
Water Moth Search Algorithm-based Deep
Training for Intrusion Detection in IoT

Rekha P. M.1,∗ and Nagamani H. Shahapure2, Punitha M.2

and Sudha P. R.2

1Department of Information Science and Engineering, JSS Academy of Technical
Education, Dr. Vishnuvardhana Road, Bengalru-560060, Karnataka, India
2Department of Information Science, JSS Academy of Technical Education,
Bangalore, Karnataka, India
E-mail: rekhapm12@gmail.com
∗Corresponding Author

Received 09 January 2021; Accepted 15 July 2021;
Publication 21 September 2021

Abstract

The economic growth and information technology leads to the development
of Internet of Things (IoT) industry and has become the emerging field of
research. Several intrusion detection techniques are introduced but the detec-
tion of intrusion and malicious activities poses a challenging task. This paper
devises a novel method, namely the Water Moth Search algorithm (WMSA)
algorithm, for training Deep Recurrent Neural Network (Deep RNN) to detect
malicious network activities. The WMSA algorithm is newly devised by com-
bining Water Wave optimization (WWO) and the Moth Search Optimization
(MSO). The pre-processing is employed for the removal of redundant data.
Then, the feature selection is devised using the Wrapper approach, then using
the selected features; the Deep RNN classifier effectively detects the intrusion
using the selected features. The proposed WMSA-based Deep RNN showed
improved results with maximal accuracy, specificity, and sensitivity of 0.96,
0.973 and 0.960.

Journal of Web Engineering, Vol. 20 6, 1781–1812.
doi: 10.13052/jwe1540-9589.2064
© 2021 River Publishers

1782 Rekha P. M. et al.

Keywords: Internet of things, intrusion detection, water wave optimization,
deep recurrent neural network, moth search optimization.

Nomenclature
Abbreviation Definition
IoT Internet of Things
WWO Water wave optimization
MSO Moth Search Optimization
WMSA Water Moth Search algorithm
IDS Intrusion detection system
NIDS Network-based intrusion detection system
AI Artificial Intelligence
RNN Recurrent Neural Network
N-BaIoT Network-Based Detection of IoT Botnet Attacks
BRIoT Behavior rule specification based IoT
COLIDE Collaborative intrusion detection framework
6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks
PCA Principal component analysis
VM Virtual Machines
NIC Network Interface Cards
WAN Wide area network
LAN Local area network
IP Internet Protocol
DDoS Distributed denial of service
ANN Artificial Neural Network
GA+DBN Genetic Algorithm and Deep Belief Network

1 Introduction

IoT is one of the third industrial revolution [1, 9], which is interconnected
through the Internet of the computing devices embedded in objects that
enables for sending and receiving data [1, 10]. IoT is utilized in vari-
ous fields, like domestic, healthcare, energy distribution, finances, tourism,
transportation, and the smart-cities [1, 11]. The rapid growth of IoT tech-
nology is utilized for household appliances that improve the life qual-
ity [2, 12]. In addition, the IoT is distributed nature, and openness, which
leads to the attacks [13–15]. Additionally, several IoT nodes store, pro-
cess, and collect information privately, but they are apparent to malicious

Water Moth Search Algorithm-based Deep Training 1783

attackers [16]. Hence, maintaining privacy of the IoT is the priority of
successfully deploying the IoT environment [2, 17]. The application of IoT
involves people’s livelihood, industry, military, and commerce, where the
authentication is more essential. If information security issue exists, the
losses and damage are very dangerous. The provision of authentication and
integrity is still challenging. Hence, the privacy preserving in the IoT is very
essential [8, 13].

Intrusion detection is one of the significant steps that ensure IoT secu-
rity networks. Intrusion detection having various security mechanisms to
manage the security intrusions, which are detected using four layers of IoT
architecture. The Network Layer serves as the backbone to connect various
IoT devices, like Network Intrusion Detection Systems (NIDS) [2, 18]. As
the indispensable technology in the authentication of the network, intrusion
detection monitors abnormal behavioral dynamically the model to check
whether the events are susceptible to attack [3, 14, 19]. In addition, the
intrusion detection approaches are categorized into two types. Generally,
anomaly better accesses the systems automatically and detects the incoming
intrusions. It recognizes the attacks, but still, false alarms may arise. An IDS
is the best technique to identify the attackers [7, 20] and detects the policy
violations or the malicious activities of system actives or the network traffics
[7, 15, 21]. Intrusion Detection is a third-part software or stand-by device
that inquires several changes; hence, it is appropriate for inherited systems or
resource constraints to protect network security.

NIDS has been scrutinized for achieving the conventional devices
securely since the 1980s [11, 24]. Conventional NIDS are lacking for the
IoT systems because of limited power, heterogeneity, constrained resources,
and connectivity [1, 22, 23]. Hence, the IDSs of IoT systems is relevant.
The popular strategies deployed between the IoT systems are the NIDSs or
IDSs for the connected smart Things. Several IDS approaches are performed
using cluster analysis [2, 25], statistical analysis [2, 25], deep training [2, 27],
and artificial neural network [2, 26]. Among the aforementioned techniques,
deep training outperformed other techniques [2, 28]. Artificial Intelligence
(AI) becomes very popular for intelligent detection to solve the issues.
AI-enabled schemes discover the deep knowledge automatically from his-
torical data, which makes wise judgments for predicting network intrusions
[3, 29, 30]. Automata-enabled intrusion detection method uses Labeled Tran-
sition Systems’ extension to introduce the uniform description to detect
IoT networks intrusions effectively. This model describes heterogeneous
networks with graphs and terms, and other IDS algorithms detect intrusions

1784 Rekha P. M. et al.

by distinguishing abstracted action flows to solve the problems mentioned
above [7].

The research aims to design the intrusion detection method in IoT using
the proposed WMSA-based Deep RNN. Initially, the input is subjected to
the pre-processing module for eliminating the redundant data. Consequently,
the Wrapper approach is introduced for feature selection, where the feature
subset selection algorithm searches good subsets to evaluate the feature
subsets. Finally, the Deep RNN is trained using the developed WMSA, which
is integrated with WWO and the MSO.

The major contributions of the paper are:

• Proposed WMSA: The proposed WMSA optimization algorithm is
developed by integrating the WWO and the MSA algorithm for the
optimal tuning of weights and biases of the Deep RNN classifier.

• Proposed WMSA-based Deep RNN for intrusion detection in IoT:
The proposed WMSA-based Deep RNN is adapted for detecting intru-
sions in IoT. Here, the Deep RNN is trained by the proposed WMSA.

The remaining sections of the paper are arranged as follows: Section 2
elaborates the the conventional techniques with the challenges faced. Then,
the system model of IoT is described in Section 3, and the proposed method
for intrusion detection using WMSA-based Deep RNN is portrayed in Sec-
tion 4. Finally, the outcomes of the proposed strategy is provided in Section 5,
and Section 6 present the conclusion.

2 Literature Survey

The existing techniques of intrusion detection in IoT and its limitations are
deliberated below: Nadia Chaabouni et al. [1] devised IDS for IoT security.
This framework employed the systems with their mobility, heterogeneity, and
IoT-specific challenges. The method provides an optimal success rate in pri-
vacy and security. Still, more efforts are needed to detect zero-day attacks and
IDSs were developed to update the considered attacks. Ying Zhang et al. [2]
developed IDS. In addition, the optimization technique helps to achieve the
high detection rate. The method needs more time for the training process.
Jiaqi Li et al. [3] presented Artificial Intelligence (AI)-enabled IDS for IoT
networks. This approach flexibly captured the flow of the network with a
global view and detected the attack intelligently. Initially, the Bat algorithm
with binary differential mutation and the swarm division was introduced for
selecting the appropriate features. After that, the random forest was employed

Water Moth Search Algorithm-based Deep Training 1785

for changing the sample weights based on weighted voting for classifying the
flows. The method failed to consider real networks for traffic classification
to improve the system’s performance. Yair Meidan et al. [4] developed an
approach for IoT, termed N-BaIoT, for extracting the behavior snapshots of
the network. Besides, autoencoders were used to detect the traffic of the IoT
devices. This methodology needs more time to detect the intrusion.

Vishal Sharma et al. [5] presented a behavior rule specification-enabled
misbehavior detection method, termed BRIoT, to detect intrusion in cyber-
security systems. This approach was utilized for verifying behavior rules
correctly but the method failed to consider IoT- embedded CPSs due to high
run time and memory,. Junaid Arshad et al. [6] modeled collaborative intru-
sion detection framework (COLIDE) in IoT. This framework combines host
and network-enabled detection for effectively achieving intrusion detection
based on 6LoWPAN. The method did not find the detection accuracy better.
Yulong Fu et al. [7] developed IDS for the IoT networks. This is the exten-
sion of the Labelled Transition system. The method failed to include other
methods for describing and evaluating the contents of translating packets.
Lianbing Deng et al. [8] a presented transfer training algorithm for detecting
the mobile network intrusion detection. This framework uses the combination
of Fuzzy C-means clustering and Principal component analysis (PCA) for
detecting the intrusion. The method improves detection efficiency with a
lower false-positive rate, but constructing a good combination classifier was
difficult.

2.1 Challenges

The challenges confronted by the conventional strategies are deliberated
below:

• In [2], the deep training based IDS was developed to detect intrusion
in IoT. However, this method failed to optimize the deep network
parameters.

• In intrusion detection, the low detection efficiency exists because of
obtained high false-positive rate. This aspect is explained by the lack
of good studies on intrusion events, challenging [31].

• Intrusion detection at edge router failed to consider devices’ behavior
that leads to maximal communication overheads among nodes [6].

• The absence of the assessment methodologies, appropriate metrics, and
the general framework used to evaluate alternative IDS techniques is
challenging [31].

1786 Rekha P. M. et al.

3 IoT System Configuration Model

The system configuration of IoT to detect the intrusion and is shown in
Figure 1. IoT networks contain typical network elements, including a work-
station, routers, IoT devices, and laptops. The network platforms initially
include the attacking and normal Virtual Machines (VMs) and tap and the
firewall. In addition, the two Network Interface Cards (NICs) and the packet
filtering firewall are configured in the environment. In this case, one NIS is
configured in WAN, whereas another in LAN. The main purpose of using the
firewall ensures the dataset labeling process validity and the network access
are managed by monitoring the outgoing and the incoming network packets.
VMs are utilized to communicate through the Internet, pass the traffic based

Figure 1 System configuration model of IoT network.

Water Moth Search Algorithm-based Deep Training 1787

on the PFSense machine, pass the traffic using switch, and second firewall
are further routed into the Internet. The VMs of attacking machines works
DDoS, port scanning, and other Botnet related attacks [37].

4 Proposed Water Moth Search Algorithm-based Deep
RNN for Intrusion Detection in IoT

This research aims to devise an intrusion detection strategy using the
proposed WMSA-based Deep RNN [32]. Initially, the redundant data is
eliminated using the pre processing step. Then the feature selection is done
by using the wrapper approach to employ the further processing. Then, the
classification is employed using Deep RNN, which is learned by newly
devised WMSA. The developed WMSA algorithm integrates WWO [34] and
MSA [35], The schematic view of the developed WMSA-based Deep RNN
as shown in Figure 2.

Let, G be the input data with the attributes is represented as

G = {GMN}; (1 ≤M ≤ D); (1 ≤ N ≤ Y) (1)

where, the term GMN refers to the M th data record in N th attribute, D is the
data point, and Y is the attributes, and [D × Y] is the database size.

4.1 Pre-processing

Pre-processing is considered an important stage used for processing of thou-
sands of data for the efficient performance enhancement. The pre-processing

Figure 2 Proposed WMSA-based Deep RNN model for intrusion detection in IoT.

1788 Rekha P. M. et al.

is utilized for describing the processing of data for better representations.
Then, the pre-processed data is expressed as K with [D × Y] dimension.

4.2 Wrapper Approach for Feature Selection

After pre-processing, the feature selection is considered as a significant
method for mining the significant data. This step is essential for eliminating
the noisy features from the massive datasets to design robust training models.
A large number of features causes may generate the complexity by slowing
the training process and maximizes the risk of a learned classifier, which
may lead to overfitting of data confusion. Thus, the selection of appropriate
features may bring more advantages to the real-world application. The data
K is taken for selecting the features. The feature selection is employed using
the wrapper approach [33] for choosing optimal features for better detection.
The resultant selected features are represented as R. Now, the dimension G
becomes [D ×O], such that O < Y .

4.3 Proposed Water Moth Search Algorithm-based Deep RNN for
Detecting Intrusion in IoT

The intrusion detection in IoT using the developed WMSA-based Deep
RNN is presented. The selected featuresRare taken as the input of intrusion
detection using Deep RNN, and the training is carried out based on devel-
oped WMSA, which is the combination of WWO [34] and MSO [35]. The
proposed WMSA-based Deep RNN detects the intrusion by tuning optimal
weights in Deep RNN for intrusion detection in IoT. The explanation and the
architecture of Deep RNN and its training procedure are given below.

(a) System model of Deep recurrent neural network
Deep RNN [32] can accept the input feature vector of any length. Besides,
it uses the information of the previous iteration for the processing of the
current information. Hence, the above mentioned features help the classifier
to generate the output more accurately and effectively. Also, it is better
compared the conventional classifiers due to its sequential processing. Figure
3 shows the system model of Deep RNN.

The input vector of ath layer at sth time, and is represented as
R(a,s) = {r(a,s)1 , r

(a,s)
2 , . . . r

(a,s)
i , . . . r

(a,s)
y } andH(a,s) = {H(a,s)

1 ,H(a,s)
2 , . . .

H
(a,s)
i , . . . H

(a,s)
x } refers to the output of a at time s as J (b,r) =

{J (b,r)
1 , J

(b,r)
2 , . . . J

(b,r)
i , . . . J

(b,r)
y }, respectively. The unit is the combination

Water Moth Search Algorithm-based Deep Training 1789

Figure 3 Structure of Deep RNN classifier.

of the output and input pair. Let y is the units present in ath layer, and 1 is
the arbitrary unit. Besides, the total units of (a − 1)th layer is k and D. The
weights of (a−1) to a is represented as U (a) ∈ Ix×D, and y(a) ∈ Ix×x is the
layer b’s recurrent weight. I is the weights set. The input vector components
are given by,

R
(a,s)
j =

D∑
u=1

q
(a)
ju H

(a−1,s)
u +

x∑
j′

v
(a)
jj′H

(a,s−1)
j′ (2)

where, the terms q(a)ju and v(a)jj′ refer to the elements of U (a) and y(a), the term
j′ is the layer a’s arbitrary number. The output vector at layer a is,

H
(a,s)
j = α(a)(R

(a,s)
j) (3)

where, α(a) is the activation function In addition, α(R) = 1
(1+e−R)

be the

logistic sigmoid function, the sigmoid function, denoted as β(R) = tanh(R),
and rectified linear unit function (ReLU), is specified as β(F) = max(R, 0).

1790 Rekha P. M. et al.

The process is simplified and is expressed by,

H(a,s) = α(a) · (U (a)H(a−1,s) + v(a) ·H(a,s−1)) (4)

Where, H(a,s) is the classifier’s output.

(b) Training of Deep recurrent neural network using Water Moth
Search algorithm
The proposed WWSA integrates WWA and MSA and is used to train the
Deep RNN. The searching behavior of moths inspires the MSA [35], and the
solution is an update of its position change. The behavior of moths consider
in MSA are phototaxis and the levy flight. In addition, it negotiates the
complex operations, so the execution of MSA is flexible and easy. Similarly,
the WWO [34] is motivated by the waves to enhance the optimization issues
by enhancing the dimensionality. As a result, the method can attain a trade-off
between exploration and exploitation. Moreover, it speeded the convergence
process. Hence, the combination of WWO and MSA modelled to improve the
performance. The algorithmic procedure is illustrated below.

(a) Initialization: The moth’s location is initialized randomly. The solution
space containing enumber of the moths, and it is given below,

X = [Xq]; 1 ≤ q ≤ S (5)

where, Xq signifies the qth moth, and S denotes the total count of moths.

(b) Fitness evaluation: It is calculated for the estimation of optimal solution
to find best solution by updating the location.

MSE =
1

g

 g∑
p=1

Qtarget −H(a,s)

 (6)

where, g is the total sample of training, H(a,s) and Qtarget are the estimated
and target output of the classifier.

(c) Location update using levy flights: Once fitness is evaluated, then the
updated solution using levy flight, and the equation is expressed as,

Xs+1
q = Xs

q + η · P (x) (7)

where, the term Xs
q indicates the moth location at sth iteration, and levy flight

movement is denoted as P (x). The parameter η represents the scaling factor
and is given by,

η =
Hmax

s2
(8)

Water Moth Search Algorithm-based Deep Training 1791

where, the term Hmax signifies the maximal step walk, and the term s refer
to the current iteration. The levy distribution equation is given by,

P (x) =
(µ− 1)Γ(µ− 1) sin

(
π(µ−1)

2

)
πxµ

(9)

where, the term x exceeds 0.Γ(z), then it is said to be gamma function.

(d) Fly straightly: The updated solution based on the position of the mothq;
their flight is formulated by,

Xs+1
q = ϑ× (Xs

q + α · (Xs
best −Xs

q)) (10)

Xs+1
q = ϑXs

q + ϑαXs
best − ϑαXs

q (11)

Xs+1
q = Xs

q(ϑ− ϑα) + ϑαXs
best (12)

where, the term Xs
best refer to the optimal position of moth, and the term α

refer to acceleration, ϑ signifies the scaling function. When the movement of
fly is straight, the moth’s position is influenced by the position of light source.
To enhance the system’s performance and tackle the optimization problems
of MSA, the WWO algorithm is utilized. As per WWO, its propagation for
updation is represented by,

Xs+1
q = Xs

q +Rand(−1, 1)ρJb (13)

Xs
q = Xs+1

q −Rand(−1, 1)ρJb (14)

Substitute Equation (14) in Equation (12), the solution becomes,

Xs+1
q = (Xs+1

q −Rand(−1, 1)ρJb)(ϑ− ϑα) + ϑαXs
best (15)

Xs+1
q = Xs+1

q (ϑ− ϑα)−Rand(−1, 1)ρJb(ϑ− ϑα) + ϑαXs
best (16)

Xs+1
q −Xs+1

q (ϑ− ϑα) = ϑαXs
best −Rand(−1, 1)ρJb(ϑ− ϑα) (17)

Xs+1
q (1− ϑ+ ϑα) = ϑαXs

best −Rand(−1, 1)ρJb(ϑ− ϑα) (18)

Thus, the final update equation of the proposed WMSA-based Deep RNN
is expressed as,

Xs+1
q =

1

1− ϑ+ ϑα
[ϑαXs

best −Rand(−1, 1)ρJb(ϑ− ϑα)] (19)

1792 Rekha P. M. et al.

where, the term ρ denotes the wavelength, the Jb signifies the length of bth

dimension of search space, and the terms ϑ and α represent the scaling factor
and the acceleration.

(e) Best solution evaluation: After updating the location, the solution space
calculates the fitness. After the identification of new solution, the older
solution is replaced by new.

(f) Termination: The steps (b–e) are repeated until the attainment of the best
solution. Algorithm 1 portrays the pseudo-code of the proposed WMSA-
based Deep RNN algorithm.

Algorithm 1 Pseudo-code for the proposed WMSA-based Deep RNN algorithm.

Input: Moths population Sqq 1;
Output: Best solution
Procedure:
Begin
Initialized the moth population
Fitness function computation
 While IterationsMaximalMaxGens (
 Arrange the moth individuals

 for 1q to
2
S do

 levy flights equation is generated using equation (7)
 end for q

 for
12

Sq to S do

 If 5.0rand then
Compute 1s

q using equation (10)
 Else
 Generate 1s

q using equation (19)
 End if
 End for q
 New solutions are found out and intensities are compared
again

1ss
 end while
 Best solution is obtained
 End

Water Moth Search Algorithm-based Deep Training 1793

5 Results and Discussion

The evaluation of the proposed methodology by considering the performance
metrics is illustrated in this section.

5.1 Experimental Setup

The experimental analysis is employed in Python using a PC with 2GB RAM,
the Intel i3 core processor, and Windows 10 OS.

5.2 Description of Dataset

The performance is employed using the BoT-IoT dataset [36]. This dataset
is created to design the network environment for performing the intrusion
detection mechanism. It integrates the Botnet and normal traffic. The CSV
files, argus files, and pcap files, are the different format of source file. The
pcap files are 69.3 GB in dimension, with 72.000.000 records. The csv format
in extracted flow traffic is 16.7 GB in size. Besides, it has DoS, DDoS, key-
logging, and service scan attacks based on the protocol. The KDD cup 1999
dataset [38] comprises of content features, traffic features, and basic features.
In addition, it has 24 training attack and additional 14 test data attack.

5.3 Evaluation Metrics

The performance of the proposed RWW-based NN is analyzed by concerning
metrics, like sensitivity, accuracy, and specificity.

5.3.1 Accuracy
It is closeness of the expected output, and is represented as,

Accuracy =
Tp + Tn

Tp + Tn + Ep + En
(20)

where, Tp represent true positive, Ep indicate false positive, Tn indicate true
negative, and En represents false negative, respectively.

5.3.2 Sensitivity
It is the measure of positives detected by the developed method, and it is
represented as,

Sensitivity =
Tp

Tp + En
(21)

1794 Rekha P. M. et al.

5.3.3 Specificity
It is the measure of negatives detected by the developed method and is
formulated as.

Specificity =
Tn

Tn + Ep
(22)

5.4 Performance Analysis

The performance of the developed technique is evaluated by varying the input
features and the hidden neurons numbers. Finally, the analysis is evaluated
based on the metrics.

5.4.1 Analysis using dataset-1
The WMSA-based Deep RNN’s performance is analyzed by BoT-IoT dataset
is detailed in this section.

(a) Analysis based on input features
Figure 4 depicts the based on input features. The analysis using accuracy is
shown in Figure 4(a). The accuracy value estimated by WMSA-based Deep
RNN with number of features 6, 9, 12, and 15 with 90% of training data
is 0.929, 0.937, 0.938, and 0.935. The analysis using sensitivity is depicted
in Figure 4(b). The sensitivity evaluated by proposed model with number of
features 6, 9, 12, and 15 for 90% of training data are 0.929, 0.938, 0.942,
and 0.958. The specificity analysis is depicted in Figure 4(c). The specificity
evaluated by the proposed model with number of features 6, 9, 12, and 15 for
90% of training data are 0.974, 0.976, 0.977, and 0.982.

(b) Analysis using hidden neurons
The analysis by considering different hidden neurons is illustrated in Fig-
ure 5. Figure 5(a) portrays the performance by evaluating the accuracy. The
accuracy value estimated by WMSA-based Deep RNN with hidden neurons
40, 60, 80, and 100 for 90% of training data is 0.907, 0.909, 0.928, and 0.948
respectively. The analysis using sensitivity is depicted in Figure 5(b). For the
hidden neurons 40, 60, 80, and 100 the sensitivity estimated by WMSA-based
Deep RNN using 90% of training data are 0.906, 0.948, 0.950, and 0.957. The
analysis using specificity is depicted in Figure 5(c). For hidden neurons 40,
60, 80, and 100 the specificity evaluated by WMSA-based Deep RNN for
90% of training data are 0.933, 0.934, 0.938, and 0.950.

Water Moth Search Algorithm-based Deep Training 1795

a) b)

c)

Figure 4 Performance analysis with number of features (a) accuracy, (b) sensitivity, (c) and
specificity.

5.4.2 Analysis using dataset-2
The WMSA-based Deep RNN’s performance is analyzed by KDD Cup 1999
Data dataset is detailed in this section.

(a) Analysis based on input features
Figure 6 depicts the analysis of input features. The analysis by considering the
accuracy is shown in Figure 6(a). The accuracy value estimated by WMSA-
based Deep RNN with number of features 6, 9, 12, and 15 using 90%
of training data is 0.912, 0.923, 0.932, and 0.944. The analysis based on
sensitivity is shown in Figure 6(b). The sensitivity evaluated by proposed
model with number of features 6, 9, 12, and 15 using 90% of training data
are 0.907, 0.910, 0.916, and 0.957. The analysis of specificity is depicted in
Figure 6(c). The specificity evaluated by the proposed model with number of

1796 Rekha P. M. et al.

a) b)

c)

Figure 5 Performance analysis with hidden neurons (a) accuracy, (b) sensitivity, (c) and
specificity.

features 6, 9, 12, and 15 using 90% of training data are 0.939, 0.945, 0.960,
and 0.968.

(b) Analysis using hidden neurons
The analysis by considering different hidden neurons is illustrated in Figure 7.
Figure 7(a) shows the performance analysis using accuracy. The accuracy
value estimated by WMSA-based Deep RNN with hidden neurons 40, 60,
80 and 100 using 90% of training data is 0.873, 0.894, 0.898, and 0.921. The
analysis by considering the sensitivity is shown in Figure 7(b). The sensitivity
with hidden neurons 40, 60, 80, and 100 estimated by WMSA-based Deep
RNN are 0.894, 0.921, 0.935, and 0.945. The analysis using specificity is
depicted in Figure 7(c). The specificity with hidden neurons 40, 60, 80, and
100 using 90% of training data are 0.918, 0.927, 0.929, and 0.932.

Water Moth Search Algorithm-based Deep Training 1797

a) b)

c)

Figure 6 Performance analysis with number of features (a) accuracy, (b) sensitivity, (c) and
specificity.

5.5 Comparative Techniques

The conventional techniques, Artificial Neural Network (ANN) [1], Improved
Genetic Algorithm and Deep Belief Network (Improved GA+DBN) [2], and
the Deep Autoencoder [4] are considered for the comparison analysis with
the developed WMSA-based Deep RNN.

5.5.1 Analysis using dataset-1
(a) Analysis of the intrusion detection with respect to training
data percentage
The comparative analysis of intrusion detection is shown in Figure 8.
Figure 8(a) depicts the analysis using accuracy based on training data percent-
ages. The accuracy computed by the proposed WMSN-based Deep RNN is
0.95, which is 9.4%, 5.2%, and 8.4% better than ANN, Improved GA+DBN,
and Deep Autoencoder, respectively for 80% of training data. The analysis

1798 Rekha P. M. et al.

a) b)

c)

Figure 7 Performance analysis with hidden neurons (a) accuracy, (b) sensitivity, (c) and
specificity.

by sensitivity is deliberated in Figure 8(b). The sensitivity computed by the
proposed model with 50% of training data is 0.883, which is 9.3%, 9.3%,
and 14.5% better than ANN, Improved GA+DBN, and Deep Autoencoder,
respectively. The analysis using specificity parameter is deliberated in Fig-
ure 8(c). The specificity computed by proposed WMSN-based Deep RNN
with 50% of training data is 0.915, which is 8.96%, 2.51%, and11.03%, better
than ANN, Improved GA+DBN, Deep Autoencoder.

(b) Analysis of the intrusion detection with respect to hidden
neurons
Figure 9 presents the analysis of methods by varying the hidden neurons
using performance metrics. The analysis using accuracy is deliberated in Fig-
ure 9(a). When hidden neurons = 80, the accuracy of methods computed by
ANN, Improved GA+DBN, Deep Autoencoder, and proposed WMSN-based

Water Moth Search Algorithm-based Deep Training 1799

a) b)

c)

Figure 8 Analysis of methods by varying the training data percentage (a) Accuracy (b)
Sensitivity (c) Specificity.

Deep RNN are 0.838, 0.91, 0.865, and 0.91. The sensitivity analysis is
deliberated in Figure 9(b). When hidden neurons = 100, the sensitivity of
methods computed by ANN, Improved GA+DBN, Deep Autoencoder, and
proposed WMSN-based Deep RNN are 0.871, 0.948, 0.880, and 0.954. The
specificity analysis is deliberated in Figure 9(c). When hidden neurons = 80,
the specificity of methods computed by ANN, Improved GA+DBN, Deep
Autoencoder, and proposed WMSN-based Deep RNN are 0.810, 0.892,
0.840, and 0.902.

5.5.2 Analysis using dataset-2
(a) Analysis based on training data percentage
The comparative analysis is shown in Figure 10 by varying the training
percentage. Figure 10(a) depicts the analysis using accuracy. The accuracy
computed by the ANN, Improved GA+DBN, and Deep Autoencoder using

1800 Rekha P. M. et al.

a) b)

c)

Figure 9 Analysis of methods by varying the hidden neurons (a) Accuracy (b) Sensitivity
(c) Specificity.

80% of training data are 10.8%, 5.52%, and 11.3% worse than the proposed
WMSN-based Deep RNN with the value of 0.941. The analysis by sensitivity
is deliberated in Figure 10(b). The sensitivity computed by ANN, Improved
GA+DBN, and Deep Autoencoder using 50% of training data are 10.18%,
8.33% and 12.9% worse than the proposed model with the value of 0.864.
The analysis using specificity parameter is deliberated in Figure 10(c). The
specificity computed by ANN, Improved GA+DBN, and Deep Autoencoder
using 80% of training data are 9.3%, 2.9% and 14.7% worse than the
proposed WMSN-based Deep RNN with the value of 0.909.

(b) Analysis of the intrusion detection with respect to hidden
neurons
Figure 11 presents the analysis of methods by varying the hidden neurons
in terms of performance metrics. Figure 11(a) shows the analysis using
accuracy. When hidden neurons = 80, the accuracy of methods computed

Water Moth Search Algorithm-based Deep Training 1801

a) b)

c)

Figure 10 Analysis of methods by varying the training data percentage (a) Accuracy (b)
Sensitivity (c) Specificity.

by ANN, Improved GA+DBN, Deep Autoencoder, and proposed WMSN-
based Deep RNN are 0.831, 0.874, 0.845, and 0.907. Figure 11(b) shows
the analysis using sensitivity. When hidden neurons = 100, the sensitivity
computed by ANN, Improved GA+DBN, Deep Autoencoder, and proposed
model are 0.848, 0.914, 0.878, and 0.952. Figure 11(c) shows the analysis
using specificity. When hidden neurons = 80, the specificity of methods
computed by ANN, Improved GA+DBN, Deep Autoencoder, and proposed
WMSN-based Deep RNN are 0.800, 0.889, 0.820, and 0.864.

5.5.3 Comparative analysis by considering Neptune attack
(a) Using dataset-1
Figure 12 depicts the comparative analysis by considering Neptune attack
by utilizing BoT-IoT dataset. The analysis by considering the accuracy is
illustrated in Figure 12(a). The accuracy evaluated by the proposed WMSN-
based Deep RNN is 13.7% better than ANN, 5.2% better than Improved

1802 Rekha P. M. et al.

a) b)

c)

Figure 11 Analysis of methods by varying the hidden neurons (a) Accuracy (b) Sensitivity
(c) Specificity.

GA+DBN and 11.19% better than Deep Autoencoder for 80% of training
data. The analysis by considering the sensitivity is illustrated in Figure 12(b).
The sensitivity computed by ANN, Improved GA+DBN, Deep Autoencoder,
and proposed WMSN-based Deep RNN using 90% of training data are 0.768,
0.802, 0.774, and 0.837. Figure 12(c) shows the analysis by considering the
specificity. The specificity computed by the proposed WMSN-based Deep
RNN is 9.3% superior to ANN, 1.7% superior than Improved GA+DBN and
14.76% superior than Deep Autoencoder for 60% of training data.

(b) Using dataset-2
Figure 13 depicts the comparative analysis of the proposed method by con-
sidering the Neptune attack using KDD Cup 1999 Data dataset. The accuracy
of the methods is illustrated in Figure 13(a). The accuracy computed by
ANN, Improved GA+DBN, and Deep Autoencoder are 9.3%, 5.8%, and

Water Moth Search Algorithm-based Deep Training 1803

(a) (b)

(c)

Figure 12 The comparative analysis using the Neptune attack for dataset-1 in terms of (a)
accuracy, (b) sensitivity and (c) specificity.

2.6% worse than the proposed WMSN-based Deep RNN with the value of
0.805 for 80% of training data. The analysis by considering the sensitivity
is illustrated in Figure 13(b). The sensitivity of methods computed by ANN,
Improved GA+DBN, Deep Autoencoder, and proposed WMSN-based Deep
RNN are 0.768, 0.830, 0.791, and 0.806 for 90% of training data. The analysis
by considering the specificity is illustrated in Figure 13(c). The specificity
computed by ANN, Improved GA+DBN, and Deep Autoencoder, are 11.8%,
2% and 6.9% worse than the and proposed WMSN-based Deep RNN with the
value of 0.750 for 60% of training data.

5.5.4 Analysis using computation time
The comparative analysis based on the computation time is illustrated in
Figure 14. The analysis by considering the dataset-1 is depicted in Fig-
ure 14(a). The computation time computed by ANN, Improved GA+DBN,
Deep Autoencoder, and proposed WMSN-based Deep RNN are 17.586,

1804 Rekha P. M. et al.

(a) (b)

(c)

Figure 13 The comparative analysis using the Neptune attack for dataset-2 in terms of (a)
accuracy, (b) sensitivity and (c) specificity.

(a) (b)

Figure 14 Comparative analysis based on the computation time (a) dataset-1 and (b)
dataset-2.

Water Moth Search Algorithm-based Deep Training 1805

17.416, 14.854, and 10.081 with 80% of training data. The analysis by
considering the dataset-2 is depicted in Figure 14(b). The computation time
computed by ANN, Improved GA+DBN, Deep Autoencoder, and proposed
WMSN-based Deep RNN are 26.836, 25.802, 25.787, and 25.396 with
90% of training data. Thus, by considering the analysis the computation
time estimated by the proposed method is lower compared to the existing
technique.

5.6 Comparative Discussion

Table 1 shows the comparative discussion using sensitivity, accuracy, and
specificity. The maximal accuracy of 0.96 estimated by proposed WMSN-
based Deep RNN. In contrast, the existing ANN, Improved GA+DBN, and
Deep Autoencoder are 0.87, 0.93, and 0.91. The maximal sensitivity com-
puted by proposed WMSN-based Deep RNN is 0.973, whereas the existing
ANN, Improved GA+DBN, and Deep Autoencoder are 0.884, 0.931, and
0.889, respectively. The maximal specificity value measured by WMSN-
based Deep RNN is 0.973, whereas the existing ANN, Improved GA+DBN,

Table 1 Comparative discussion

Proposed
WMSN-based

Improved Deep Deep
Variation Metrics ANN GA+DBN Autoencoder RNN

Dataset 1 Training Accuracy 0.87 0.93 0.91 0.96

data Sensitivity 0.884 0.931 0.889 0.96

percentage Specificity 0.907 0.946 0.936 0.973

Hidden Accuracy 0.87 0.927 0.89 0.94

neurons Sensitivity 0.879 0.959 0.913 0.959

Specificity 0.86 0.937 0.897 0.941

Dataset 2 Training Accuracy 0.856 0.911 0.873 0.945

data Sensitivity 0.854 0.909 0.889 0.929

percentage Specificity 0.882 0.925 0.904 0.964

Hidden Accuracy 0.843 0.914 0.852 0.923

neurons Sensitivity 0.848 0.926 0.903 0.958

Specificity 0.860 0.898 0.866 0.916

1806 Rekha P. M. et al.

and Deep Autoencoder are 0.907, 0.946, and 0.936 by considering the train-
ing data. Similarly, for the KDD cup1999 dataset outperformed other state of
art techniques.

The proposed WMSN-based Deep RNN outperformed other state of
art technique in terms of accuracy, sensitivity and the specificity. This
performance enhancement is achieved because; the proposed optimization
algorithm has the fast convergence rate by the avoidance of the local minima.
Thus, by using this, the optimization efficiency is achieved with faster per-
formance. Besides, the deep RNN has the ability to process the input of any
length and has the ability to remember the information because it depends on
the previous iteration. Thus, the proposed method obtains the effective overall
performance enhancement for the intrusion detection.

6 Conclusion

The intrusion detection in IoT is evaluated using the Deep RNN to enhance
the detection accuracy. Existing techniques of the intrusion detection based
on ANN reveal poor performance, which is addressed based on developed
model of detection. This is carried out based on selected features derived
from pre-processing data. The Wrapper approach is used for feature selection
that provides better features for detecting the intrusion effectively in IoT.
Using the feature vectors, the intrusion detection is done by the proposed
WMSA-based Deep RNN that detects the intrusion behavior using the lowest
fitness value. Experimentation of the developed model is performed using
BOT-IoT dataset. The classification is highly precise and the developed
method using performance metrics reveal that the proposed WMSA-based
Deep RNN attained a maximal accuracy, sensitivity and specificity of 0.96,
0.960, and 0.973. However, the proposed method has the gradient vanishing
problem and the training time required is little greater. Hence, in future, the
efficiency of proposed method will be evaluated using other datasets. Besides,
the efficiency of the classifier will be explored using the other optimization
technique.

References

[1] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki.
2019. Network intrusion detection for IoT security based on training

Water Moth Search Algorithm-based Deep Training 1807

techniques. IEEE Communications Surveys and Tutorials, 21: 2671–
2701.

[2] Y. Zhang, P. Li, and X. Wang. 2019. Intrusion detection for IoT based
on improved genetic algorithm and deep belief network. IEEE Access,
7: 31711–31722.

[3] J. Li, Z. Zhao, R. Li, H. Zhang, and T. Zhang. 2018. AI-based two-stage
intrusion detection for software defined iot networks. IEEE Internet of
Things Journal, 6(2): 2093–2102.

[4] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Bre-
itenbacher, and Y. Elovici. 2018. N-baiot—network-based detection of
iot botnet attacks using deep auto encoders. IEEE Pervasive Computing,
17(3): 12–22.

[5] V. Sharma, I. You, K. Yim, R. Chen, and J.-H. Cho. 2019. BRIoT:
Behavior Rule Specification-Based Misbehavior Detection for IoT-
Embedded Cyber-Physical Systems. IEEE Access, 7: 118556–118580.

[6] J. Arshad, M. A. Azad, M. M. Abdellatif, M. H. U. Rehman, and K.
Salah. 2018. COLIDE: a collaborative intrusion detection framework
for Internet of Things. IET Networks, 8(1): 3–14.

[7] Y. Fu, Z. Yan, J. Cao, O. Koné, and X. Cao. 2017. An automata based
intrusion detection method for internet of things. Mobile Information
Systems.

[8] L. Deng, D. Li, X. Yao, D. Cox, and H. Wang. 2019. Mobile network
intrusion detection for IoT system based on transfer training algorithm.
Cluster Computing, 22(4): 9889–9904.

[9] J. Rifkin. 2014. The Zero Marginal Cost Society: The Internet of Things,
the Collaborative Commons, and the Eclipse of Capitalism: Book.

[10] Grau. 2014. The Internet of Secure Things What is Really Needed to
Secure the Internet of Things? j Icon Labs.

[11] O. Vermesan, and P. Friess. 2014. Internet of Things Applications –
From Research and Innovation to Market Deployment Book. River
Publishers.

[12] A.-S. Abduvaliyev, K. Pathan, J. Zhou, R. Roman, and W.-C. Wong.
2013. On the Vital Areas of Intrusion Detection Systems in Wireless
Sensor Networks. Communications Surveys and Tutorials, IEEE, 15:
1223–1237.

[13] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini. 2015. Secu-
rity, privacy and trust in internet of things: The road ahead. Computer
Networks, 76: 146–164.

1808 Rekha P. M. et al.

[14] F. Muhammad, W. Anjum, and K. S. Mazhar. 2015. A Critical Anal-
ysis on the Security Concerns of Internet of Things (IoT). Perception,
111: 1–6.

[15] T. Borgohain, U. Kumar, and S. Sanyal. 2015. Survey of Operating
Systems for the IoT Environment. arXiv preprint arXiv:1504.02517, 6:
2479–2483.

[16] H. Haddad Pajouh, A. Dehghantanha, R. Khayami, and K.-K. R. Choo.
2018. A deep Recurrent Neural Network based approach for Internet of
Things malware threat hunting. Future Generation Computer Systems,
85: 88–96.

[17] M. Conti, A. Dehghantanha, K. Franke, and S. Watson. 2017. Internet of
Things Security and Forensics: Challenges and Opportunities. Elsevier
Future Generation Computer Systems Journal, 78: 544–546.

[18] H. Haddad Pajouh, R. Javidan, R. Khayami, D. Ali, and K.-K. R. Choo.
2016. A two-layer dimension reduction and two-tier classification model
for anomaly-based intrusion detection in IoT backbone networks. IEEE
Transactions on Emerging Topics in Computing, (99): 1–1.

[19] T. A. Tang, L. Mhamdi, D. M. Lernon, S. A. R. Zaidi, and M. Ghogho.
2018. Deep training approach for network intrusion detection in soft-
ware defined networking. In proceedings of International Conference
on Wireless Networks and Mobile Communications.

[20] B. Arrington, L. E. Barnett, R. Rufus, and A. Esterline. 2016. Behav-
ioral modeling intrusion detection system (BMIDS) using internet of
things (IoT) behavior-based anomaly detection via immunity inspired
algorithms. In Proceedings of the 25th International Conference on
Computer Communication and Networks (ICCCN’16), 1–6.

[21] V. Kumar, and P. Sangwan. 2012. Signature Based Intrusion Detection
System Using SNORT. International Journal of Computer Applications
& Information Technology, 1(3).

[22] S. Raza, L. Wallgren, and T. Voigt. 2017. SVELTE: Real-time intrusion
detection in the Internet of Things. Ad Hoc Networks, 11(8): 2661–2674.

[23] E. Bertino, and N. Islam. 2017. Botnets and Internet of Things Security.
Computer, 50(2): 76–79.

[24] W. Lee and S. J. Stolfo. 1998. Data mining approaches for intrusion
detection. In Proceedings of the 7th USENIX Security Symposium. San
Antonio, TX, 120–132.

[25] L. Khan, M. Awad, and B. Thuraisingham. 2007. A new intrusion detec-
tion system using support vector machines and hierarchical clustering.
VLDB J., 16(4): 507–521.

Water Moth Search Algorithm-based Deep Training 1809

[26] E. Hodo, X. Bellekens, A. Hamilton, P.-L. Dubouilh, E. Iorkyase, C.
Tachtatzis, and R. Atkinson. 2016. Threat analysis of iot networks
using artificial neural network intrusion detection system. in 2016 Inter-
national Symposium on Networks, Computers and Communications
(ISNCC), 1–6.

[27] A. Diro, and N. Chilamkurti. 2017. Distributed attack detection scheme
using deep training approach for Internet of Things. Future Generat.
Comput. Syst., 282: 761–768.

[28] R. Beghdad. 2008. Critical study of neural networks in detecting
intrusions. Computers and Security, 27: 168–175.

[29] L. Buczak, and E. Guven. 2017. A survey of data mining and machine
training methods for cyber security intrusion detection. IEEE Commu-
nications Surveys and Tutorials, 18(2): 1153–1176.

[30] R. Li, Z. Zhao, X. Zhou, G. Ding, Y. Chen, Z. Wang, and H. Zhang.
2017. Intelligent 5G: When cellular networks meet artificial intelligence.
IEEE Wireless Communications, (99): 2–10.

[31] Garcia-Teodoro, and J. Diaz-Verdejo. 2009. Anomaly-based network
intrusion detection: Techniques, systems and challenges. computers &
security, 28(1–2): 18–28.

[32] M. Inoue, S. Inoue, and T. Nishida. 2018. Deep recurrent neural network
for mobile human activity recognition with high throughput. Artificial
Life and Robotics, 23(2): 173–185.

[33] R. Kohavi, and G. H. John. 1997. Wrappers for feature subset selection.
Artificial intelligence, 97(1–2): 273–324.

[34] Y.-J. Zheng. 2015. Water wave optimization: a new nature-inspired
metaheuristic. Computers & Operations Research, 55: 1–11.

[35] G.-G. Wang. 2018. Moth search algorithm: a bio-inspired metaheuristic
algorithm for global optimization problems. Memetic Computing, 10(2):
151–164.

[36] BOT IOT dataset taken from. https://www.unsw.adfa.edu.au/unsw-canb
erra-cyber/cybersecurity/ADFA-NB15-Datasets/bot iot.php. accessed
on April 2020.

[37] N. Koroniotis, N. Moustafa, E. Sitnikova, B. Turnbull. 2018. Towards
the Development of Realistic Botnet Dataset in the Internet of Things
for Network Forensic Analytics: Bot-IoT Dataset.

[38] KDD cup 1999 dataset. “http://kdd.ics.uci.edu/databases/kddcup99/kdd
cup99.html” last accessed on July, 2021.

https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/bot_iot.php
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/bot_iot.php
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

1810 Rekha P. M. et al.

Biographies

Rekha P. M. is currently working as an Associate Professor and Head
of the Department Information Science and Engineering, JSS Academy of
Technical Education, Bangalore and has twenty years of teaching experi-
ence. Completed PhD in Cloud Computing, VTU with BMS as research
center. Published several 20 papers in national and international journals
which includes Scopus indexed and web of science journals. Have car-
ried out invited talks which includes technical talk on IOT and workshop
on Cloud Simulators. She is a member of IRED, IAENG, ISTE. FIELD
OF RESEARCH: Internet of Things, Cloud Computing, Microcontroller &
Embedded systems.

Nagamani H Shahapure has been associated with JSSATE, Bangalore since
2001. Has over 23 years of experience, which includes 3 years in Infosys
and 20 years in JSS. Completed BE in CSE from PDA College of Engg.
Gulbarga University in 1995. MTech from BMS College of Engineering,
VTU. Completed PhD in Cloud Computing, VTU with BMS as research
center. Published several (13) papers in national and international journals
which includes Scopus indexed journals.Have carried out invited talks which
includes technical talk on chatbots and workshop on Cloud Simulators,

Water Moth Search Algorithm-based Deep Training 1811

FIELD OF RESEARCH: Cloud Computing, Edge Computing, Fog Comput-
ing, Serverless Computing, Open Source and Web Technologies.

Punitha M. is currently working as an Assistant Professor in Information
Science and Engineering Department, JSS Academy of Technical Education,
Bangalore and has two years of teaching experience. Research interest in
Internet of Things, Cloud computing and Python Programming. Attended
several FDP’s and Workshop.

Sudha P. R. is currently working as an Assistant Professor in Information
Science and Engineering Department, JSS Academy of Technical Education,
Bangalore and has fifteen years of teaching experience. Research interest
in Cloud computing and Network Security. Attended several FDP’s and
Workshop.

	Introduction
	Literature Survey
	Challenges

	IoT System Configuration Model
	Proposed Water Moth Search Algorithm-based Deep RNN for Intrusion Detection in IoT
	Pre-processing
	Wrapper Approach for Feature Selection
	Proposed Water Moth Search Algorithm-based Deep RNN for Detecting Intrusion in IoT

	Results and Discussion
	Experimental Setup
	Description of Dataset
	Evaluation Metrics
	Accuracy
	Sensitivity
	Specificity

	Performance Analysis
	Analysis using dataset-1
	Analysis using dataset-2

	Comparative Techniques
	Analysis using dataset-1
	Analysis using dataset-2
	Comparative analysis by considering Neptune attack
	Analysis using computation time

	Comparative Discussion

	Conclusion

