Water Moth Search Algorithm-based Deep
Training for Intrusion Detection in loT

Rekha P. M.}* and Nagamani H. Shahapure?, Punitha M.2
and Sudha P. R.?

' Department of Information Science and Engineering, JSS Academy of Technical
Education, Dr. Vishnuvardhana Road, Bengalru-560060, Karnataka, India
2Department of Information Science, JSS Academy of Technical Education,
Bangalore, Karnataka, India

E-mail: rekhapmi2 @ gmail.com

*Corresponding Author

Received 09 January 2021; Accepted 15 July 2021;
Publication 21 September 2021

Abstract

The economic growth and information technology leads to the development
of Internet of Things (IoT) industry and has become the emerging field of
research. Several intrusion detection techniques are introduced but the detec-
tion of intrusion and malicious activities poses a challenging task. This paper
devises a novel method, namely the Water Moth Search algorithm (WMSA)
algorithm, for training Deep Recurrent Neural Network (Deep RNN) to detect
malicious network activities. The WMSA algorithm is newly devised by com-
bining Water Wave optimization (WWO) and the Moth Search Optimization
(MSO). The pre-processing is employed for the removal of redundant data.
Then, the feature selection is devised using the Wrapper approach, then using
the selected features; the Deep RNN classifier effectively detects the intrusion
using the selected features. The proposed WMSA-based Deep RNN showed
improved results with maximal accuracy, specificity, and sensitivity of 0.96,
0.973 and 0.960.
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Nomenclature

Abbreviation Definition

IoT Internet of Things

WWO Water wave optimization

MSO Moth Search Optimization

WMSA Water Moth Search algorithm

IDS Intrusion detection system

NIDS Network-based intrusion detection system
Al Artificial Intelligence

RNN Recurrent Neural Network

N-BaloT Network-Based Detection of IoT Botnet Attacks
BRIoT Behavior rule specification based IoT
COLIDE Collaborative intrusion detection framework
6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks
PCA Principal component analysis

VM Virtual Machines

NIC Network Interface Cards

WAN Wide area network

LAN Local area network

1P Internet Protocol

DDoS Distributed denial of service

ANN Artificial Neural Network

GA+DBN Genetic Algorithm and Deep Belief Network

1 Introduction

IoT is one of the third industrial revolution [1, 9], which is interconnected
through the Internet of the computing devices embedded in objects that
enables for sending and receiving data [1, 10]. IoT is utilized in vari-
ous fields, like domestic, healthcare, energy distribution, finances, tourism,
transportation, and the smart-cities [1, 11]. The rapid growth of IoT tech-
nology is utilized for household appliances that improve the life qual-
ity [2, 12]. In addition, the IoT is distributed nature, and openness, which
leads to the attacks [13—15]. Additionally, several IoT nodes store, pro-
cess, and collect information privately, but they are apparent to malicious
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attackers [16]. Hence, maintaining privacy of the IoT is the priority of
successfully deploying the IoT environment [2, 17]. The application of IoT
involves people’s livelihood, industry, military, and commerce, where the
authentication is more essential. If information security issue exists, the
losses and damage are very dangerous. The provision of authentication and
integrity is still challenging. Hence, the privacy preserving in the IoT is very
essential [8, 13].

Intrusion detection is one of the significant steps that ensure IoT secu-
rity networks. Intrusion detection having various security mechanisms to
manage the security intrusions, which are detected using four layers of IoT
architecture. The Network Layer serves as the backbone to connect various
IoT devices, like Network Intrusion Detection Systems (NIDS) [2, 18]. As
the indispensable technology in the authentication of the network, intrusion
detection monitors abnormal behavioral dynamically the model to check
whether the events are susceptible to attack [3, 14, 19]. In addition, the
intrusion detection approaches are categorized into two types. Generally,
anomaly better accesses the systems automatically and detects the incoming
intrusions. It recognizes the attacks, but still, false alarms may arise. An IDS
is the best technique to identify the attackers [7, 20] and detects the policy
violations or the malicious activities of system actives or the network traffics
[7, 15, 21]. Intrusion Detection is a third-part software or stand-by device
that inquires several changes; hence, it is appropriate for inherited systems or
resource constraints to protect network security.

NIDS has been scrutinized for achieving the conventional devices
securely since the 1980s [11, 24]. Conventional NIDS are lacking for the
IoT systems because of limited power, heterogeneity, constrained resources,
and connectivity [1, 22, 23]. Hence, the IDSs of IoT systems is relevant.
The popular strategies deployed between the IoT systems are the NIDSs or
IDSs for the connected smart Things. Several IDS approaches are performed
using cluster analysis [2, 25], statistical analysis [2, 25], deep training [2, 27],
and artificial neural network [2, 26]. Among the aforementioned techniques,
deep training outperformed other techniques [2, 28]. Artificial Intelligence
(AI) becomes very popular for intelligent detection to solve the issues.
Al-enabled schemes discover the deep knowledge automatically from his-
torical data, which makes wise judgments for predicting network intrusions
[3, 29, 30]. Automata-enabled intrusion detection method uses Labeled Tran-
sition Systems’ extension to introduce the uniform description to detect
IoT networks intrusions effectively. This model describes heterogeneous
networks with graphs and terms, and other IDS algorithms detect intrusions
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by distinguishing abstracted action flows to solve the problems mentioned
above [7].

The research aims to design the intrusion detection method in 10T using
the proposed WMSA-based Deep RNN. Initially, the input is subjected to
the pre-processing module for eliminating the redundant data. Consequently,
the Wrapper approach is introduced for feature selection, where the feature
subset selection algorithm searches good subsets to evaluate the feature
subsets. Finally, the Deep RNN is trained using the developed WMSA, which
is integrated with WWO and the MSO.

The major contributions of the paper are:

* Proposed WMSA: The proposed WMSA optimization algorithm is
developed by integrating the WWO and the MSA algorithm for the
optimal tuning of weights and biases of the Deep RNN classifier.

* Proposed WMSA-based Deep RNN for intrusion detection in IoT:
The proposed WMSA-based Deep RNN is adapted for detecting intru-
sions in IoT. Here, the Deep RNN is trained by the proposed WMSA.

The remaining sections of the paper are arranged as follows: Section 2
elaborates the the conventional techniques with the challenges faced. Then,
the system model of IoT is described in Section 3, and the proposed method
for intrusion detection using WMSA-based Deep RNN is portrayed in Sec-
tion 4. Finally, the outcomes of the proposed strategy is provided in Section 5,
and Section 6 present the conclusion.

2 Literature Survey

The existing techniques of intrusion detection in IoT and its limitations are
deliberated below: Nadia Chaabouni et al. [1] devised IDS for IoT security.
This framework employed the systems with their mobility, heterogeneity, and
IoT-specific challenges. The method provides an optimal success rate in pri-
vacy and security. Still, more efforts are needed to detect zero-day attacks and
IDSs were developed to update the considered attacks. Ying Zhang et al. [2]
developed IDS. In addition, the optimization technique helps to achieve the
high detection rate. The method needs more time for the training process.
Jiaqi Li et al. [3] presented Artificial Intelligence (Al)-enabled IDS for IoT
networks. This approach flexibly captured the flow of the network with a
global view and detected the attack intelligently. Initially, the Bat algorithm
with binary differential mutation and the swarm division was introduced for
selecting the appropriate features. After that, the random forest was employed
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for changing the sample weights based on weighted voting for classifying the
flows. The method failed to consider real networks for traffic classification
to improve the system’s performance. Yair Meidan et al. [4] developed an
approach for IoT, termed N-BaloT, for extracting the behavior snapshots of
the network. Besides, autoencoders were used to detect the traffic of the IoT
devices. This methodology needs more time to detect the intrusion.

Vishal Sharma et al. [5] presented a behavior rule specification-enabled
misbehavior detection method, termed BRIoT, to detect intrusion in cyber-
security systems. This approach was utilized for verifying behavior rules
correctly but the method failed to consider IoT- embedded CPSs due to high
run time and memory,. Junaid Arshad et al. [6] modeled collaborative intru-
sion detection framework (COLIDE) in IoT. This framework combines host
and network-enabled detection for effectively achieving intrusion detection
based on 6LoWPAN. The method did not find the detection accuracy better.
Yulong Fu et al. [7] developed IDS for the IoT networks. This is the exten-
sion of the Labelled Transition system. The method failed to include other
methods for describing and evaluating the contents of translating packets.
Lianbing Deng et al. [8] a presented transfer training algorithm for detecting
the mobile network intrusion detection. This framework uses the combination
of Fuzzy C-means clustering and Principal component analysis (PCA) for
detecting the intrusion. The method improves detection efficiency with a
lower false-positive rate, but constructing a good combination classifier was
difficult.

2.1 Challenges

The challenges confronted by the conventional strategies are deliberated
below:

* In [2], the deep training based IDS was developed to detect intrusion
in IoT. However, this method failed to optimize the deep network
parameters.

* In intrusion detection, the low detection efficiency exists because of
obtained high false-positive rate. This aspect is explained by the lack
of good studies on intrusion events, challenging [31].

* Intrusion detection at edge router failed to consider devices’ behavior
that leads to maximal communication overheads among nodes [6].

* The absence of the assessment methodologies, appropriate metrics, and
the general framework used to evaluate alternative IDS techniques is
challenging [31].
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3 loT System Configuration Model

The system configuration of IoT to detect the intrusion and is shown in
Figure 1. IoT networks contain typical network elements, including a work-
station, routers, IoT devices, and laptops. The network platforms initially
include the attacking and normal Virtual Machines (VMs) and tap and the
firewall. In addition, the two Network Interface Cards (NICs) and the packet
filtering firewall are configured in the environment. In this case, one NIS is
configured in WAN, whereas another in LAN. The main purpose of using the
firewall ensures the dataset labeling process validity and the network access
are managed by monitoring the outgoing and the incoming network packets.
VMs are utilized to communicate through the Internet, pass the traffic based
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Figure 1 System configuration model of IoT network.



Water Moth Search Algorithm-based Deep Training 1787

on the PFSense machine, pass the traffic using switch, and second firewall
are further routed into the Internet. The VMs of attacking machines works
DDoS, port scanning, and other Botnet related attacks [37].

4 Proposed Water Moth Search Algorithm-based Deep
RNN for Intrusion Detection in loT

This research aims to devise an intrusion detection strategy using the
proposed WMSA-based Deep RNN [32]. Initially, the redundant data is
eliminated using the pre processing step. Then the feature selection is done
by using the wrapper approach to employ the further processing. Then, the
classification is employed using Deep RNN, which is learned by newly
devised WMSA. The developed WMSA algorithm integrates WWO [34] and
MSA [35], The schematic view of the developed WMSA-based Deep RNN
as shown in Figure 2.
Let, G be the input data with the attributes is represented as

G={Gun};(1<M<D);(1<N<Y) (1)

where, the term Gy refers to the M'" data record in N attribute, D is the
data point, and Y is the attributes, and [D x Y] is the database size.

4.1 Pre-processing

Pre-processing is considered an important stage used for processing of thou-
sands of data for the efficient performance enhancement. The pre-processing

- - T
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—

Figure 2 Proposed WMSA-based Deep RNN model for intrusion detection in IoT.
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is utilized for describing the processing of data for better representations.
Then, the pre-processed data is expressed as K with [D x Y| dimension.

4.2 Wrapper Approach for Feature Selection

After pre-processing, the feature selection is considered as a significant
method for mining the significant data. This step is essential for eliminating
the noisy features from the massive datasets to design robust training models.
A large number of features causes may generate the complexity by slowing
the training process and maximizes the risk of a learned classifier, which
may lead to overfitting of data confusion. Thus, the selection of appropriate
features may bring more advantages to the real-world application. The data
K is taken for selecting the features. The feature selection is employed using
the wrapper approach [33] for choosing optimal features for better detection.
The resultant selected features are represented as K. Now, the dimension G
becomes [D x O], such that O < Y.

4.3 Proposed Water Moth Search Algorithm-based Deep RNN for
Detecting Intrusion in loT

The intrusion detection in IoT using the developed WMSA-based Deep
RNN is presented. The selected features Rare taken as the input of intrusion
detection using Deep RNN, and the training is carried out based on devel-
oped WMSA, which is the combination of WWO [34] and MSO [35]. The
proposed WMSA-based Deep RNN detects the intrusion by tuning optimal
weights in Deep RNN for intrusion detection in IoT. The explanation and the
architecture of Deep RNN and its training procedure are given below.

(a) System model of Deep recurrent neural network
Deep RNN [32] can accept the input feature vector of any length. Besides,
it uses the information of the previous iteration for the processing of the
current information. Hence, the above mentioned features help the classifier
to generate the output more accurately and effectively. Also, it is better
compared the conventional classifiers due to its sequential processing. Figure
3 shows the system model of Deep RNN.

The input vector of a'® layer at s'* time, and is represented as

R(@3) = {rga’s),réa’s), . .r(a’s), e ryga’s)} and H (%) = {Hl(a’s), Héa’s), .

)

H-(a’s),... Hg(ga’s)} refers to the output of a at time s as J®7) =

)

{Jl(b’r), JQ(b’T), .. Ji(b’r), . J@Sb’r)}, respectively. The unit is the combination



Water Moth Search Algorithm-based Deep Training 1789

Input

Hidden

-

Chatpt

Final

Figure 3 Structure of Deep RNN classifier.

of the output and input pair. Let y is the units present in a*” layer, and 1 is
the arbitrary unit. Besides, the total units of (a — 1) layer is k and D. The
weights of (a — 1) to a is represented as U(®) € 1**P and 3(®) € I**% is the
layer b’s recurrent weight. [ is the weights set. The input vector components
are given by,

R(as) Zq(a)Ha ls)_l_zvja)Has 1) )

where, the terms q](u) and v( %) refer to the elements of U(® and (@), the term

j' is the layer a’s arbitrary number The output vector at layer a is,
(a,) _ (a)(p(a,s)
H® = o((R) 3)

where, o(® is the activation function In addition, a/(R) = m be the
logistic sigmoid function, the sigmoid function, denoted as 3(R) = tanh(R),

and rectified linear unit function (ReLU), is specified as S(F') = max(R, 0).
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The process is simplified and is expressed by,
H@) = (@) (@ gla=ts) 4 e . prlas=1)) 4)
Where, H (%) is the classifier’s output.

(b) Training of Deep recurrent neural network using Water Moth
Search algorithm

The proposed WWSA integrates WWA and MSA and is used to train the
Deep RNN. The searching behavior of moths inspires the MSA [35], and the
solution is an update of its position change. The behavior of moths consider
in MSA are phototaxis and the levy flight. In addition, it negotiates the
complex operations, so the execution of MSA is flexible and easy. Similarly,
the WWO [34] is motivated by the waves to enhance the optimization issues
by enhancing the dimensionality. As a result, the method can attain a trade-off
between exploration and exploitation. Moreover, it speeded the convergence
process. Hence, the combination of WWO and MSA modelled to improve the
performance. The algorithmic procedure is illustrated below.

(a) Initialization: The moth’s location is initialized randomly. The solution
space containing enumber of the moths, and it is given below,

X=[XJ 1<q<5 5)
where, X, signifies the qth moth, and S denotes the total count of moths.

(b) Fitness evaluation: 1t is calculated for the estimation of optimal solution
to find best solution by updating the location.

1 g
MSE = ; Z Qtarget - H(a,s) (6)
p=1

where, g is the total sample of training, H (@:5) and Qtarget are the estimated
and target output of the classifier.

(c) Location update using levy flights: Once fitness is evaluated, then the
updated solution using levy flight, and the equation is expressed as,

Xt =X+ P(x) @)
where, the term X7 indicates the moth location at sth iteration, and levy flight

movement is denoted as P(x). The parameter 7 represents the scaling factor
and is given by,

)
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where, the term H,,x signifies the maximal step walk, and the term s refer
to the current iteration. The levy distribution equation is given by,

(0= 1T — 1) sin (1)

TxH

P(z) = ©)

where, the term z exceeds 0.I'(z), then it is said to be gamma function.

(d) Fly straightly: The updated solution based on the position of the mothg;
their flight is formulated by,

Xt =9 x (X + - (Xjoe — X0)) (10)
Xt = 9X5 + 9aXj,, — 0aX; (11)
Xt = X5 (9 — da) + 9aX, (12)

where, the term X7, refer to the optimal position of moth, and the term «
refer to acceleration, 1 signifies the scaling function. When the movement of
fly is straight, the moth’s position is influenced by the position of light source.
To enhance the system’s performance and tackle the optimization problems
of MSA, the WWO algorithm is utilized. As per WWO, its propagation for
updation is represented by,

XeH = X5 + Rand(—1,1)pJ, (13)
XS =Xt — Rand(—1,1)pJy (14)
Substitute Equation (14) in Equation (12), the solution becomes,

Xt = (X5 — Rand(—1,1)pJy) (0 — Ya) + JaX,, (15)
XeH = X509 — da) — Rand(—1,1)pJy(0 — da) + JaXj,,  (16)
XZH - X2+1(19 —da) = daXi,, — Rand(—1,1)pJy(¥ — o) (17)

X;‘H(l — 9+ da) =vaX;,, — Rand(—1,1)pJy(9 — da) (18)

Thus, the final update equation of the proposed WMSA-based Deep RNN
is expressed as,

1
X2+1 = m[ﬁQXiest - Rand(—l, 1>pr('l9 — 19&)] (19)
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where, the term p denotes the wavelength, the .J, signifies the length of b™*
dimension of search space, and the terms ¢} and « represent the scaling factor
and the acceleration.

(e) Best solution evaluation: After updating the location, the solution space
calculates the fitness. After the identification of new solution, the older
solution is replaced by new.

(f) Termination: The steps (b—e) are repeated until the attainment of the best
solution. Algorithm 1 portrays the pseudo-code of the proposed WMSA-
based Deep RNN algorithm.

Algorithm 1 Pseudo-code for the proposed WMSA-based Deep RNN algorithm.

Input: Moths population X = qu J 1<9<S

Output: Best solution
Procedure:
Begin
Initialized the moth population
Fitness function computation
While s < MaxGen (Maximal lterations

Arrange the moth individuals

S
forq:ltOEdO

levy flights equation is generated using equation (7)
end for q

forq:ito S do
2+1

If rand > 0.5 then
Compute X;" using equation (10)

Else
Generate XZ” using equation (19)
End if
End for g
New solutions are found out and intensities are compared
again
s=s+1

end while
Best solution is obtained

End
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5 Results and Discussion

The evaluation of the proposed methodology by considering the performance
metrics is illustrated in this section.

5.1 Experimental Setup

The experimental analysis is employed in Python using a PC with 2GB RAM,
the Intel i3 core processor, and Windows 10 OS.

5.2 Description of Dataset

The performance is employed using the BoT-1oT dataset [36]. This dataset
is created to design the network environment for performing the intrusion
detection mechanism. It integrates the Botnet and normal traffic. The CSV
files, argus files, and pcap files, are the different format of source file. The
pcap files are 69.3 GB in dimension, with 72.000.000 records. The csv format
in extracted flow traffic is 16.7 GB in size. Besides, it has DoS, DDoS, key-
logging, and service scan attacks based on the protocol. The KDD cup 1999
dataset [38] comprises of content features, traffic features, and basic features.
In addition, it has 24 training attack and additional 14 test data attack.

5.3 Evaluation Metrics

The performance of the proposed RWW-based NN is analyzed by concerning
metrics, like sensitivity, accuracy, and specificity.

5.3.1 Accuracy
It is closeness of the expected output, and is represented as,

T, + Ty
T, +Th +E, +E,

Accuracy = (20)

where, T, represent true positive, E,, indicate false positive, T, indicate true
negative, and E,, represents false negative, respectively.

5.3.2 Sensitivity
It is the measure of positives detected by the developed method, and it is

represented as,

o 2D

SenSlthlty = ﬁ
P n
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5.3.3 Specificity
It is the measure of negatives detected by the developed method and is

formulated as.
T,

Specificity = T + 5. (22)
n P

5.4 Performance Analysis

The performance of the developed technique is evaluated by varying the input
features and the hidden neurons numbers. Finally, the analysis is evaluated
based on the metrics.

5.4.1 Analysis using dataset-1
The WMSA-based Deep RNN’s performance is analyzed by BoT-IoT dataset
is detailed in this section.

(a) Analysis based on input features

Figure 4 depicts the based on input features. The analysis using accuracy is
shown in Figure 4(a). The accuracy value estimated by WMSA-based Deep
RNN with number of features 6, 9, 12, and 15 with 90% of training data
is 0.929, 0.937, 0.938, and 0.935. The analysis using sensitivity is depicted
in Figure 4(b). The sensitivity evaluated by proposed model with number of
features 6, 9, 12, and 15 for 90% of training data are 0.929, 0.938, 0.942,
and 0.958. The specificity analysis is depicted in Figure 4(c). The specificity
evaluated by the proposed model with number of features 6, 9, 12, and 15 for
90% of training data are 0.974, 0.976, 0.977, and 0.982.

(b) Analysis using hidden neurons

The analysis by considering different hidden neurons is illustrated in Fig-
ure 5. Figure 5(a) portrays the performance by evaluating the accuracy. The
accuracy value estimated by WMSA-based Deep RNN with hidden neurons
40, 60, 80, and 100 for 90% of training data is 0.907, 0.909, 0.928, and 0.948
respectively. The analysis using sensitivity is depicted in Figure 5(b). For the
hidden neurons 40, 60, 80, and 100 the sensitivity estimated by WMSA-based
Deep RNN using 90% of training data are 0.906, 0.948, 0.950, and 0.957. The
analysis using specificity is depicted in Figure 5(c). For hidden neurons 40,
60, 80, and 100 the specificity evaluated by WMSA-based Deep RNN for
90% of training data are 0.933, 0.934, 0.938, and 0.950.
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Figure 4 Performance analysis with number of features (a) accuracy, (b) sensitivity, (c) and
specificity.

5.4.2 Analysis using dataset-2
The WMSA-based Deep RNN’s performance is analyzed by KDD Cup 1999
Data dataset is detailed in this section.

(a) Analysis based on input features

Figure 6 depicts the analysis of input features. The analysis by considering the
accuracy is shown in Figure 6(a). The accuracy value estimated by WMSA-
based Deep RNN with number of features 6, 9, 12, and 15 using 90%
of training data is 0.912, 0.923, 0.932, and 0.944. The analysis based on
sensitivity is shown in Figure 6(b). The sensitivity evaluated by proposed
model with number of features 6, 9, 12, and 15 using 90% of training data
are 0.907, 0.910, 0.916, and 0.957. The analysis of specificity is depicted in
Figure 6(c). The specificity evaluated by the proposed model with number of
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Figure 5 Performance analysis with hidden neurons (a) accuracy, (b) sensitivity, (c) and
specificity.

features 6, 9, 12, and 15 using 90% of training data are 0.939, 0.945, 0.960,
and 0.968.

(b) Analysis using hidden neurons

The analysis by considering different hidden neurons is illustrated in Figure 7.
Figure 7(a) shows the performance analysis using accuracy. The accuracy
value estimated by WMSA-based Deep RNN with hidden neurons 40, 60,
80 and 100 using 90% of training data is 0.873, 0.894, 0.898, and 0.921. The
analysis by considering the sensitivity is shown in Figure 7(b). The sensitivity
with hidden neurons 40, 60, 80, and 100 estimated by WMSA-based Deep
RNN are 0.894, 0.921, 0.935, and 0.945. The analysis using specificity is
depicted in Figure 7(c). The specificity with hidden neurons 40, 60, 80, and
100 using 90% of training data are 0.918, 0.927, 0.929, and 0.932.
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Figure 6 Performance analysis with number of features (a) accuracy, (b) sensitivity, (c) and
specificity.

5.5 Comparative Techniques

The conventional techniques, Artificial Neural Network (ANN) [1], Improved
Genetic Algorithm and Deep Belief Network (Improved GA-+DBN) [2], and
the Deep Autoencoder [4] are considered for the comparison analysis with
the developed WMSA-based Deep RNN.

5.5.1 Analysis using dataset-1

(a) Analysis of the intrusion detection with respect to training
data percentage

The comparative analysis of intrusion detection is shown in Figure 8.
Figure 8(a) depicts the analysis using accuracy based on training data percent-
ages. The accuracy computed by the proposed WMSN-based Deep RNN is
0.95, which is 9.4%, 5.2%, and 8.4% better than ANN, Improved GA+DBN,
and Deep Autoencoder, respectively for 80% of training data. The analysis
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Figure 7 Performance analysis with hidden neurons (a) accuracy, (b) sensitivity, (c) and
specificity.

by sensitivity is deliberated in Figure 8(b). The sensitivity computed by the
proposed model with 50% of training data is 0.883, which is 9.3%, 9.3%,
and 14.5% better than ANN, Improved GA+DBN, and Deep Autoencoder,
respectively. The analysis using specificity parameter is deliberated in Fig-
ure 8(c). The specificity computed by proposed WMSN-based Deep RNN
with 50% of training data is 0.915, which is 8.96%, 2.51%, and11.03%, better
than ANN, Improved GA+DBN, Deep Autoencoder.

(b) Analysis of the intrusion detection with respect to hidden
neurons

Figure 9 presents the analysis of methods by varying the hidden neurons
using performance metrics. The analysis using accuracy is deliberated in Fig-
ure 9(a). When hidden neurons = 80, the accuracy of methods computed by
ANN, Improved GA+DBN, Deep Autoencoder, and proposed WMSN-based
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Deep RNN are 0.838, 0.91, 0.865, and 0.91. The sensitivity analysis is
deliberated in Figure 9(b). When hidden neurons = 100, the sensitivity of
methods computed by ANN, Improved GA+DBN, Deep Autoencoder, and
proposed WMSN-based Deep RNN are 0.871, 0.948, 0.880, and 0.954. The
specificity analysis is deliberated in Figure 9(c). When hidden neurons = 80,
the specificity of methods computed by ANN, Improved GA+DBN, Deep
Autoencoder, and proposed WMSN-based Deep RNN are 0.810, 0.892,
0.840, and 0.902.

5.5.2 Analysis using dataset-2

(a) Analysis based on training data percentage

The comparative analysis is shown in Figure 10 by varying the training
percentage. Figure 10(a) depicts the analysis using accuracy. The accuracy
computed by the ANN, Improved GA+DBN, and Deep Autoencoder using
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80% of training data are 10.8%, 5.52%, and 11.3% worse than the proposed
WMSN-based Deep RNN with the value of 0.941. The analysis by sensitivity
is deliberated in Figure 10(b). The sensitivity computed by ANN, Improved
GA+DBN, and Deep Autoencoder using 50% of training data are 10.18%,
8.33% and 12.9% worse than the proposed model with the value of 0.864.
The analysis using specificity parameter is deliberated in Figure 10(c). The
specificity computed by ANN, Improved GA+DBN, and Deep Autoencoder
using 80% of training data are 9.3%, 2.9% and 14.7% worse than the
proposed WMSN-based Deep RNN with the value of 0.909.

(b) Analysis of the intrusion detection with respect to hidden
neurons

Figure 11 presents the analysis of methods by varying the hidden neurons
in terms of performance metrics. Figure 11(a) shows the analysis using
accuracy. When hidden neurons = 80, the accuracy of methods computed
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by ANN, Improved GA+DBN, Deep Autoencoder, and proposed WMSN-
based Deep RNN are 0.831, 0.874, 0.845, and 0.907. Figure 11(b) shows
the analysis using sensitivity. When hidden neurons = 100, the sensitivity
computed by ANN, Improved GA+DBN, Deep Autoencoder, and proposed
model are 0.848, 0.914, 0.878, and 0.952. Figure 11(c) shows the analysis
using specificity. When hidden neurons = 80, the specificity of methods
computed by ANN, Improved GA+DBN, Deep Autoencoder, and proposed
WMSN-based Deep RNN are 0.800, 0.889, 0.820, and 0.864.

5.5.3 Comparative analysis by considering Neptune attack

(a) Using dataset-1

Figure 12 depicts the comparative analysis by considering Neptune attack
by utilizing BoT-IoT dataset. The analysis by considering the accuracy is
illustrated in Figure 12(a). The accuracy evaluated by the proposed WMSN-
based Deep RNN is 13.7% better than ANN, 5.2% better than Improved
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0.7
40

GA+DBN and 11.19% better than Deep Autoencoder for 80% of training
data. The analysis by considering the sensitivity is illustrated in Figure 12(b).
The sensitivity computed by ANN, Improved GA+DBN, Deep Autoencoder,
and proposed WMSN-based Deep RNN using 90% of training data are 0.768,
0.802, 0.774, and 0.837. Figure 12(c) shows the analysis by considering the
specificity. The specificity computed by the proposed WMSN-based Deep
RNN is 9.3% superior to ANN, 1.7% superior than Improved GA+DBN and
14.76% superior than Deep Autoencoder for 60% of training data.

(b) Using dataset-2

Figure 13 depicts the comparative analysis of the proposed method by con-
sidering the Neptune attack using KDD Cup 1999 Data dataset. The accuracy
of the methods is illustrated in Figure 13(a). The accuracy computed by
ANN, Improved GA+DBN, and Deep Autoencoder are 9.3%, 5.8%, and
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Figure 12 The comparative analysis using the Neptune attack for dataset-1 in terms of (a)
accuracy, (b) sensitivity and (c) specificity.

2.6% worse than the proposed WMSN-based Deep RNN with the value of
0.805 for 80% of training data. The analysis by considering the sensitivity
is illustrated in Figure 13(b). The sensitivity of methods computed by ANN,
Improved GA+DBN, Deep Autoencoder, and proposed WMSN-based Deep
RNN are 0.768, 0.830, 0.791, and 0.806 for 90% of training data. The analysis
by considering the specificity is illustrated in Figure 13(c). The specificity
computed by ANN, Improved GA+DBN, and Deep Autoencoder, are 11.8%,
2% and 6.9% worse than the and proposed WMSN-based Deep RNN with the
value of 0.750 for 60% of training data.

5.5.4 Analysis using computation time

The comparative analysis based on the computation time is illustrated in
Figure 14. The analysis by considering the dataset-1 is depicted in Fig-
ure 14(a). The computation time computed by ANN, Improved GA+DBN,
Deep Autoencoder, and proposed WMSN-based Deep RNN are 17.586,
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17.416, 14.854, and 10.081 with 80% of training data. The analysis by
considering the dataset-2 is depicted in Figure 14(b). The computation time
computed by ANN, Improved GA-+DBN, Deep Autoencoder, and proposed
WMSN-based Deep RNN are 26.836, 25.802, 25.787, and 25.396 with
90% of training data. Thus, by considering the analysis the computation
time estimated by the proposed method is lower compared to the existing
technique.

5.6 Comparative Discussion

Table 1 shows the comparative discussion using sensitivity, accuracy, and
specificity. The maximal accuracy of 0.96 estimated by proposed WMSN-
based Deep RNN. In contrast, the existing ANN, Improved GA+DBN, and
Deep Autoencoder are 0.87, 0.93, and 0.91. The maximal sensitivity com-
puted by proposed WMSN-based Deep RNN is 0.973, whereas the existing
ANN, Improved GA+DBN, and Deep Autoencoder are 0.884, 0.931, and
0.889, respectively. The maximal specificity value measured by WMSN-
based Deep RNN is 0.973, whereas the existing ANN, Improved GA-+DBN,

Table 1 Comparative discussion

Proposed
WMSN-based

Improved Deep Deep

Variation Metrics ANN GA-+DBN Autoencoder RNN

Dataset 1 ~ Training  Accuracy  0.87 0.93 0.91 0.96
data Sensitivity 0.884 0.931 0.889 0.96

percentage  Specificity 0.907 0.946 0.936 0.973

Hidden Accuracy  0.87 0.927 0.89 0.94

neurons  Sensitivity 0.879 0.959 0.913 0.959

Specificity  0.86 0.937 0.897 0.941

Dataset2  Training  Accuracy 0.856 0.911 0.873 0.945

data Sensitivity  0.854 0.909 0.889 0.929

percentage  Specificity 0.882 0.925 0.904 0.964

Hidden Accuracy  0.843 0914 0.852 0.923

neurons  Sensitivity 0.848 0.926 0.903 0.958

Specificity  0.860 0.898 0.866 0.916
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and Deep Autoencoder are 0.907, 0.946, and 0.936 by considering the train-
ing data. Similarly, for the KDD cup1999 dataset outperformed other state of
art techniques.

The proposed WMSN-based Deep RNN outperformed other state of
art technique in terms of accuracy, sensitivity and the specificity. This
performance enhancement is achieved because; the proposed optimization
algorithm has the fast convergence rate by the avoidance of the local minima.
Thus, by using this, the optimization efficiency is achieved with faster per-
formance. Besides, the deep RNN has the ability to process the input of any
length and has the ability to remember the information because it depends on
the previous iteration. Thus, the proposed method obtains the effective overall
performance enhancement for the intrusion detection.

6 Conclusion

The intrusion detection in IoT is evaluated using the Deep RNN to enhance
the detection accuracy. Existing techniques of the intrusion detection based
on ANN reveal poor performance, which is addressed based on developed
model of detection. This is carried out based on selected features derived
from pre-processing data. The Wrapper approach is used for feature selection
that provides better features for detecting the intrusion effectively in IoT.
Using the feature vectors, the intrusion detection is done by the proposed
WMSA-based Deep RNN that detects the intrusion behavior using the lowest
fitness value. Experimentation of the developed model is performed using
BOT-IoT dataset. The classification is highly precise and the developed
method using performance metrics reveal that the proposed WMSA-based
Deep RNN attained a maximal accuracy, sensitivity and specificity of 0.96,
0.960, and 0.973. However, the proposed method has the gradient vanishing
problem and the training time required is little greater. Hence, in future, the
efficiency of proposed method will be evaluated using other datasets. Besides,
the efficiency of the classifier will be explored using the other optimization
technique.
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