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Abstract

Public transit operators often publish their open data in a data dump, but
developers with limited computational resources may not have the means
to process all this data efficiently. In our prior work we have shown that
geospatially partitioning an operator’s network can improve query times
for client-side route planning applications by a factor of 2.4. However, it
remains unclear whether this works for all network types, or other kinds of
applications. To answer these questions, we must evaluate the same method
on more networks and analyze the effect of geospatial partitioning on each
network separately. In this paper we process three networks in Belgium: (i)
the national railways, (ii) the regional operator in Flanders, and (iii) the net-
work of the city of Brussels, using both real and artificially generated query
sets. Our findings show that on the regional network, we can make query
processing 4 times more efficient, but we could not improve the performance
over the city network by more than 12%. Both the network’s topography, and
to a lesser extent how users interact with the network, determine how suitable
the network is for partitioning. Thus, we come to a negative answer to our
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question: our method does not work equally well for all networks. Moreover,
since the network’s topography is the main determining factor, we expect this
finding to apply to other graph-based geospatial data, as well as other Link
Traversal-based applications.

Keywords: Linked data, open data, mobility, maintainability, web API
engineering.

1 Introduction

Open Data can lower the barrier to entry for new players to enter existing
markets, leading to more available applications for end-users. A direct result
of this is that niche markets can be serviced, and Return of Investments are
higher, since initial investments are relatively low. The OpenStreetMap data
for example can be used to build very specific route planning applications,
such as a cycling route planning for the city of Brussels1 or a route planner
for motorcyclists that want scenic and curvy roads.2 Public transit data is
a noteworthy success story of Open Data, in large part due to the General
Transit Feed Specification (GTFS): the preferred data format of the Google
Transit APIs, which many people interact with through Google Maps. This is
an example of a rising tide lifting all boats; most operators just want to get
their data into the Google APIs, but the same data can be used by others for
any use case.

However, these GTFS datasets are not without their faults. While a GTFS
feed of London’s public transit network is only 100 MB large after gzip
compression, processing this data can require over 26 GB of memory.3

Such memory requirements make the data unwieldy to use in common
environments such as entry-level cloud computing services. Moreover, not
all operators respect the standard data model, and many have started pro-
viding non-standard data files. The Belgian railway operator for instance
includes a file named stop times overrides.txt,4 but the meaning of this file is
undocumented. Other operators do document their extensions,5 but all these
extensions have fragmented the ecosystem at the cost of the data users.

1https://routeplanner.bike.brussels
2https://kurviger.de/en
3https://github.com/opentripplanner/OpenTripPlanner/issues/2063
4https://data.gov.be/nl/node/62230
5https://gtfs.org/extensions/

https://routeplanner.bike.brussels
https://kurviger.de/en
https://github.com/opentripplanner/OpenTripPlanner/issues/2063
https://data.gov.be/nl/node/62230
https://gtfs.org/extensions/
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Publishers of Open Data often follow the Linked Data principles [1], as
the latter’s usage of the Resource Description Framework (RDF) can be a
partial solution to the data interoperability problem. One of the principles of
Linked Data is that URIs are used to identify resources, and these resources
can then be accessed through the Web for more information [1]. People and
autonomous agents alike, can keep following such links to get at least a basic
understanding of the data’s semantics. In other words, Linked Data does not
solve the interoperability problem; but it brings the problem into focus and
presents data publishers and consumers with a common framework to work
with heterogeneous data.

The Linked Connections specification [2] proposes a Linked Data alter-
native to GTFS data dumps, in which the public transit connections are
published as a paginated collection, and each page contains data from a
certain time interval. Applications that need only need data from a specific
interval to answer a query can thus be more selective in the data they have
to process. In our own prior work [3], we explored the option of fragmenting
this geospatially, by the stops’ physical location as well as the connections’
departure time. We have shown that this can improve the query time per-
formance of client-side route planning applications by a factor of 2.4, and
that the method used to fragment the network itself is less important than the
fragmentation’s granularity. However, it remained to be investigated what this
means for other public transit networks, or other kinds of geospatial data in
general. In this paper we aim to provide more general insights into why and
how geospatial partitioning works and discuss what this entails for other use
cases and other kinds of data.

2 Related Work

We identify four domains of related work which we discuss in the following
subsections: (i) research in the field of Linked Data and how the Semantic
Web has focused on making data reusable and interoperable, (ii) Linked
Traversal Querying and how it uses Linked Data to solve queries (iii) con-
temporary mobility data specifications, and (iv) how public transit networks
are currently being partitioned and for what purpose.

Throughout this paper we use three similar, but different, terms: cluster,
partition, and fragment. When operating on a discrete set of objects, the dif-
ference between clustering and partitioning is one of perspective; clustering
combines similar items while partitioning starts from the set of all items –
so that clustering individual public transit stops partitions the network itself.
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A planar space, such as the world, can also be partitioned, in which case
the partitions are often referred to as cells or regions. A Fragment on the
other hand stems from the field of Linked Data and refers to Linked Data
Fragments, which are resources on the Web.

2.1 Linked Data Fragments

To facilitate interoperability with other datasets, Open Data is often Linked
Data as well. Tim Berners-Lee outlined the four principles of Linked
Data [1]: (i) use URIs as names for things, (ii) use HTTP URIs so that people
can look up those names, (iii) when someone looks up a URI, provide useful
information using standards such as RDF [4], and (iv) include links to other
URIs so that they can discover more things. In the conceptual framework
of Linked Data Fragments [5], this is just one interface to access Linked
Data. Data can also be published as a large data dump, or through a querying
API on top of the raw data. What all these interfaces have in common is
that they expose a fragment of the entire dataset, so that they can all be
considered Linked Data Fragments, with data dumps and query APIs on the
two extremes on the Linked Data Fragments axis [4]. This axis illustrates the
trade-offs between different methods of publishing Linked Data on the Web.
Data dumps put the data processing burden on the client’s side but allow the
most flexibility for clients. Query APIs on the other hand put the processing
burden on the server side but always restrict, in some way, the way the data
can be used.

All Linked Data Fragments contain a set of controls: functions which
can be used to discover other fragments. In the case of a data dump this set
of controls will often be empty as there are no other fragments, whereas
the set of controls of a query API is the API endpoint itself. Fragments
elsewhere on the axis often contain hypermedia controls, which describe how,
as well as for what purpose, other fragments can be used. Vocabularies such
as Hydra [6] and TREE6 can be used to describe these controls as RDF triples.
The former of which contains constructs such as paginated collections, access
controls for resources, and URI templating. The TREE vocabulary focuses on
paginated collections by adding qualifiers such as numeric values to the links.
These qualifiers can be used to describe ordered collections, or searchable
indexes.

6https://treecg.github.io/specification/

https://treecg.github.io/specification/
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2.2 Link Traversal Querying

Data found on the Web is traditionally replicated into centralized databases,
so that the data can be indexed prior to opening it up to querying. Both the
indices and the replicated data need to be kept in sync with the original data
set, which can make such systems burdensome to maintain. Link Traversal
Querying [7] is an alternative approach, where the query processor operators
under the “follow-your-nose” principle of Linked Data. These processors
traditionally operate without prior knowledge of the data [8]: they only know
what they discover through following links on the Web. In other words, there
is no replicated data set to keep in sync – all information is ephemeral.
Query performance is in large part determined by the number of links that
are traversed to come to an answer [9], making link prioritization a crucial
feature of these query processors. We will use an instance of a Link Travel
Query Processor later in this paper, to evaluate the behavior of the various
public transit networks.

2.3 Mobility Data

The General Transit Feed Specification (GTFS) is, at the time of writing, the
de facto standard for publishing public transit schedules. A single feed is a
combination of 6 to 13 CSV files, compressed into a single ZIP archive. Its
core data elements are stops, routes, trips, and stop times. Stops are places
where vehicles pick up or drop off riders, routes are two or more stops that
form a public transit line, trips correspond to a physical vehicle that follows
a route during a specific period, and stop times indicate when a trip passes by
a stop. This data is not only useful for route planning applications, but other
applications also include embedding timetables in mobile applications, data
visualization; accessibility analysis, and planning analysis [5].

The Linked Connections specification [2] defines a way to publish transit
data that falls somewhere in the middle of the Linked Data Fragments axis.
Connections are defined as vehicles going from one stop to another without an
intermediate halt. These connections are then ordered by departure time, frag-
mented into documents, and are then published on the Web. Data consumers
can use the semantics embedded in each fragment to solve their own queries.
This, combined with the fact that each fragment is easily cacheable, make
Linked Connections servers more scalable than full-fledged route planning
services. Linked Connections fragments contain two kinds of hypermedia
controls: a search template is defined for the collection as a whole, and every
fragment links to the next and previous fragments. The search templates can
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be used by clients for accessing a specific point in time directly, while the
pagination links are used for traversing a time interval.

2.4 Partitioning Public Transit Networks

Researchers in the field of route planning have noted that methods based on
partitioning have been successful for accelerating queries on road networks,
but that adapting those methods to public transit networks is hard [6, 7]. One
of the main differences is that road networks are topological networks. Public
transit networks on the other hand are also inherently time dependent. On top
of that, it is not even clear what exactly needs to be partitioned as different
algorithms can require wildly different data models [8].

The Scalable Transfer Patterns [9] algorithm aims to reduce preprocessing
times of the original Transfer Patterns [10] algorithm. The authors compared
4 different techniques to partition stops into clusters of equal size: (1) k-means
using the stops’ geographical locations, (2) a merge-based clustering with a
utility function that punishes big partitions and rewards pairs of partitions
with high edge weights between them, (3) a general-purpose graph clustering
algorithm called METIS [11], and (4) a road partitioning method called
PUNCH [12]. They found that k-means, despite being completely oblivious
to the network structure outperformed both METIS and PUNCH while their
own merge-based approach performed the best of all. HypRAPTOR [8] is
another route planning algorithm that uses METIS to partition the network
graph, but which uses clusters of trips instead of stops.

2.5 Prior Work

In our own prior work [3] we investigated what data publishers can do
to make their open transit data easier to use. We used four different clus-
tering methods to partition a single public transit network and evaluated
each method’s effect on the query performance of a client-side route plan-
ning application. Voronoi diagrams were used to convert clusters of stops
to geospatial partitions, whose boundaries were then described using the
GeoSPARQL vocabulary [15]. Finally, the TREE vocabulary was used to
create an index of partition-specific Linked Connection resources.

Our results showed that a small number of partitions combined with a
simple method such as k-means is a good practical choice, as more granular
partitions or complicated methods yield diminishing returns. However, we
were left with few generalizable as it is still unclear whether the same method
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works equally well on other types of public transit networks, other kinds of
geospatial data, or other kinds of data applications. In this work we aim to
verify our original findings on the same network we used initially, as well
evaluate the same method on two different networks.

3 Method

Geospatial data represents our physical world and under the assumption that
people are most interested in their own surroundings, we posit that public
transit data contains some sort of locality bias, i.e., data related to certain
regions is in higher demand than data from most other regions. Looking
at Figure 1, we see this bias manifest itself in two ways: public transit
connections are more frequent in urbanized areas, and users of public transit
networks favor 3 areas above all others (from left to right: the cities of Ghent,
Antwerp, and Leuven). The Linked Connections publishing scheme enables
applications to access data at a specific point in time, but each data fragment
still contains data from the entire transit operator’s service area. Our own
prior work has shown that geospatially partitioning this specific network
improves the query performance of client-side route planners, and we now
investigate how this translates to other networks and other applications.

3.1 Data Sources

We partition three public networks in Belgium: the national railways (NMB-
S/SNCB), the regional operator in the region of Flanders (De Lijn), and the
network of the city of Brussels (STIB-MIVB). Table 1 shows a summary of
the evaluated networks’ characteristics. For the sake of simplicity, we assume

Figure 1 On the left is a heatmap that visualizes the arrival locations of all connections on
the Flemish regional transit network on Tuesday November 3rd 2020. Visualized on the right
is a heatmap of the passenger’s destinations, based on one week of anonymized query logs
given to us by the operator themselves. Note that there are places with a considerable number
of connections that are in low demand, especially in the West of the region.
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Table 1 The national railway network is physically the largest, but also contains the least
amount of data. The regional network on the other hand contains the most data, but the average
stop has only 31 passages per day – compared to 97 passages per day on the national railway.
The average stop on the city network is the busiest with 121 passages per day and is also by
far the densest at 17 stops per km2

Network Area (km2) Stops Daily Connections Size (MB)

National 30,689 677 65,837 13

Regional 13,625 36,425 1,139,335 1,910

City 162 2,675 323,941 346

each network’s operating area matches its designated administrative area. The
number of daily connections was measured on Tuesday November 3rd 2020,
and we will keep using data from this day throughout the remainder of this
paper.

3.2 Partitioning

Most existing work focuses on clustering stops, or trips, into discrete sets of
objects. If a data publisher were to follow this approach, they would have to
explicitly assign a label to every new stop the data owner adds. Failing to
do so would cause them to publish incomplete data, as unlabeled stops will
not be in any published cluster. Instead, we chose to partition the physical
world instead of creating discrete sets of stops. The resulting partitions are
then described semantically and published over the Web, allowing any agent
to infer to which cluster every stop belongs. In other words, data publishers
do not have to explicitly label every stop themselves – the data speaks for
itself. Both data publishers and consumers perform this same reasoning step
when encountering a new stop, so that all involved actors are at all times
synchronized with each other.

We start by adapting two clustering methods that are often used to
partition transit networks: k-means and METIS. However, both methods dis-
regard one important feature of transit networks: k-means does not consider
network connectivity and METIS does not consider physical locations. This
leads us to design an additional method, called Hub, which clusters stops
by their proximity to important transportation hubs. As others have shown
good results from hierarchical methods, we also consider a merge-based
adaption of Hub, which we name Merge. Each method is used to generate
a geospatial partitioning, which divides the physical, continuous world into a
set of non-overlapping regions, often referred to as cells.
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Figure 2 The 8 partitions each evaluated method creates on the regional transit network.
Note that the two methods on the top row create regions of roughly equal sizes, while the
approaches at the bottom create regions of varying sizes. The approaches in the left column
create regions with simple shapes, while the ones on the right create irregular shapes. The
Merge method even creates the illusion that more than 8 partitions are generated, as some are
only held together by a thin sliver.

3.2.1 K-means
Existing work has found k-means to be competitive with more complex
methods [9], so it should be considered among the state of the art for this
use-case. As the name implies, this algorithm distributes a given set of points
in exactly k clusters, where every point belongs to cluster with the nearest
cluster mean. Iterative heuristics exist to compute this clustering, and we
used the implementation from scikit.learn7 with default parameters, using the
stops’ WGS84 coordinates as input.

To obtain a spatial partitioning from this, we create a Voronoi diagram
using the cluster means as seed points. Because the Voronoi cells of two
adjacent points on the convex hull share an infinitely long edge, we add some
extra padding points that represent the bounding box of the operator’s service
area – and then discard all infinite edges.

3.2.2 METIS
METIS is another algorithm that is used to partition public transit networks
[8] [9] and is among the state of the art of graph clustering algorithms.
We follow the conventional approach of creating a vertex for every stop

7https://scikit-learn.org/0.20/modules/clustering.html#k-means

https://scikit-learn.org/0.20/modules/clustering.html#k-means
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and connecting them with an edge if they are connected through a single
connection. Every edge is assigned a weight that corresponds to how many
connections connect those stops. We used a Python wrapper8 of the reference
implementation to compute the clustering, using the contig option to force
contiguous partitions.

The METIS algorithm only sees the network as a connectivity graph
though – it does not consider the physical location of the stops. This means
that even though it creates contiguous clusters, those clusters are not con-
tiguous in the physical world. We obtain a clean spatial partitioning using
an additional post-processing step that (1) creates the Voronoi diagram of all
stops, (2) merges all Voronoi cells that belong to the same cluster, and (3)
merge isolated areas into the surrounding cluster.

3.2.3 Hub
Hub is our own method that aims to incorporate both the geospatial and the
graph-like nature of public transit networks. It iteratively selects the stops
based on which trips pass through it. In the first iteration it selects the stop
with the most unique trips, in the subsequent iterations it selects the stop with
the most unique trips that the previous stop(s) do not have. After k iterations
it contains the k most important hubs, which lead us to name this method
Hub. These selected stops are then used as seed points to create a Voronoi
diagram. To illustrate the simplicity of this approach, Listing 1 contains all
the necessary code, up until the creation of the Voronoi diagram.

def hub(k):

done_trips = set()

selected_stops = []

for _ in range(k):

best_stop = None

best_stop_score = 0

for stop, trips in stop_to_trips.items():

stop_score = len(set(trips) - set(done_trips))

if stop_score > best_stop_score:

best_stop = stop

best_stop_score = stop_score

selected_stops.append(best_stop)

done_trips.update(stop_to_trips[best_stop])

return selected_stops

Listing 1 The Hub method implemented in just 14 lines of Python code.

8https://metis.readthedocs.io/en/latest/

https://metis.readthedocs.io/en/latest/
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3.2.4 Merge
Instead of stopping the Hub algorithm after k iterations we can also let it
terminate, and then use the symmetric difference to merge the two most
similar adjacent Voronoi regions until only k remain. As there is a finite
number of trips, this algorithm has a clear termination condition: it stops
when all trips are covered by one of the selected stops. This makes the process
more complex, but existing work has shown good results using hierarchical
clustering techniques [9]. We have named this approach Merge, as it is a
merge-based variation of the Hub method.

{

"@id": "https://example.org/connections",

"@type": "tree:Node",

"tree:relation": [

{

"@type": "tree:GeospatiallyContainsRelation",

"tree:node": "https://example.org/connections?p=https%3A//e...,

"tree:path": [

"lc:departureStop",

"geo:hasGeometry",

"geo:asWKT"

],

"tree:value": "POLYGON ((4.170761972221639 50.7079439...

}, ...

], ...

}

Listing 2 Excerpt of a JSON-LD representation of a view index. The tree:node property
points to a hydra:PartialCollectionView, which is a connections page from the original
Linked Connections specification. The tree:value property defines which geospatial area
that view covers, while the tree:path property defines which property of the connections
should be compared to this geospatial area.

3.3 Hypermedia Controls

Hypermedia plays an essential role in how data consumers discover, and
interact with, resources on the Web. Especially in the case of Linked Data
Fragments resources, as hypermedia controls are the glue that link individual
fragments together. In the case of a regular Linked Connections data source,
consumers access the data by either filling in a Hydra [13] search template,
or by starting from any time fragment and following links until they find all
required data. The existence of this search template can in turn be discovered
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by reading a fragment’s hypermedia controls, or it can be contained in a data
catalogue. In the case of our partitioned data set, the server creates one view
per partition, and then creates an index of all generated views. We express
all geospatial data as Well Known Text (WKT) literals, as provided by the
GeoSPARQL vocabulary [14]. The TREE vocabulary9 is then used to link
to each generated view, including the view’s geospatial extent as qualifier to
this link. Listing 1 contains an excerpt of such an index but note that it also
states that each view contains connections whose departure stop lies in this
region. Without this information, it would still be unclear to data consumers
how these views can be used, e.g., one might assume incorrectly that a view
contains all connections crossing its geospatial extent.

4 Evaluation

We evaluate the effectiveness of geospatially partitioning public transit net-
work on the use case of a client-side route planner. Such an application lies at
the intersection of route planning – the most common use case for mobility
data – and Link Traversal Querying. We use an adapted implementation
of the Connection Scan Algorithm [19], in which case the traversed links
correspond to public transit connections. We consider a simplified scenario of
route planning where the queries consist of 3 values: (i) a departure stop, (ii)
a destination stop, and (iii) a departure time, and where the expected result is
a route with the earliest possible arrival time. Initially, only the departure stop
is known to be reachable at the specified departure time, the reachability of
all other stops is discovered by following connections. Route planning starts
with following the first connection that starts at the departure stop after the
specified departure time. At this point two stops are known to be reachable
at a certain time, and the process continues by following the next connection
that starts at either of the reachable locations, and this continues until the
destination stop is reached. To obtain realistic results, we also consider that
travelers can walk between stops at a constant speed of 5 km/h.

We partitioned the three different public transit networks described in
Section 3.1, using data from a single day – November 3rd 2020 – as input for
the clustering algorithms. Each algorithm is used to create 4, 8, 16, and 32
clusters. A redis-backed server stores an ordered list of all connections within
every generated region and exposes these using the hypermedia controls
described in Section 3.3. The same server also hosts a version of the data with

9https://treecg.github.io/specification/

https://treecg.github.io/specification/
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one cluster that contains all the data, i.e., without any geospatial partitioning.
Altogether we test 51 different configurations (4 partitionings for each of
the 4 methods, and the baseline for each of the 3 networks), and each data
fragment contains 20 minutes of data.

For the regional public transit operator, we randomly selected 2000
queries from logs given to us by the operator itself, and likewise we selected
2000 queries for the national railway network from the publicly available
iRail logs10. We were unable to obtain realistic queries for the city network, so
we generate an artificial dataset by uniformly sampling departure and arrival
stops from the list of existing stops. The departure times were likewise gener-
ated by uniformly sampling the query set of the regional network operator –
under the assumption that the rush hours on both networks are similar. Finally,
to measure the impact of the locality bias, we generated artificial query sets
for the regional and national networks as well.

We aim to eliminate as many variables as possible to isolate the impact of
the partitioning itself; the client and server run on two separate machines
on the same local network, a constant 20 ms of latency is added to each
response, and the client only processes one query at a time. As is fitting for an
evaluation of client-side route planning, the client ran on a consumer-grade
laptop which contains an Intel i7-8650U CPU, clocked at 1.90 GHz, and
16 GB of memory. All evaluation code, resources, and results are available
through a publicly available Git repository.11 Only the Linked Connections
data itself is excluded due to file size restrictions, but the code to download
these assets manually is included instead.

5 Results

We start by examining the baseline to gain some insights into how the
baseline behaves, as well as what the differences are between the query set
that was generated from real query logs and the artificial ones, we generated
ourselves. Table 2 shows a large discrepancy between each evaluated net-
work; whereas the average query time is only 0.6 s on the national railway
network, this number increases to 26 s on the regional transit network. We
also see the first piece of evidence of the locality bias in realistic route
planning queries. Both the query times and distances are, on average, twice
as large on the artificial query sets compared to the real ones.

10https://gtfs.irail.be/logs/
11https://github.com/hdelva/jwe paper results

https://gtfs.irail.be/logs/
https://github.com/hdelva/jwe_paper_results
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Table 2 The mean query time and the physical distance between the departure and destina-
tion stops when using the original Linked Connections data, i.e., the baseline. Note the large
standard deviations in the query times, but more so in the real query sets as these queries are
skewed towards shorter journeys

Network Query Set Query Time (s) Query Distance (km)

National Real 0.6 ± 0.3 35.3 ± 23.1

Artificial 1.2 ± 0.4 66.4 ± 39.7

Regional Real 26.0 ± 21.4 20.5 ± 18.8

Artificial 38.0 ± 17.6 43.3 ± 22.8

City Artificial 2.9 ± 1.2 5.8 ± 2.9

5.1 Query Performance

Using geospatially fragmented data entails that clients must process less
unnecessary data, so an improvement in query performance, i.e., the time it
takes to answer a given query, is to be expected. However, this improvement
is modest as there will always be a minimal amount of data that needs to
be processed to answer a query. In other words, the large variation of query
times as shown in Table 2 remains. To facilitate one-to-one comparisons, we
measure the improvement relative to the baseline instead.

We use envelope plots [16] to visualize the results, as these plots show
the median value as a black line, as well as the 75%, 87.5%, . . . quan-
tiles as separate boxes. These additional statistics are not to be overlooked
when interpreting the visualizations, as they show that some configurations
have a tighter distribution than others, and that some have a more skewed
distribution.

In our prior work we concluded that the choice of partitioning method is
less impactful than we initially expected, although the methods that resulted
in simple boundaries had a slight edge. As we now expand our evaluation
to other networks, we notice that this is not entirely true. Figure 3 shows
that k-means, which we initially saw as the most practically viable option, is
outperformed by the other evaluated methods. Although k-means performs
well on the city and the regional networks, where the stops are distributed
uniformly throughout the network, its effectiveness on the national railway
network is noticeably worse. A visual inspection reveals that k-means can
create empty partitions, as it gets skewed by irregularly visited international
stations. For example, when creating just 4 partitions, one partition corre-
sponds to the country of France – even though very few trains operated by
the Belgian railways visit those stops. Indeed, k-means is the only evaluated
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Figure 3 k-means is the least consistent of all evaluated methods, as it shows the worst
results on the national railway network but the best results on the city network. Neither method
does well on the city network however, with the median speedups ranging from 10% to 12%.
Note that in 25% of the queries on the city network, METIS had a negative effect on the query
performance.

method that does not consider the connection frequency. METIS shows the
second worst results, especially in the worst case, and this method also
considers only one dimension of the data: the connection frequency. Of
the other two methods, merge is the most promising, which implies that
simple partitions boundaries are less important than we initially believed.
However, our results do confirm that the chosen method has minor impact.
The median improvement using the Merge method – over all networks and
all granularities – is 83%, while k-means results in a 66% improvement as
well.

The partitioning granularity on the other hand is more impactful, although
Figure 4 shows this again varies from network to network. Using 4 partitions
is enough to reduce the query times on the regional network by 54%, and 32
partitions even results in a 70% reduction. Again, we see less improvements
on the city network, where using 8 partitions yields the best results: a
10% improvement on the average query. When combining the results from
both real query sets, i.e., from the regional and national networks, using 16
partitions reduces query times by 59%, or by 57% when using 32 partitions.

The lesser improvements on the city network could be due to the artifi-
cially generated query set, or it could be due to a characteristic of the network
itself. As mentioned in Section 4, we have also generated artificial query
sets for the other two networks. If the difference is entirely caused by the
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Figure 4 More granular partitions yields diminishing returns, as there is a minimal amount
of data that needs to be processed to answer a query, while the computational overhead of
adding more partitions does keep increasing. The optimal granularity depends on the network
though; whereas 16 partitions show the best results on the national railway network, whereas
the optimum for the regional network is closer to 32 – or beyond.

locality bias present in the real query sets, we would expect to see little to no
improvements on the artificial query sets on the other networks as well. As
Figure 5 shows, this is not the case. Even with the artificial query set, we see
a signifcant improvement on both the regional and national network although
the improvements are smaller than with the real query sets. The difference
between the two query sets is particularly small on the national network – but
a t-test reassures us that the difference is statistically significant (P < 0.001).
Altogether, this shows that the locality bias of a query set does have an impact
on the potential speedups, but that there is more at play.

Indeed, Figure 6 shows that when processing the artificial query sets on
the regional and national networks that the average query can still be solved
using half the available partitions, whereas the average query on the city
network use all available partitions – except at a granularity of 32, when 29
partitions are used in the average case. Staying with the artificial query sets of
all networks, we also evaluate how many of the networks’ stops are reached
on average. Table 3 shows that seems to be the determining factor; the average
query on the city network visits 72% of all stops in the network – twice the
fraction of visited stops on the other networks. This may be a side effect of our
optimistic usage of transfers on the routes – as we assume a constant walking
speed of 5 km/h. However, the average speed when crossing the city network
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Figure 5 The improvements on the national network are nearly the same as when using
the artificial query set, where query times are reduced by 42%, whereas the real query set
sees a 43% improvement. On the regional network on the other hand, we only see a 46%
improvement when using the artificial query set, compared to 63% when using the real query
set. In any case, the improvements on both networks are significantly better than on the city
network.

Figure 6 Up until a granularity of 32 partitions, the average query on the city network uses
all available partitions. Using the artificially generated query sets of the other networks, the
average query only requires half of all available.

is still 10 km/h, while the average speed through the regional network is only
7 km/h. In other words, the network connectivity in the city network is not
a direct result of the transfers – leaving the network topography itself as the
most logical cause.
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Table 3 The travel time, distance between departure and destination stops, and the percent-
age of stops reached by the average artificial query on each network

Network Travel Time (Hour) Query Distance (km) Stops Reached (%)

National 3.6 ± 2.6 66.4 ± 39.7 36

Regional 5.9 ± 2.9 43.3 ± 22.8 33

City 0.6 ± 0.3 5.8 ± 2.9 72

5.2 Cache Behavior

Caching is an important aspect of Linked Connections, and Linked Data
Fragments APIs in general, as the caching ensures the scalability of these
APIs. As we are making the data more fine-grained, we must measure
the effect this has on the overall caching behavior. Caching can happen at
multiple points in the network, but since we use anonymized query logs, we
cannot know which requests were done by the which clients. Instead, we
focus exclusively on server-side caching, and assume all requests are done by
distinct clients.

While running the query performance evaluations, we also record which
resources are requested. These requests are then replicated and run through
a simulated LRU cache to measure the hit rates. We set the cache size to
2% of what would be required to keep the entire dataset in memory. These
caches are smaller than what would be used in a real setting, but this does
make the differences between the configurations more apparent. Figure 7
shows that the cache hit rates do indeed drop quickly as the partitions become
more granular. Indeed, the most granular partitioning would place every stop
in its own partition, at which point it devolves into a standard REST API.
However, even with 32 partitions the warm cache hit rates hover around 10%,
which is largely due to the rush hour that is present in all evaluated query
sets. We again see the difference between the national and regional networks,
where we have access to a real query set with some locality bias, and the city
network.

6 Discussion

On the regional public transit network, we came to mostly the same con-
clusions as in our prior work; all evaluated methods reduce query times
by 62%. The national railway network sees smaller, but still comparable
improvements. However, we did not succeed in making queries on the city
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Figure 7 From left to right, we see that the unpartitioned baseline data achieves a warm
cache hit rate of 23%, while the average hit rate of the partitioned data lies around 12%. In
line with the query performance results, the national railway network and regional network
yield better results. Finally, the difference between no partitioning at all and 4 partitions is
larger (−8%) than the drop from 4 partitions to 32 partitions (−5%).

network reliably faster, with 25% of the evaluated queries becoming slower
with the partitioned data.

When seen as an instance of Link Traversal Querying, client-side route
planning applications still follow the exact links regardless of the geospatial
partitioning. As a result, the expected improvement is limited to reducing
the amount of parsed unnecessary data – and there is little such data when
querying over the dense city network as 72% of all available stops are by the
average query. In other words, the intrinsic characteristics of this network of
this network make it hard to partition efficiently.

Another determining factor is how people utilize the network itself, as it is
easier to effectively partition a network if the average traveler only visits spe-
cific sectors of the network. We verified this by generating artificial query sets
where the average query is equally likely to visit any stop in the network and
found that this does indeed diminish the improvements. However, even with
the artificial query sets, we see a 46% and 42% improvement on respectively
the regional and national networks – indicating that network characteristics
are more influential.

We also invalidate some findings of our own prior work, as increasing the
partition granularity does make it harder to efficiently cache the data. Geospa-
tially partitioned data is easier to cache if certain areas if certain partitions are
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requested more often, but routes often traverse otherwise unpopular regions.
As a result, all partitions in between popular partitions become popular as
well. When all partitions are in high demand, the available cache space cannot
be used any more efficiently than with unpartitioned data. On the contrary,
as the data becomes more granular, we see more cache misses as the API
devolves in a standard REST API.

7 Conclusion

In this paper we investigated what data publishers can do to make their open
transit data easier to use. Based on research from the field of route planning,
we explored the idea of geospatially partitioning public transit networks.
We evaluated 4 different clustering methods for the use-case of client-side
route planning: k-means, METIS, and two domain-specific methods of our
own. The partitions were obtained using Voronoi diagrams and were then
published with the appropriate hypermedia controls that clients can use to
discover clusters of public transit stops. As in our prior work, we see that
the specific partitioning method has minor impact on the results, and that the
partition granularity is more impactful.

We set out to learn whether this approach works equally well for various
kinds of public transit networks, and the answer to this question is negative.
Specifically, a dense city network proves hard to partition effectively, as the
average evaluated query visits 72% of all available stops – implying that this
network is too connected. We expect that this insight applies to other kinds of
graph-like geospatial datasets, and future research could explore the relation
between established graph metrics and the graph’s suitability for geospatial
partitioning. Finally, we wanted to know whether these insights translate to
other use cases as well, or if they are limited to the specific case of client-
side route planning. If strongly connected graphs are simply ill-suited to
geospatial partitioning, this would translate directly to other link-travel based
applications.
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