluate the perfor-
mance of proposed system with the other related approaches was conducted.
The existing approaches such as OTNLS, SQG_RDF, SWQ_RDF, UPSIR and
IWSF were taken into consideration and evaluated for the same datasets as
of the proposed approach for the same 132 queries. It is clearly depicted
in the Figure 5(a-b) that the proposed approach outstands in comparison
with other semantic based search techniques. There are several reasons for
such high value performance of the proposed approach. The incorporation of
the efficient semantic similarity measure and the assigning weightage to the
possible query path helps in creation of precise SPARQL query. In scenarios
where desired information is not available in Knowledge base, alternative
solution to handle use query is presented. Also, the idea of using the co-
occurrence matrix <Subject, Predicate, Object> depicts the relevancy of user
query with the web pages.

SWQ_RDF shows the lowest performance measure with an avergae
74% precision, 80% recall, 76.9% f-measure and 77% accuracy. Proposed
approach shows improvement in precision with 16.48%, 7.69%, 18.68%,
12.09 and 6.59% in comparison OTNLS, SQG_NLS, SWQ_RDF, UPSIR,
IWSF respectively. On an average, the performance improvement shown by

100

9

60 'i " 'i "

Precision Recall Fmeasure Accuracy

[o]
o o

~
o

Performance Percentage

Performance Metrics
mOTNLS mSQG_NLS SWQ_RDF mUPSIR mIWSF ™ Proposed Approach

Figure 5(a) Movie Domain: Proposed Approach Performance Metrics comparison.

Efficient Retrieval of Data Using Semantic Search Engine 2309

100

o

9
8

60 'i " " 'i

o

7

o

Performance Percentage

Precision Recall Fmeasure Accuracy

Performance Metrics

B OTNLS mSQG_NLS SWQ_RDF m®UPSIR mIWSF ™ Proposed Approach

Figure 5(b) Books Domain: Proposed Approach Performance Metrics comparison.

proposed method for precision, recall, f-measure and accuracy are 12.31%,
12.29%, 13.76, 13.68% respectively.

Experiment 2 (False Discovery Rate): False Discovery Rate indicates the
number of the false or incorrect search results retrieved by the web search
engine for a particular user query. The importance of calculating the FDR is
to analyse the percentage of the search results which are excluded by the user
for a particular search query. Although, there are various statistical tools for
FDR computation, but the technique mentioned in Equation (7) is the easiest
method for calculating FDR value in respect to search engines. The quality of
search engines is considered as high, if the value of FDR is low. This implies
that the search engine is able to retrieve the most appropriate search results
for a specific query.

It can be observed from Figure 6(a-b), that the proposed system has
lowest value of FDR as compared with other systems. SWQ_RDF shows the
highest value of FDR as 0.33. The proposed approach is better than OTNLS,
SQG_NLS, SWQ_RDF, UPSIR and IWSF showing an average of 31.58%,
21.05%, 73.68%, 47.37%, 15.79% reduction in FDR value. The lowest value
of FDR reflects that the proposed system provides very less inappropriate and
rejected recommendations, thereby it is proven to be an appropriate semantic
search engine. RDF triple co-occurrence matrix and the efficient semantic
similarity, ISI are the reasons for such low value of FDR.

2310 U. Yadav and N. Duhan

0.4
0.3
0.2
0.1

0

False Discovery rate

Semantic Search Strategies

HOTNLS ®mSQG_NLS mSWQ_RDF mUPSIR mIWSF ®Proposed

Figure 6(a) Movie Domain: False Discovery Rate comparison.

0.4

0.3

0.2

0.1

False Discovery rate

Semantic Search Strategies

EOTNLS mSQG_NLS mSWQ_RDF mUPSIR EIWSF HProposed

Figure 6(b) Books Domain: False Discovery Rate comparison.

Experiment 3 (SMCC Performance Metrics): The evaluation of the pro-
posed framework effectiveness and the appropriateness of the approaches
incorporated had been done and its relative performance in context of the
semantic similarity measure chosen is depicted in Figure 7(a—b). The tradi-
tional measures of similarity such as Cosine similarity, Jaccard similarity are
replaced with the proposed similarity measure SMCC. It is evident from the
experiment that the high performance was depicted by the proposed SMCC
measure as compared to the other similarity measures.

It is observed that the adaptation of Cosine Similarity yields an average of
85% precision, 86% recall, 85.5% F-measure and 85.5% accuracy. However,
using the Jaccard Similarity measures shows improvements in the perfor-
mance matrix as compare with the Cosine Similarity. The average values for

Efficient Retrieval of Data Using Semantic Search Engine 2311

100

90
80
70

Precision Recall Fmeasure Accuracy

Performance Percentage

Performance Metrics
M Cosine Similarity mJaccard Similarity = SMCC (Proposed Similarity Measure)

Figure 7(a) Movie domain: SMCC performance metrics.

100

90
80
70

Precision Recall Fmeasure Accuracy

Performance Percentage

Performance Metrics

M Cosine Similarity M Jaccard Similarity B SMCC (Proposed Similarity Measure)

Figure 7(b) Books domain: SMCC performance metrics.

precision, recall, F-measure and accuracy are 86%, 88%, 87%, 87% respec-
tively. The proposed SMCC similarity measure outstands in performance
as it is hybrid and efficient for a semantic space. There is an average 6%
increase in precision 6.5% in recall, 6.2% in F-measure and 6.3% in accuracy
as compared to Cosine and Jaccard similarity.

2312 U. Yadav and N. Duhan

o
o O O

o

Precision Recall Fmeasure Accuracy

U o N 0 O
o

Performance Percentage
o

Performance Metrics
B TF_IDF M RDF Triplet Co-Occurrence

Figure 8(a) Movie domain: performance metrics using Co-occurrence Matrix.

100

90
80
70
60
50

Precision Recall Fmeasure Accuracy

Performance Percentage

Performance Metrics

B TF_IDF mRDF Triplet Co-Occurrence

Figure 8(b) Books domain: performance metrics using Co-occurrence Matrix.

Experiment 4 (Co-occurrence Matrix Performance Metrics): From Fig-
ure 8(a-b), it is proven that the including the RDF triple Co-occurrence
matrix in this work has greatly contributed in increasing the efficiency as
compared to classical TF-IDF. In this experiment, the co-occurrence matrix
has been replaced by the TF-IDF matrix to compare the statistics, it has
been observed using co-occurrence matrix, the Precision is increased by an
average of 10.9% and recall increased by 8.3%. If TF-IDF has been used, it
would reduce the F-measure from 94% to 84.9% and decrease the accuracy
by 9.6%. The reason behind these numbers is quite clear as this approach
for semantic search depends on the knowledge inferred from the RDF triple.
TF-IDF could be appropriate while query the traditional web, as it depends
on the number of occurrence of the query term in the web pages, unlike
Semantic Web. The co-occurrence matrix depends upon the co-occurrence

Efficient Retrieval of Data Using Semantic Search Engine 2313

of RDF triple which represents the knowledge, instead of depending merely
on the occurrence of query terms in web documents, therefore it increases the
overall performance in comparison to the TF-IDF.

7 Conclusion

To overcome the limitation of web 2.0 and the challenge faced by common
user in retrieving the information from the domain specific ontology in this
novel work, an efficient semantic search engine has been proposed. The
SPARQL query has been automatically generated according to the user query
submitted in natural language. Also, assigning the weightage score to each
triple path and finding the possible triple path as per query also reduces the
ambiguity. The proposed semantic similarity measure (SMCC), increases the
effectiveness and the appropriateness of the approach. Further, redirecting
the user query to Web 2.0, greatly increases the performance measures. The
proposed approach increases the overall precision, recall and f-measure by
9.74%, 9.02%, 9.88%, 9.83% respectively. The formulation of Term Fre-
quency matrix and the Co-occurrence matrix improves the context relevance
and reduces the false discovery by 37.89%. In future work, this technique
could be extended for cross-domain ontology and various other knowledge
bases reflecting the world such as DBpedia could be explored.

References

[1] The Linked Open Data Cloud, https://lod-cloud.net/

[2] Vargas, H., Buil-Aranda, C., Hogan, A., Lépez, C.: RDF Explorer: A
Visual SPARQL Query Builder. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). pp. 647-663. Springer (2019)

[3] Bernstein, A., Kaufmann, E., Kaiser, C., Kiefer, C.: Ginseng: A Guided
Input Natural Language Search Engine for Querying Ontologies. Jena
User Conf. Bristol, UK. (2006)

[4] Kaufmann, E., Bernstein, A., Fischer, L.: NLP-Reduce: A “naivenaive”
but Domain-independent Natural Language Interface for Querying
Ontologies. 4th Eur. Semant. Web Conf. (ESWC). (2007)

[5] Khan, A., Ibrahim, I., Uddin, M.I., Zubair, M., Ahmad, S., Al Firdausi,
M.D., Zaindin, M.: Machine Learning Approach for Answer Detection

https://lod-cloud.net/

2314 U. Yadav and N. Duhan

in Discussion Forums: An Application of Big Data Analytics. Sci.
Program. 2020, (2020). https://doi.org/10.1155/2020/4621196

[6] Han, L., Finin, T., Joshi, A.: GoRelations: An intuitive query system
for DBpedia. In: Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). pp. 334-341. Springer, Berlin, Heidelberg (2012).

[7] Damljanovic, D., Agatonovic, M., Cunningham, H.: Natural language
interfaces to ontologies: Combining syntactic analysis and ontology-
based lookup through the user interaction. In: Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics). pp. 106-120. Springer,
Berlin, Heidelberg (2010).

[8] Kasneci, G., Suchanek, EM., Ifrim, G., Ramanath, M., Weikum, G.:
NAGA: Searching and ranking knowledge. In: Proceedings - Interna-
tional Conference on Data Engineering. pp. 953-962 (2008).

[9] Styperek, A., Ciesielczyk, M., Szwabe, A.: SPARQL - Compliant
semantic search engine with an intuitive user interface. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics). pp. 201-210.
Springer Verlag (2014).

[10] Geng, Q., Deng, S., Jia, D., Jin, J.: Cross-domain ontology construction
and alignment from online customer product reviews. Inf. Sci. (Ny). 531,
47-67 (2020). https://doi.org/10.1016/j.ins.2020.03.058

[11] Song, S., Huang, W., Sun, Y.: Semantic query graph based SPARQL
generation from natural language questions. Cluster Comput. (2017).
https://doi.org/10.1007/s10586-017-1332-3

[12] Heibi, I., Peroni, S., Shotton, D.: Enabling text search on SPARQL
endpoints through OSCAR. Data Sci. 2, 205-227 (2019). https://doi.
org/10.3233/ds-190016

[13] Arenas, M., Grau, B.C., Kharlamov, E., Marciuska, S., Zheleznyakov,
D.: Faceted search over ontology-enhanced RDF data. CIKM 2014 —
Proc. 2014 ACM Int. Conf. Inf. Knowl. Manag. 939-948 (2014). https:
//doi.org/10.1145/2661829.2662027

[14] Wang, X., Yang, L., Zhu, Y., Zhan, H., Jin, Y.: Querying Knowledge
Graphs with Natural Languages. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). pp. 30—46. Springer (2019).

[15] Wang, C., Xiong, M., Zhou, Q., Yu, Y.: PANTO: A portable natural
language interface to ontologies. In: Lecture Notes in Computer Science

https://doi.org/10.1155/2020/4621196
https://doi.org/10.1016/j.ins.2020.03.058
https://doi.org/10.1007/s10586-017-1332-3
https://doi.org/10.3233/ds-190016
https://doi.org/10.3233/ds-190016
https://doi.org/10.1145/2661829.2662027
https://doi.org/10.1145/2661829.2662027

Efficient Retrieval of Data Using Semantic Search Engine 2315

(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). pp. 473—487. Springer Verlag (2007).

[16] Yahya, M., Berberich, K., Elbassuoni, S., Ramanath, M., Tresp, V.,
Weikum, G.: Natural Language Questions for the Web of Data. Asso-
ciation for Computational Linguistics (2012).

[17] Ferré, S.: SQUALL: A controlled natural language as expressive as
SPARQL 1.1. In: Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). pp. 114-125 (2013).

[18] John, P.M., Arockiasamy, S., Thangiah, P.R.J.: A personalised user
preference and feature based semantic information retrieval system in
semantic web search. Int. J. Grid Util. Comput. 9, 256-267 (2018).
https://doi.org/10.1504/1IJGUC.2018.093987

[19] Ramzan, B., Bajwa, L.S., Jamil, N., Amin, R.U., Ramzan, S., Mirza, F,,
Sarwar, N.: An Intelligent Data Analysis for Recommendation Systems
Using Machine Learning. Sci. Program. 2019, (2019). https://doi.org/10
.1155/2019/5941096

[20] Ramesh, C., Rao, K.V.C., Govardhan, A.: Ontology based web usage
mining model. In: Proceedings of the International Conference on
Inventive Communication and Computational Technologies, ICICCT
2017. pp. 356-362. Institute of Electrical and Electronics Engineers Inc.
(2017).

[21] Yasodha, S., Dhenakaran, S.S.: ONTOPARK: Ontology based page
ranking framework using resource description framework. J. Comput.
Sci. 10, 1776-1781 (2014). https://doi.org/10.3844/jcssp.2014.1776.17
81

[22] Chooralil, V.S., Gopinathan, E.: A Semantic Web query Optimiza-
tion Using Resource Description Framework. In: Procedia Computer
Science. pp. 723-732. Elsevier B.V. (2015).

[23] Guha, R. V., Brickley, D., Macbeth, S.: Schemaorg: Evolution of struc-
tured data on the web. Commun. ACM. 59, 44-51 (2016). https://doi.or
g/10.1145/2844544

[24] Introducing the Knowledge Graph: things, not strings, https://blog.goo
gle/products/search/introducing-knowledge- graph-things-not/

[25] 11, S., Pan, S., Cambria, E., Member, S., Marttinen, P., Yu, P.S., Fellow,
L.: A Survey on Knowledge Graphs: Representation, Acquisition and
Applications. (2021).

https://doi.org/10.1504/IJGUC.2018.093987
https://doi.org/10.1155/2019/5941096
https://doi.org/10.1155/2019/5941096
https://doi.org/10.3844/jcssp.2014.1776.1781
https://doi.org/10.3844/jcssp.2014.1776.1781
https://doi.org/10.1145/2844544
https://doi.org/10.1145/2844544
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/

2316 U. Yadav and N. Duhan

[26] Bansal, R., Jyoti, Bhatia, K.K.: Ontology-based ranking in search
engine. In: Advances in Intelligent Systems and Computing. pp. 97-109.
Springer Verlag (2018).

[27] Ahamed, B.B., Ramkumar, T.: An intelligent web search framework for
performing efficient retrieval of data. Comput. Electr. Eng. 56, 289-299
(2016). https://doi.org/10.1016/j.compeleceng.2016.09.033

[28] Sander, M., Waltinger, U., Roshchin, M., Runkler, T.: Ontology-Based
Translation of Natural Language Queries to SPARQL. AAAI Fall
Symposia (2014).

[29] Natural Language Toolkit — NLTK 3.6.2 documentation, https://www.nl
tk.org/

[30] Stoilos, G., Stamou, G., Kollias, S.: A string metric for ontology align-
ment. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics). 3729 LNCS, 624-637 (2005). https:
//doi.org/10.1007/11574620_45

[31] Word embedding demo, http://bionlp-www.utu.fi/wv_demo/

[32] Lee, M., Kim, W., Park, S.: Searching and ranking method of relevant
resources by user intention on the Semantic Web. Expert Syst. Appl. 39,
4111-4121 (2012). https://doi.org/10.1016/j.eswa.2011.09.127

[33] No. 1 Position in Google Gets 33% of Search Traffic [Study], https:
/Iwww.searchenginewatch.com/2013/06/20/no- 1-position-in-google-g
ets-33-of-search-traffic-study

[34] Cimiano, P., Volker, J.: Text20nto A framework for ontology learn-
ing and data-driven change discovery. In: Lecture Notes in Computer
Science. pp. 227-238. Springer Verlag (2005).

Biographies

-

Usha Yadav is presently working as an Assistant Professor in National
Institute of Fashion Technology, Jodhpur, India and has more than 7 years
of working experience. She is also pursuing Ph.D. from J. C. Bose University

https://doi.org/10.1016/j.compeleceng.2016.09.033
https://www.nltk.org/
https://www.nltk.org/
https://doi.org/10.1007/11574620_45
https://doi.org/10.1007/11574620_45
http://bionlp-www.utu.fi/wv_demo/
https://doi.org/10.1016/j.eswa.2011.09.127
https://www.searchenginewatch.com/2013/06/20/no-1-position-in-google-gets-33-of-search-traffic-study
https://www.searchenginewatch.com/2013/06/20/no-1-position-in-google-gets-33-of-search-traffic-study
https://www.searchenginewatch.com/2013/06/20/no-1-position-in-google-gets-33-of-search-traffic-study

Efficient Retrieval of Data Using Semantic Search Engine 2317

of Science and Technology, YMCA, Faridabad, India. She received her B.E.
in Information Technology in 2009 and M.Tech. in Computer Engineering in
2011. She has published more than 11 research papers in reputed journals
and conferences indexed with SCIE, SCOPUS etc. Her areas of interest
are semantic web, information retrieval, AR VR, Artificial Intelligence and
Internet of Things.

Neelam Duhan has an academic work experience of 17 years and currently
working as an Associate Professor in Computer Engineering Department
at J. C. Bose University of Science and Technology, YMCA, Faridabad.
She received her B.Tech. in Computer Science and Engineering, M. Tech. in
Computer Engineering and Ph.D. in Computer Engineering in 2002, 2005 and
2011 respectively. She has successfully guided three Ph.Ds and is currently
guiding four Ph.D. scholars in the areas of machine learning, semantic web
and social networks. She has guided more than 30 M.Tech dissertations.
She has published more than 75 research papers in reputed journals and
conferences. Her areas of interest are databases, data analytics, information
retrieval and web mining.

	Introduction
	Related Work
	Multiphase Semantic Search Engine Framework
	Phase 1: Semantic Search Engine
	Term Ontology Mapping
	Weightage Assignment to Triples
	Conversion to SPARQL Query

	Phase 2: Semantic Search Engine
	Retrieval from Web 2.0
	Text2Onto
	Generating RDF
	Term Frequency Matrix
	Co-occurrence Matrix
	Singular Value Decomposition
	Search Result Retrieval

	Experimental Evaluation
	Conclusion

