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Abstract

Estimating effort is an essential prerequisite for the wide-scale dispersal of
ontologies. Not much attention has yet been paid to this essential aspect
of ontology building. To date, ONTOCOM is the most prominent model
for ontology cost estimation. Many factors influencing the building cost of
an ontology are depicted by linguistic terms like Very High, High, . . . and
so on; making them vague and indistinct. This fuzziness is quite uncertain
and must be taken into consideration. The available effort estimation models
do not consider the uncertainty of fuzziness. In this work, we propose an
effort estimation methodology for ontology engineering using Fuzzy Logic
i.e. F-ONTOCOM (Fuzzy-ONTOCOM) to overcome of uncertainty and
imprecision. We have defined the corresponding Fuzzy sets for each effort
multiplier and its associated linguistic value, and represented the same by
triangular membership functions. F-ONTOCOM is applied to a dataset of
148 ontology projects and evaluated over various evaluation criteria. F-
ONTOCOM outperforms the existing effort-estimation models; it has been
concluded that F-ONTOCOM improves the cost estimation accuracy and
estimated cost is very close to actual cost.
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1 Introduction

The popularity of ontologies and their large-scale dissemination is cross-
ing the boundaries of the academic and research community. Ontologies
are the controlled vocabularies that serve as a schema for specifying the
terms of the domain of interest. They serve as the semantic data model
for knowledge management, information retrieval, information integration,
semantic web applications, and intelligent information systems. Knowledge
Engineers build ontologies in cooperation with the domain experts with the
process generally termed as Ontology Engineering. Ontology Engineering is
moving from a pure research topic to real applications. The wide range of
projects involving large industry sectors as well as the growing interest of
Small and Medium Enterprises seek to be consulted in this field [1, 45]. The
availability of demonstrated techniques is an essential condition for all such
efforts, which will allow for efficient production of high-quality ontology,
whether through reuse, new building, or automatic extraction. During the
past decades, many methods have emerged to develop specific application-
based ontologies [2]. By now, several methodologies, languages, and tools
for building ontologies are already standardized.

In addition to the technical and organizational feasibility of any artefact,
its economic feasibility is also of utmost importance. This growth in the wide
an acceptance of ontologies will still increase if the knowledge engineer can
perform effective cost-benefit analysis of the ontology engineering process.
To build and maintain large-scale ontologies requires not only technology
and tools to support the development process but also means to estimate
the overall effort [3]. Effort estimation allows companies to know how
much effort is required to create an application on time and within budget.
There are so many techniques available from the last decades for effort
estimation of software development projects. These are mainly grouped into
two categories: algorithmic and non-algorithmic techniques. In algorithmic
techniques, a single formulation with constant values can be used. It includes
arithmetic calculations derived from the analysis of historical projects. An
array of models have been developed using algorithmic techniques, like
the COCOMO model, Putnam Model, and Function Point Analysis Model
[7, 34, 35]. These traditional approaches lack in terms of efficiency and
robustness. These approaches are continuously improved but still not precise
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as the non-algorithmic models are. The non-algorithmic methods are seen
as highly sophisticated, as artificial intelligence is incorporated in reaching
their findings. They are based on soft computing techniques such as artificial
neural networks, fuzzy logic models, and genetic algorithms. There are
some methods based on non-algorithmic techniques like analogy method,
Delphi Method, Top-down Estimation method, and Bottom-up method. Non-
algorithmic techniques are currently used for the effort estimation of ontology
engineering. Because the empirical information is not anticipated to be com-
plete, certain constraints of the individual methods are likely to be overcome
by the mixture of these methods. Currently, based on existing case studies, it
may be possible to analyse the key elements affecting the effort of the ontol-
ogy engineering process. The compilation of some effort multipliers is an
important step towards developing an ontology engineering cost estimation
tool.

The first effective and also the latest attempt to effort estimation of
ontology building, reuse and maintenance is the ONTOCOM [5, 6] approach.
There is always refinement and adjustment in the ONTOCOM as more infor-
mation is available on man-month effort spent in growing genuine ontologies.
It is required to handle uncertainty in the ONTOCOM model [44]. Although
ONTOCOM’s evaluation methodology takes into account the uncertainties
of randomness; however, it does not take into account the uncertainty of
fuzziness involved in the evaluation phase [41]. ONTOCOM is still open to
further development from this point of perspective. The parameters used to
estimate ONTOCOM Model have vagueness that adds some uncertainty in
the modeling of algorithms. In this study, we have investigated the following
Research Questions:

RQ-1 How to check the economic feasibility of an Ontology Engineering
project? Do some effort estimation approaches to building ontologies exist?

To answer this research question, we have done a literature survey of the
existing methodologies for building ontologies and presented it in Section 2.

RQ-2 Does the vagueness in data affect the effort estimation process? Can
the effort estimation based on fuzzy logic be more suitable for handling
vague and imprecise data?

To answer this research question, fuzzy inference system is applied to the
effort multipliers. As some factors are always shown by grades Extra High,
Very High, High, Nominal, Very low, etc. with natural language descriptions.
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We convert these grades into numerical forms to evaluate the relevance of the
program. It is always useful to describe the natural language assessment by
fuzzy numbers rather than crisp ones. A fuzzy rule base has been written for
these effort multipliers and tested over a dataset of 148 ontology projects.

RQ-3 Can the accuracy of the existing ontology effort estimation models
be further improved?

To answer this research question, some scaling factors are introduced and
more effort multipliers are introduced to tune the fuzzy inference system and
provide better results.

The main contributions of this work are as follows:

1. To conduct a literature survey of the existing cost estimation models for
building ontologies.

2. To propose an effort estimation model named F-ONTOCOM, which
addresses the fuzziness involved in ontology Engineering effort esti-
mation and its significant role is highlighted through the ONTOCOM’s
various aspects.

3. To enhance the effort estimation, six effort multipliers and scale factors
have been added to the ones listed by ONTOCOM.

The remaining paper is structured as follows: Section 2 describes the
related work; Section 3 discusses the Theoretical background; Section 4 gives
the Proposed work i.e. F-ONTOCOM; Section 5 provides the experimental
setup; Section 6 presents the results and discussions; Section 7 defines the
threats of validity and finally, last Section 8 concludes the paper.

2 Related Work

The cost evaluation methods have a long-standing tradition in more mature
technical fields like software technology or industrial manufacturing. The
most famous algorithmic model is COCOMO released in 1981 by Barry
Boehm [7]. It has been developed by analysing 63 software projects. Put-
nam’s model is proposed by Putnam in the late 1970s [34]. This model is
based on manpower distribution and the tool used for this model is SLIM
(Software Life Cycle Management). The Function Point-based Model is
proposed by Albrecht in 1983 [35]. In this model, a metric is given that
is known as the function point metric, used to measure the functionality of
the project. Approaches in these areas provided useful knowledge regarding
methods for defining and evaluating ontology cost models [7, 23, 24]. The
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approaches established by ontology engineering focus on the centralized pro-
duction of static ontologies, i.e. consider only passing the iteration between
ontology design/modification and use [39]. Furthermore, these techniques do
not address cost-effective processes such as cost management, cost reduc-
tion, or analysis of cost benefits. The authors have done the qualitative
analysis of cost and ontology usage in different domains and also explored
the number of projects based on the ontology approach, but do not pro-
vide any cost model [25]. The author Presents observational outcomes for
measuring ontology reuse [26]. The authors proposed a template to analyse
and evaluate the advantages of ontology in a specified environment, but the
model suggested is not quantitative [27]. The authors introduced a model
for a cost analysis for people who think in the form of formal statements
on studying externalization. The authors attempt to apply their prototype
to semantic wikis but don’t give any experimental assessment [29]. The
authors identified the efforts estimation for web semantic services. They
claim that the projects involving semantic web services take less time as
compare to conventional web services, but do not serve ontologies [28].
The authors suggested a methodology to evaluate the ontology engineering
risks which might be the main component of an ontology project for its
possible study [32]. The authors describe gOntt a Gantt chart-based planning
tool for ontology projects that maps activities relevant to the life cycle
of networked ontologies to current life cycle models [37]. As discussed
in [38], these activities can be supplemented by effort-related data. The
authors define that ONTOCOM as a framework by which we can analyse the
cost and benefits of ontology [12]. The author adjusts the effort multipliers
in the web application cost estimation model with the use of ontologies.
The effort multipliers, on the other hand, are not adapted to the needs of
ontology engineering and there is no evaluation [36]. The authors presented
the alignment of the ONTOCOM model with the DILIGENT engineering
methodology. They also provided some analytical assessments of application
scenarios for the DILIGENT model based on the resulting cost function [11].
In summary, the project manager is supposed to distribute a percentage
of effort throughout the project phases established in the scheduling tool,
and ONTOCOM estimates, which cover the entire project duration, are
distributed accordingly to each phase. The methodology of ONTOCOM
considers the uncertainties of randomness; yet, the uncertainty of fuzziness
involved in the process of analysis is not taken into account. There is no cost
estimation model which can handle uncertainty, so we have given a model i.e.,
F-ONTOCOM.
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3 Theoretical Background

In this section, we present the basic notion of the existing ontology cost
estimation models, effort multipliers, and Fuzzy logic.

3.1 Existing Ontology Cost Estimation Model

ONTOCOM is the parametric cost estimating model for ontologies, which
predicts the effort invested by predefined effort multipliers in constructing,
maintaining, and reusing ontologies. We used a combination of three general-
purpose cost estimation approaches [7] to define the relevant factors, which
we believe are appropriate to ontology engineering according to the current
state of the art in the field [8]. To the ontological cost model, ONTOCOM
utilizes three cost estimating techniques. This methodology begins as the
Top-down approach, by distinguishing upper-level subtasks of an ontology
engineering process and estimates the related costs using the parametric
method. The set of effort multipliers associated with each process stage was
evaluated using the expert judgment method, and their start values were
specified in the a-priori model [8, 9, 21, 40].

The development of Ontology is divided into 3 separate assignments:

Building Ontology: This incorporates all sub-assignments, for example,
domain analysis results in the requirement specification, conceptualization
results as a conceptual model, Implementation (result: specification of a
conceptual model), and Ontology population (result: instantiated ontology).

Maintaining Ontology: This includes costs identified with getting recogniz-
able and making changes in the ontology.

Reuse Ontology: This includes the re-utilization of existing ontologies for
the creation of new ontologies and thus entails costs in connection with the
finding, evaluation, and adaptation of the former to the latter’s demand.

DILIGENT is a methodology for developing ontologies in a distributed,
loosely managed, and dynamic manner. The ONTOCOM model and the
alignment of the effort multipliers to the activities they affect were used to
develop the cost function specific to the DILIGENT process [11]. The cost
function is subsequently streamlined to allow the use of cost information to
support the decision for three engineering scenarios stated during the project:
The best possible size of the original Ontology is found, (2) reuse is extended
on local sites and (3) Board meetings are ideal in frequency.
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3.2 Effort Multipliers for Ontology Engineering

The following section provides an overview of the effort multipliers involved
in the building, maintenance, and reuse of ontologies. We distinguish between
effort multipliers associated with product, processes, and personnel. The
product category reflects the effect on the overall cost of the product
attributes. The category of processes indicates the relevant elements to the
cost estimation of the engineering process, while the personnel emphasizes
the relevance of their team experience, skill, and continuity for the effort
invested [12, 13].

• Product-Related Effort multipliers: These effort multipliers represent
the effect of the attributes of the product to be built (for example, the
ontology) on the total cost. The accompanying effort multipliers were
distinguished for the assignment of ontology building [14]:

◦ (DCPLX) Domain Analysis Complexity represents the application
highlights that impact the diverse nature of the engineering results
◦ (CCPLX) Conceptualization Complexity to represent the effect of

a complex reasonable model on the total cost,
◦ (ICPLX) Implementation Complexity to contemplate the extra

endeavours emerged from the use of a particular implementation
language,
◦ (DATA) Instantiation Complexity to capture the impact on the

overall process of the instance data requirements,
◦ (REUSE) Required Reusability to catch the extra exertion related

to the improvement of a reusable ontology,
◦ (OI) Evaluation Complexity to represent the extra endeavours at

the end put resources into producing experiments and assessing
test results, and
◦ (DOCU) Documentation is intended to indicate the additional

costs arising from the requirements for detailed information.

• Personnel Related Effort multipliers: The effort multipliers underline
that team expertise, skill and congruity play a role in the engineering
process:

◦ (OCAP/DECAP) Ontologist/Domain Expert Capability to repre-
sent, as do their cooperation abilities, the apparent capacity and
productivity of the performers engaged in the project,
◦ (OEXP/DEEXP) Ontologist/Domain Expert Experience to assess

the understanding dimension of the engineering team for the
results of ontology exercises,
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◦ (LEXP/TEXP) Language/Tool Experience to measure the project
team’s dimensional knowledge of representation language and
ontology management tools,
◦ (PCON) Personnel Continuity to represent the repeated changes in

the team’s workforce.

• Project-Related Effort multipliers: These effort multipliers recognize
the broad characteristics and impact of ontology engineering on the
complete cost:

◦ (TOOL) Support Tool for Ontology Engineering to quantify the
consequences in the engineering process of using ontology man-
agement tools.
◦ (SITE) Multisite Development to reflect the use in the location-

distributed group of communication support instruments.
◦ (SCED) Required Development Schedule considering the certain

time limitations, it considers the special features of the engineering
process.
◦ The estimation of the given effort multipliers is given by Boehm

[7] on the components of extremely low, low, nominal, high, and
very high.

3.3 Fuzzy Logic

Fuzzy Logic is a method for solving issues that are too complicated for
a quantitative understanding. It handles the problems with imprecise and
incomplete data which is based on the fuzzy set theory and formalized by
Prof. Lofti Zadeh in 1965 [15]. It is a class theory with unsharp limits
and extends the classical set theory [16, 17]. The membership µA(x) of
component x of a traditional set A, a subset of the universe X, is characterized
by:

µA(x) =

{
1 if f x ∈ A
0 if f x /∈ A

(1)

In other words, x is a part of the set A (µA(x) = 1) or not (µA(x) =
0). The classical sets are either zero or one is referred to as crisp sets as in
Equation (1).

Partial membership is allowed in Fuzzy sets. A fuzzy set A is defined by
a reference set X called the universe and a mapping;

µA: X→ [0, 1] (2)
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A fuzzy set A feature called µA(x) membership function for x, X is
interpreted as x in the fuzzy set A as the degree of membership. A member
function is a curve that describes how each point is mapped between 0 and 1
in the input area. The greater the x of the membership, the more apparent
is that x is A. The Membership Functions can be Triangular, Gaussian,
Trapezoidal, and Parabolic.

Any framework that has an instant connection with fuzzy concepts is
referred to as the fuzzy logic system. There are three possible sorts of the most
prominent fuzzy logical frameworks in writing: pure, fuzzy logic systems of
Takagi and Sugeno and fuzzy logic systems with fuzzifier and de-fuzzifier
known as the Mamdani system. The Mamdani framework [18, 19] is the
most widely used in which the fuzzifier maps new inputs into fuzzy sets,
and the fluffy de-fuzzifier mappings into crisp outputs as a big part of the
engineering apps uses new data as input and produces new data. The primary
4 components of the Fuzzy Inference System (FIS) are Fuzzifier, Fuzzy rule
base, Fuzzy Inference Engine, and De-Fuzzifier.

One of the main aspects of the fuzzy logic of uncertainty management
is that it gives a systematic framework for dealing with fuzzy quantifiers,
for instance, most, many, few, few, almost all, rarely, approximately 0.8, etc.
Fuzzy logic thus subsumes both the predicate and the probability theory and
allows multiple sorts of uncertainty to be addressed within a single conceptual
framework [42]. Fuzzy logic systems are the branch of computer science that
focuses on imprecision, uncertainty, and approximation to achieve robustness
and low-cost solutions. The Fuzzy logic system performs strategies that
mimic the human mind’s ability to deal with reasoning and approximation
problems rather than more accurate. To handle uncertainty, the Fuzzy Logic
System deals with fuzzy parameters, uncertainties by mapping out the path of
a given input to an output using the computing framework called the Fuzzy
Inference System.

4 Working of F-ONTOCOM

This work proposes an effort estimation methodology for ontology engineer-
ing using Fuzzy Logic i.e., F-ONTOCOM. Though the analysis, method-
ology of ONTOCOM considers the uncertainties of randomness; yet, the
uncertainty of fuzziness involved in the process of analysis is not taken into
account. From this point of view, the ONTOCOM model is still open to
be developed so far. The core of ontology engineering economics is effort
estimation. The reason for fuzziness to be considered in the ONTOCOM
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Figure 1 F-ONTOCOM: An ontology cost estimation model.

model lies in the fact that the division of evaluation and rating of some
involved factors, which have an important influence upon development cost,
are vague and indistinct. They are always depicted by grades with natural
language descriptions as Extra High, Very High, High, Very low . . . and so
on. To evaluate the merit of a program, these grades are transferred into quan-
titative forms. It is practical to represent the natural language descriptions of
evaluation and assessment by fuzzy numbers rather than crisp ones. So we
have proposed F-ONTOCOM as shown in Figure 1.

Thus the estimate of ontology costs is the sum of the cost incurred in
the building and the maintenance of ontologies (with or without reuse) as
mentioned in (1).

MM = MMB +MMM +MMR (3)

Where MMB, MMM, and MMR are the effort involved in the devel-
opment, maintenance, and reuse of ontologies. The costs of ontology are
calculated in a COCOMO-like way, as follows:

MMX = A ∗ (Sizex)B ∗
∏

EM xi (4)
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1. Input Parameters: In this model, we have three input variables like
size, Effort multipliers, and scale factors as shown in Figure 1. These input
variables are changed to fuzzy variables using fuzzy sets for each linguistic
value such as extra high, very high, high, nominal, low, very low. Previously
authors had also taken the values of A & B as constant.

We have considered the value of A depends on the complexity of the
ontology model either it can be organic, semi-detached, or embedded. At the
time of evaluation, these input values are taken from a dataset.

Boehm’s definition of organic, semidetached, and embedded systems:

◦ Organic: Any project is said to be organic if the problem is well
understood and size is small and team members associated are nominal
experienced.
◦ Semi-Detached: A project is called semi-detached if the problem is

difficult as compared to organic ones. The team size, experience and
knowledge lie in-between organic and embedded.
◦ Embedded: This type of project has the highest level of complexity,

required larger team size, very high experience as compared to other
two models.

For the organic model the values of A & B are 3.2, 1.05 respectively, for
Semi-detached model the values are 3.0, 1.12 and for the embedded model it
is 2.8,1.2.

• Scale Factors: Ontology development has various characteristics and
a scale factor is one of them. It decides the amount of effort involved
in development. Development efforts include flexibility in development,
resolution of risks identified, Precedentness, maturity of processes, and
interconnection between the teams. All these factors are measured as
extra high, very high, high, nominal, low, very low. The range of all
these scale factors is given in Table 1. The value of B depends on the
COCOMO-II scale factors which are given by Boehm [7].

The B Value can be displayed as:

B = 0.91 + 0.01 ∗ Sum of rating on scale factors (5)

The value of B can be within the range of 0.91 to 1.23. The Value of the
scale factors as given by Boehm in [7].

â Precedentness (PREC): It tells about the previous experience on the
same kind of projects developed by individuals or organizations. If there
is no earlier experience then the scale factor is taken as very low and if
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Table 1 Scale factors range
S No Scaling Factors Range
1 PREC 1.0–7.0
2 FLEX 1.0–6.0
3 RESL 1.0–8.0
4 TEAM 1.0–6.0
5 PMAT 1.0–8.0

organizations or individuals are completely aware of the domain, then
the scale factor is taken as extra high.

â Development Flexibility (FLEX): This tells about the tractability associ-
ated with the process of development. If we have a well-defined process
in place, then the scale factor is taken as very low and if generic
information is available for a process then the scale factor is considered
as extra high.

â Architecture/Risk Resolution (RESL): It provides details about the anal-
ysis done on the process. If there is no or minimal analysis done, then
the scale factor is very low and if the complete analysis is done, the scale
factor value is taken as extra high.

â Team Cohesion (TEAM): It shows the interconnection within the teams.
If there is no interconnection or interaction within the team, then the
scale factor is very low and if teams are fully interconnected, the scale
factor is considered as extra high.

â Process Maturity (PMAT): It defines the maturity in the processes of
the organization. If there is no maturity, the scale factor is very low and
if organization processes are matured, the scale factor is taken as extra
high.

• Effort Multipliers: Effort multipliers are the multiplicative factors that
impact the effort required to accomplish the ontology project. The
EMxi (effort multipliers) are the central elements of the cost estimation
formula as in Equation (4). It gives an exceptionally low to high rating
level that communicates its impact on the progressive effort [10, 11].
17 effort multipliers are being used in ONTOCOM. We have added six
more effort multipliers that are not previously defined in the model.
The added parameters in the ONTOCOM Model to calculate the cost
more accurately are given below in Table 2 and the range of all these
multipliers are given in Table 3.



F-ONTOCOM: A Fuzzified Cost Estimation Approach 2181

T
ab

le
2

A
dd

ed
ef

fo
rt

m
ul

tip
lie

rs
in

O
N

T
O

C
O

M

E
ff

or
t

M
ul

tip
lie

r
Pu

rp
os

e
V

er
y

L
ow

L
ow

N
om

in
al

H
ig

h
V

er
y

H
ig

h
E

xt
ra

-H
ig

h

R
E

LY
T

he
de

gr
ee

to
w

hi
ch

a
m

od
el

ca
n

st
re

tc
h

to
co

m
pl

et
e

its
fu

nc
tio

ns
ov

er
so

m
e

tim
e

O
nl

y
sl

ig
ht

in
co

nv
en

ie
nc

e

L
ow

,e
as

ily
re

co
ve

ra
bl

e
lo

ss
es

M
od

er
at

e,
ea

si
ly

re
co

ve
ra

bl
e

lo
ss

es
H

ig
h

Fi
na

nc
ia

l
lo

ss
R

is
k

to
hu

m
an

lif
e

–

T
IM

E
A

m
ea

su
re

of
th

e
tim

e
lim

it
in

w
hi

ch
ex

ec
ut

io
n

ca
n

be
co

m
pl

et
ed

–
–

<
=5

0%
us

e
of

an
av

ai
la

bl
e

ex
ec

ut
io

n
tim

e

70
%

85
%

95
%

ST
O

R
A

m
ea

su
re

of
av

ai
la

bl
e

st
or

ag
e

–
–

<
=5

0%
st

or
ag

e
ut

ili
za

tio
n

av
ai

la
bl

e

70
%

85
%

95
%

PV
O

L
A

m
ou

nt
of

ch
an

ge
s

in
O

S,
D

B
M

S
an

d
C

om
pi

le
r

et
c

–
M

aj
or

m
od

ifi
ca

tio
ns

ev
er

y
1

ye
ar

&
M

in
or

s
ev

er
y

1
m

on
th

M
aj

or
m

od
ifi

ca
tio

ns
ev

er
y

6
m

on
th

s
&

M
in

or
s

ev
er

y
2

w
ee

ks

M
aj

or
m

od
ifi

ca
tio

ns
ev

er
y

2
m

on
th

s
&

M
in

or
s

1
w

ee
k

M
aj

or
m

od
ifi

ca
tio

ns
ev

er
y

2
w

ee
ks

&
M

in
or

s
ev

er
y

2
da

ys

–

PE
X

P
M

ea
su

re
th

e
pl

at
fo

rm
ex

pe
ri

en
ce

<
=2

m
on

th
s

6
m

on
th

s
1

ye
ar

3
ye

ar
s

6
ye

ar
s

–

PR
E

X
M

ea
su

re
th

ro
ug

h
th

e
pe

rs
on

al
ex

pe
ri

en
ce

5
m

on
th

s
9

m
on

th
s

1
ye

ar
2

ye
ar

s
4

ye
ar

s
6

ye
ar

s



2182 S. Malik and S. Jain

Table 3 Effort multipliers range

S. No Effort Multipliers Range

1 DCPLX 0.5–1.8

2 CCPLX 0.5–1.8

3 ICPLX 0.7–2.0

4 DATA 0.6–1.8

5 REUSE 0.5–1.4

6 DOCU 0.5–1.4

7 OI 0.5–1.8

8 OCAP 0.5–1.4

9 DECAP 0.5–1.4

10 OEXP 0.5–1.4

11 DEEXP 0.5–1.4

12 PCON 0.5–1.4

13 LEXP 0.5–1.8

14 TEXP 0.5–1.8

15 TOOL 0.5–1.8

16 SITE 0.5–1.4

17 SCED 0.5–1.4

18 RELY 0.2–2.0

19 TIME 0.5–2.0

20 STOR 0.5–2.0

21 PVOL 0.5–2.0

22 PEXP 0.6–2.0

23 PREX 0.5–2.0

The values of all these cost parameters can be extra high, very high, high,
nominal, low, very low as mentioned by Boehm [7].

• Sizex: The sizex is It is being calculated as given in Equation (6).

Sizex =
sizeb + sizem + sizer

1000
(6)

◦ Sizeb represents the size of a newly constructed ontology such as
the number of natives on whom the conceptualizing stage depends.
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◦ Sizem depends on the number of modified items that are expected
to be used.
◦ Sizer is the size of the source after the application size has been

customized. This applies particularly to the parts of the source
ontologies, whose contents have to adjust to the target scope,
and the fragments have to be directly integrated into the final
representational language.

We are considering only the building size of ontology expressed in
thousands of ontological primitives like concepts, relations, axioms, and
instances.

2. Fuzzy Inference System: It consists of Fuzzification, Fuzzy inference
engine, Fuzzy rule base, and De-Fuzzification.

• Fuzzification – The Fuzzification process consists of a fuzzifier that
converts crisp input into a fuzzy set of values using its membership
function. The membership function is a curve that transforms the input
values to the membership values range between 0 &1. The membership
function can be either triangular, trapezoidal, or Gaussian. Analysis can
be done with all the three membership functions like Triangular Mem-
bership Function (TMF), Trapezoidal membership Function (Trapmf),
and Gaussian Membership Function (GMF); however, we have used
the Triangular membership function. The Fuzzification of two effort
multipliers using triangular membership is shown in Figures 2 and 3.

• Fuzzy Rule Base – It uses if-then rules. Fuzzy rules of the COCOMO-II
logic are defined in the Fuzzification process by linguistic variables and
it is based on “AND” connectivity of input variables. Some of the rules
are framed: –

If (DCPLXI is VL) then (DCPLXO is VL)
If (RELYI is H) then (RELYO is H)

If (OCAP is VH) then (OCAPO is VL)

Figure 2 Fuzzification of DATA Effort Multipliers using Triangular membership function.
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Figure 3 Fuzzification of OCAP Effort Multipliers using Triangular membership function.

If (FLEXI is VH) then (FLEXO is VL)
If (TIMEI is L) then (TIMEO is L)
If (PEXPI is L) then (PEXPO is H)

If (PRECI is VL) then (PRECO is VL)
If (DECAPI is VL) then (PRECO is VH)
If (PREXI is EH) then (PREXO is VL)
If (PRECI is VL) then (PRECO is VL)
If (TOOLI is VL) then (TOOLO is VH)

• Fuzzy Inference Engine – The fuzzy inference engine is utilized in the
inference process to transfer the input from the Fuzzification process to
the output based on expert knowledge or rules. The role of fuzzy rules in
the inference process is to capture imprecise reasoning styles and serve
as a technique of producing fuzzy output from fuzzy input.

• De-Fuzzification – It is the translation of fuzzy output into narrow
output.

3. Output: The output of this model is Effort that can be calculated as given
in Equation (4).

5 Experimental Evaluation

In this section, we have evaluated the proposed technique using synthetic and
real datasets. In a synthetic dataset size and effort of example ontology, i.e.
Super Ontology [20, 43, 46] as shown in Figure 4 is calculated. The real
dataset that is given by the university of INNSBRUCK [31] consists of 148
ontology projects with all the input parameters like the size of each ontology,
the value of all the effort multipliers, an actual effort for all the ontology
projects, and finally the effort estimation of all the existing effort estimation
models like ONTOCOM, Diligent model. We have compared our proposed
technique with all the existing effort estimation models and found that the
F-ONTOCOM gives the best results.
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5.1 Synthetic Data

The example ontology has been taken from [20, 43]. In this ontology, there
are 120 concepts and 454 axioms, and 119 relations. We can calculate the
size of ontology for building only from Equation (6).

Size =
120 + 454 + 119

1000
= 0.693

and the value is 0.693 also calculates all the effort multipliers for the same
ontology. One Size is available, then ratings of all the effort multipliers and
their specifications are taken as mentioned in Table 1. The DCPLX Effort
Multipliers value is computed by the average sum of domain complexity,
requirement complexity, and information complexity and the value is 1.2.
Similarly, we can find the value of all the effort multipliers according to the
ontology structure. The Value of all the effort multipliers that have been used
in calculating the Effort is given in Table 4.

Table 4 Effort multipliers values for example ontology

S. No Effort Multipliers Value

1 DCPLX 1.2

2 CCPLX 1

3 ICPLX 1

4 DATA 0.90

5 REUSE 1.3

6 DOCU 0.7

7 OI 1

8 OCAP 1

9 DECAP 1

10 OEXP 0.70

11 DEEXP 1

12 PCON 0.85

13 LEXP 1.3

14 TEXP 1

15 TOOL 0.90

16 SITE 1

17 SCED 1
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The values of A & B are taken 3.0 & 1.12 respectively as we are
considering for semi-detached model. After applying the previous parameters
to ONTOCOM in Equation (4) the effort is 1.23.

Effort = 3.0 ∗ (0.693)1.12 ∗ 1.2 ∗ (1)8 ∗ (0.90)3 ∗ (1.3)2 ∗ (0.7)2 ∗ 0.85

= 1.85 ∗ (0.693)1.12

= 1.23

The value of effort after applying the Fuzzification process is 1.18. For
this synthetic dataset, we found that after applying Fuzzification the estimated
effort is optimized.

The values of added effort multipliers and scale factors are given in
Tables 5 and 6 respectively. The effort calculated after adding more effort
multipliers is 1.52, slightly more than the earlier one. The fuzzified value
for the same is 1.18, which is almost equivalent to the calculated value. For
fuzzifying the results of cost from above, we need to apply fuzzy logic & we
need to define the fuzzy ranges to all the effort multipliers. The range for the
Scale factors and effort multipliers are given in Tables 5 and 6 respectively.

Table 5 Scale factor values

S. No Scaling Factors Value

1 Precedentness 3.72

2 Development Flexibility 3.04

3 Architecture/Risk Resolution 4.24

4 Team Cohesion 3.29

5 Process Maturity 4.60

Table 6 Added effort multipliers values

S. No Effort Multipliers Value

1 RELY 1.15

2 TIME 1.0

3 STOR 1.0

4 PVOL 1.15

5 PEXP 1.0

6 PREX 1.0
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5.2 Real Dataset

The dataset used in this paper is from the University of INNSBRUCK
[31, 40]. The dataset consists of 148 ontology projects with their actual size,
actual effort in man-months, and value of 17 effort multipliers in the range of
very low to extra high. The assessment is made through a comparison with
the real effort of the correctness of the projected effort.

A model’s evaluation indicates how effectively our model is performing.
If the difference between the actual and estimated values is substantial, it
will result in inaccurate estimation, which will increase the cost of software
development. The study employs well-known evaluation criteria that have
been used in the literature, which are MRE (magnitude of relative error),
MMRE (mean magnitude relative error), MdMRE (median magnitude of
relative error), PRED (prediction).

These evaluation criteria are calculated as follows:

MRE =
n∑
1

|actual− estimated|
actual

(7)

MMRE =
1

n

n∑
1

MRE (8)

Where n is the total number of ontology projects

MdMRE = Median (MRE) (9)

PRED(n) =
1

N

n∑
1

{
1 if MRE ≤ n
0 otherwise

(10)

The proposed technique is tested on the real dataset as well as all four
evaluation criteria.

6 Results and Discussion

This section shows the results when the proposed model is applied to the
ontology dataset. To implement this model MATLAB is used. The MRE,
MMRE, MdMRE, and Prediction (n) values are computed for the 21 ran-
domly chosen ontology projects. The results of the current effort compared
to the estimated effort for the ontology dataset are shown in Table 7. It also
includes the results of ONTOCOM and the Diligent Model effort.
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Table 7 Actual and estimated effort of few randomly selected projects
S No Ontologies A Size Actual Effort Diligent ONTOCOM F-ONTOCOM

1 swpatho1 4.17472 1.040041 5 6.7068397 3.524081092 4.66

2 Opjk 4.17472 0.948026 2.6 13.763627 1.689793362 1.86

3 OMV 4.17472 0.835133 2.5 5.2918234 1.151013337 1.93

4 Hochschul 4.17472 1.109294 7 7.1436075 3.709762524 7.04

5 Kompetenz
management

4.17472 1.014365 5 6.2459774 6.505230457 5.31

6 SESAM 4.17472 0.790595 2 4.2474832 1.302825696 1.37

7 Context 4.17472 0.835133 1.25 6.8757838 0.997488855 1.2

8 life event 4.17472 1.062553 3 7.9606103 4.611297173 2.14

9 web services
process
ontology

4.17472 0.752851 6 10.518151 3.156844019 4.03

10 BT Digitial
Library

4.17472 0.884394 2 1.1933657 2.189181074 1.35

11 prm.kaon 4.17472 0.926408 3.5 4.26046 4.597391114 3.11

12 HR 4.17472 1.379875 6 7.4513853 7.055084943 5.46

13 Produktiv 4.17472 1.062553 5 7.809886 7.45802211 5.9

14 REWERSE 4.17472 0.906781 4 1.9220416 2.949027287 3.38

15 Opinions and
argumentation

4.17472 0.664297 2.5 4.0120281 0.989119424 1.19

16 Municipal
Sociology

4.17472 0.835133 2 4.4323357 0.993112384 1.27

17 Not Public 4.17472 1.109294 4 7.908887 0.2498649 3.76

18 The BEST 4.17472 0.937571 6 4.6982148 3.394756105 5.39

19 Hypothesis 4.17472 0.638722 6 6.4345636 7.271058891 5.6

20 YI 4.17472 0.96716 1 0.8999965 0.246254662 0.73

21 Brain
Anatomy

4.17472 0.948026 8 7.0486611 5.606054588 6.64

Case Study 1: Ontology Project 5 named “Kompetenz
management”

Input parameters: A = 4.17, Size = 1.01, B = 1
Effort multipliers: DCPLX, CCPLX, ICPLX, DATA, REUSE, DOCU, OI,
OCAP, DECAP, OEXP, DEEXP, PCON, LEXP, TEXP, TOOL, SITE, SCED
Output (Estimated Effort)

E = 4.17 ∗ (1.01)1 ∗ 0.91 ∗ (0.98)2 ∗ 0.77 ∗ (0.99)4 ∗ 1.23 ∗ (1.16)3

∗ 0.72 ∗ 1.06 ∗ 1.11 ∗ 1.06 ∗ 1.14 = 5.31
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These values are provided as an input to the Fuzzy Inference system using
Triangular membership and if-then rules and depicted by grades of natural
language predictions as very high, high, nominal, low, very low, and are in
the range as mentioned in Table 3. The actual effort for this project is 5, the
effort calculated by Diligent Model is 6.24, Effort by ONTOCOM is 6.5, and
effort by the proposed model is 5.31, which is much closer to the actual value
compared to other methods.

Case Study 2: Ontology Project 1 named “swpatho1”

Input Parameters: A = 4.17; Size = 1.04; B = 1;
Effort multipliers: DCPLX, CCPLX, ICPLX, DATA, REUSE, DOCU, OI,
OCAP, DECAP, OEXP, DEEXP, PCON, LEXP, TEXP, TOOL, SITE, SCED
Output (Estimated Effort)

E = 4.17 ∗ (1.04)1 ∗ 0.91 ∗ 1.25 ∗ 1.19 ∗ (0.99)2 ∗ 0.77 ∗ 0.97 ∗ 1.16

∗ (0.96)2 ∗ 1.10 ∗ 0.93 ∗ 1.32 ∗ 1.51 ∗ 0.99 ∗ 0.47 ∗ 0.98 = 4.66

Here in this ontology project 1 the value of actual effort is 5, the effort
calculated by ONTOCOM Model is 3.52, Effort by Diligent Model is 6.7 and
effort by the proposed model is 4.66 which is closer to the actual effort.

The graphical representation for the comparison of effort by different
techniques is shown in Figure 4.

Figure 4 Comparison with Ontology datasets using different techniques.
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Table 8 Comparison of MRE for the three models

MRE MRE MRE
Using Using Using

S No Ontologies Diligent ONTOCOM F-ONTOCOM

1 swpatho1 0.34 0.30 0.07

2 Opjk 4.29 0.35 0.28

3 OMV 1.12 0.54 0.23

4 Hochschul 0.02 0.47 0.01

5 Kompetenz management 0.25 0.30 0.06

6 SESAM 1.12 0.35 0.32

7 Context 4.50 0.20 0.04

8 life event 1.65 0.54 0.29

9 web services process 0.75 0.47 0.33

10 BT Digitial Library 0.40 0.09 0.33

11 prm.kaon 0.22 0.31 0.11

12 HR 0.24 0.18 0.09

13 Produktiv 0.56 0.49 0.18

14 REWERSE researcher 0.52 0.26 0.16

15 Opinions and argumentation 0.60 0.60 0.52

16 Municipal Sociology 1.22 0.50 0.37

17 Not Public 0.98 0.94 0.06

18 BEST 0.22 0.43 0.10

19 Hypothesis 0.48 0.15 0.18

20 YI 0.10 0.75 0.27

21 Brain Anatomy 0.12 0.30 0.17

The MRE value for the Ontology Project 5 is 0.25 for the Diligent Model,
0.20 for ONTOCOM, and 0.06 for the proposed model as given in Table 8.
Figure 5 provides a graphical illustration of the MRE values for all three
models.

The MMRE of the entire dataset is 3.18 for the Diligent Model, 0.56 for
ONTOCOM, and 0.41 for the proposed model as given in Table 9. Similarly,
The MdMRE of the entire ontology dataset is 1.10 for the Diligent Model,
0.47 for ONTOCOM Model, and 0.20 for the proposed model as given in
Table 9 and the graphical representation is shown in Figure 6.
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Figure 5 Graphical representation of comparison of MRE for three models.

Table 9 Comparison of MMRE, MDMRE for the three models

Evaluation Criteria Diligent Model ONTOCOM F-ONTOCOM

MMRE 3.18 0.56 0.41

MdMRE 1.10 0.47 0.20
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Figure 6 Graphical representation of MMRE & MdMRE for three models.
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Table 10 Comparison of Prediction values for the three models

Evaluation Criteria Diligent Model ONTOCOM F-ONTOCOM

Prediction within 30 % 0.20 0.30 0.72

Prediction within 45 % 0.26 0.44 0.80

Prediction within 60% 0.30 0.64 0.94

Prediction within 75% 0.42 0.70 0.98
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Figure 7 Graphical representation of Prediction (n) for three models.

The Prediction (n) is evaluated at different criteria’s like Prediction within
30%, 45%, 60%, and 75%. The Prediction (n) within 30% is 0.20, 0.30, and
0.72 for the Diligent Model, ONTOCOM, and proposed model respectively.
The pred (n) within 45% is 0.26, 0.44 and 0.80 for the proposed model.
Similarly, for the pred (n) within 60% and 75% listed in Table 10. The
graphical representation Pred values are shown in Figure 7.

The findings acquired thus show that the model suggested can be used to
predict ontology costs correctly.

7 Threats of Validity

This study deploys the F-ONTOCOM for ontology cost estimation. The
proposed approach is also supported by the outcomes produced and assessed
using various assessment criteria. Moreover, there are some points to be
considered regarding internal and external validities.



F-ONTOCOM: A Fuzzified Cost Estimation Approach 2193

Internal Validity: This study uses the Fuzzy technique for ontology cost
estimation called F-ONTOCOM. This technique gives the best results with
the chosen parameters. It may not always work, if we vary the parameters
or It give better results by integrating any other optimization technique with
Fuzzy.

External Validity: External validity concerns the generality of the results,
whether the outcomes of research are generalized or not. In this study, we
have used the dataset of 148 ontology projects with the value of actual effort,
Effort Multipliers, and size. The limitation of this study is dataset availability.
There is only a single dataset that may be used for this method evaluation. The
results are more validated if more datasets will be available.

8 Conclusion

Reliable cost assessment techniques are a necessity for widespread ontologi-
cal dissemination in company environments. In this paper, we have proposed
the use of Fuzzy sets rather than classical intervals in the ONTOCOM Model.
We have defined the corresponding Fuzzy sets for each effort multiplier and
its associated linguistic values and represented by triangular membership
functions. The importance of including Fuzziness into ordinary ONTOCOM
to get a more realistic output in uncertain conditions. The proposed method-
ology is compared with the existing ontology cost model ONTOCOM and
DILIGENT, which is not fuzzified. Using this technique, the values evaluated
for the dataset of 148 ontology projects, yield much lower MMRE, MdMRE,
and high Prediction. They are much closer to the actual effort. The exper-
imental results show that F-ONTOCOM performed remarkably better than
ONTOCOM in optimizing the cost. Thus this new model for the ontology cost
is remarkably improved. Furthermore, the utilization of other optimization
techniques can also be applied to ontology cost estimation. This work can also
be extended using the Neural approach or combination of these techniques
and it can also be tested on other datasets.
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[39] Gómez-Pérez A, Fernández-López M, and Corcho O 2003 Ontological
Engineering Springer.

[40] Simperl E, Popov I.O, Bürger T 2009 ONTOCOM Revisited: Towards
Accurate Cost Predictions for Ontology Development Projects. In:
Aroyo L. et al. (eds) The Semantic Web: Research and Applications.
ESWC. Lecture Notes in Computer Science, vol. 5554. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-02121-3 21

[41] Fei Z, and Liu X 1992 f-COCOMO: fuzzy constructive cost model in
software engineering, IEEE International Conference on Fuzzy Systems,
pp. 331–337, doi: 10.1109/FUZZY.1992.258637.

[42] Zadeh L.A 1983 The role of fuzzy logic in the management of uncer-
tainty in expert systems, Fuzzy Sets and Systems, vol. 11, Issues 1–3,
pp. 199–227, ISSN 0165-0114, https://doi.org/10.1016/S0165-0114
(83)80081-5

[43] Malik, S., & Jain, S. (2021). Sup Ont: an upper ontology. International
Journal of Web-Based Learning and Teaching Technologies (IJWLTT),
16(3), 79–99.

https://doi.org/10.1109/TSE.1978.231521
https://doi.org/10.1007/978-3-642-02121-3_21
https://doi.org/10.1016/S0165-0114(83)80081-5
https://doi.org/10.1016/S0165-0114(83)80081-5


F-ONTOCOM: A Fuzzified Cost Estimation Approach 2197

[44] Malik, S., & Jain, S. (2018, November). A Review on Methods to Han-
dle Uncertainty. In International Conference On Computational Vision
and Bio Inspired Computing (pp. 773–781). Springer, Cham.

[45] Mishra, S., Malik, S., Jain, N. K., & Jain, S. (2015). A realist framework
for ontologies and the semantic Web. Procedia Computer Science, 70,
483–490.

[46] Malik, S., & Jain, S. (2017, June). Ontology based context aware model.
In 2017 International Conference on Computational Intelligence in Data
Science (ICCIDS) (pp. 1–6). IEEE.

Biographies

                 
   
   
Institute  

Sonika Malik has done B.Tech from Kurukshetra University, India in 2004
and did her Masters from MMU in 2010. She is doing her doctorate from
National Institute of Technology, Kurukshetra. She has served in the field of
education from last 13 years and is currently working at Maharaja Surajmal
Institute of Technology, Delhi. Her current research interests are in the area
of Semantic Web, Knowledge representation and Ontology Design.



2198 S. Malik and S. Jain

S    
    
o           
u            

Sarika Jain graduated from Jawaharlal Nehru University (India) in 2001.
Her doctorate, awarded in 2011, is in the field of knowledge representation
in Artificial Intelligence. She has served in the field of education for over
19 years and is currently in service at the National Institute of Technology
Kurukshetra (Institute of National Importance), India. Her current research
interests are knowledge management and analytics, the semantic web, onto-
logical engineering, and intelligent systems. She is a senior member of the
IEEE, a member of ACM, and a Life Member of CSI.


	Introduction
	Related Work
	Theoretical Background
	Existing Ontology Cost Estimation Model
	Effort Multipliers for Ontology Engineering
	Fuzzy Logic

	Working of F-ONTOCOM
	Experimental Evaluation
	Synthetic Data
	Real Dataset

	Results and Discussion
	Threats of Validity
	Conclusion

