
A Defensive Framework for Reflected XSS
in Client-Side Applications

Khulud Fisal Alenzi1 and Onytra Abbas Bashir Abbas2,∗

1Department of Information Technology, University of Tabuk, Kingdom of Saudi
Arabia
2Department of Computer Science, University of Tabuk, Kingdom of Saudi Arabia
E-mail: kookaaf@gmail.com; obashir@ut.edu.sa
∗Corresponding Author

Received 08 February 2021; Accepted 24 August 2022;
Publication 28 December 2022

Abstract

Cross-site scripting attack (XSS) is a common vulnerability that is exploited
in modern web applications by entering advanced HTML tags and Java
Script functions. An attacker could potentially use this vulnerability to steal
users’ sensitive information, hijack user sessions or rewrite whole website
contents displaying fake login forms. This class of attacks affects the client-
side of a web application and is a critical vulnerability that is difficult to
both detect and remediate for websites, often leading to insufficient server-
side protection, which is why the end-users need an extra layer of protection
at the client-side. In this paper, we analyze the best-known client-side XSS
filters, study their mechanisms, structures and mentioned the advantages and
disadvantages of each filter. This paper presents a novel XSS filtering model
based on filtering rules, XSSFilter, uses Regular Expression in Xpath to detect
reflected content, which makes it more robust for web sites that employ
custom input sanitizations. We provide a detailed experimental evaluation to
compare the four filters with respect to their usability and protection.

Keywords: Cross-site scripting, XSS, XSS filters, filtering rules, XSSFilter.

Journal of Web Engineering, Vol. 21 7, 2209–2230.
doi: 10.13052/jwe1540-9589.2179
© 2022 River Publishers

2210 K. F. Alenzi and O. A. B. Abbas

1 Introduction

Cross-site scripting (XSS) is the most worrying security issue confronting
web programmers (Wichers, 2013). XSS now tops buffer overruns as a type
of reported vulnerability (Christey and Martin, 2007). Even though it is still
difficult to fix XSS weakness yet fixing each XSS weakness in a huge site is a
more troublesome assignment, an undertaking that many sites don’t achieve.

Rather than waiting for each website to fix its XSS security gaps, web
browsers can reduce some of the XSS vulnerability categories, protect plat-
forms that have not yet, or may not, correct their vulnerabilities. Normally,
it is easy to create XSS filters from the client-side. In a reflected XSS risk,
the payload is injected in both the HTTP request to the server and the HTTP
reply from the server. However, there are some problems to build a candidate
without any false negatives, even for a limited set of security issues. XSS
has for quite some time been through the best dangers to “web security”
as characterized in few reports that contain definite data about the degree
and danger of this class of weaknesses. One of these reports is the “Open
Web Application Security Project (OWASP) Top 10 – 2017” report that
contains a rundown of the main 10 most significant security chances for
web applications (OWASP, 2017). Albeit cross-site scripting has tumbled to
seventh in the “OWASP Top 10 – 2017” report (OWASP, 2017), cross-site
programming stays one of the most perilous types of risk.

Another report, distributed every year in the course of recent years, by
White-Hat Security, called the “2017 – The White-Hat Security Applica-
tion Report” (Grossman, 2007), likewise demonstrates that cross-webpage
scripting is among the two most significant shortcomings on the web, the
stressing note in this report is that albeit cross-website scripting is one of the
most genuine weaknesses, it isn’t offered need to address it by most sites.
The measurements being introduced recommend that the weaknesses getting
the most consideration are weaknesses that are anything but difficult to fix.
Therefore, it is recommended that associations must embrace a danger-based
remediation measure, which implies that the most basic weaknesses should
be organized first, similar to cross-site scripting.

One investigation from Hydara et al. (Hydara, Sultan, Zulzalil, and
Admodiasaso, 2015). They inspected a sum of 115 examinations identified
with cross-site scripting, presumed that XSS stays a major issue for web apps,
notwithstanding all the submitted exploration also the arrangements being
given up until now. As observed from the later statistics from OWASP, White
Hat, and the BugCrowd, this end nods, that XSS vulnerabilities remains to be
at large.

A Defensive Framework for Reflected XSS in Client-Side Applications 2211

The internet browser works in the interface between the web application
client and the webserver. The security of the request created here is dependent
on the HTTP headers used by the web application developers as well as
the policies the web application developers use. Therefore, it is necessary to
focus on the client-side mechanism to provide stronger protection for the web
application to store critical data from cybercriminals. There exist so many
different types of attacks for targeting all kinds of vulnerabilities that are
often contained in web applications.

Cross-site scripting attack (XSS) is a common vulnerability that is
exploited in modern web applications by entering advanced HTML tags
and Java Script functions. Little verification of entry on the web application
can steal cookies from the web browser database. A cross-site scripting
attack continuously leads lists of vulnerabilities in the most widespread web
application (Wichers, 2013). Following are the types of cross-site scripting
attacks: (al, 2010).

1.1 Persistent XSS (Stored Attack)

Is server-side attack, occurs when the injected script is stored on a publicly
accessible area of a website. When a user visits one of these places, the
browser will retrieve and present the data, which in turn will execute the XSS
attack stored in the browser context. Figure 1 illustrates the flow of a typical
Stored XSS attack.

Figure 1 Typical flow of stored XSS attack.

2212 K. F. Alenzi and O. A. B. Abbas

c. DOM-Based Vulnerabilities.

 the DOM allows the page to interact with JavaScript page code, making the page more
dynamic. This also makes it possible for malicious code to change the page if the JavaScript

Figure 2 Typical flow of reflected attack.

1.2 Non-Persistent (Reflected Attack)

Occurs when a user input file during a request is shipped to an internet site,
which instantly returns data in response to the browser, without the web site
first ensuring. For the reverse XSS attack to work, the attacker needs to make
the victim somehow require a special query that contains the malicious script,
if a user visits this specific URL, the attack code will be run and executed in
the user’s browser. Figure 2 illustrates typical XSS attack flow.

1.3 DOM-Based Vulnerabilities

The DOM allows the page to interact with JavaScript page code, making the
page more dynamic. This also makes it possible for malicious code to change
the page if the JavaScript entry is not handled properly. If a website includes
some JavaScript code in the response that directly uses input from an input
source, like the URL, a DOM Based XSS might be executed. Figure 3 shows
the data flow of an XSS-based DOM attack. These attacks can actually be
executed without even sending the attack script to the web server at all, using
a special Hypertext Markup Language (HTML) character, in the URL.

CDOM-based XSS attack is the most advanced and not well-known type.
Indeed, many of the security vulnerabilities in this type of attack stem from
the inability of web application developers to fully understand how it works.

White Security report that it’s being neither organized nor simple for sites
to fix and remediate XSS, it turns out to be evident that the client needs a few

A Defensive Framework for Reflected XSS in Client-Side Applications 2213

Figure 3 The flow of DOM-base attack.

methods for securing themselves at the customer side since it’s mostly the
end-clients of weak web applications that are influenced by possible assaults.
Among the absolute best 5 most utilized internet browsers (Internet, 2015)
Mozilla Firefox is that the sole program that does exclude any very inherent
sifting against cross-webpage scripting assaults, which may bargain clients
inside the instance of a weak web application. Currently, XSS attacks are
dealt with by fixing the server-side vulnerability, which is usually the result
of improper input validation routines. Although it is a clear course of action,
this approach leaves the user completely open to abuse if the compromised
website is unwilling or unable to fix the security issue. A complementary
approach is to protect the user’s environment from XSS attacks. This requires
methods to distinguish malicious JavaScript code downloaded from a trusted
website from regular JavaScript code, or techniques to mitigate the impact of
cross-site scripting attacks. (Rodrı́guez G. E., Torres, Flores, and Benavides,
2020).

Almost 25% of web applications are susceptible to XSS as mentioned in
(Mewara, Bairwa, and Gajrani, 2014) (vulnerability report, 2014). Moreover,
XSS within the top position among all other security vulnerabilities. Sev-
eral anti-XSS defense techniques are proposed (Vogt, Nentwich, Jovanovic,
and Kirda, 2007) (Introducing Content Security Policy, 2013), among these

2214 K. F. Alenzi and O. A. B. Abbas

defenses, client-side filters are designed to supply browsers the power to
mitigate various categories of XSS. Within the event of a reflected XSS
attack, both the HTTP request and therefore the response from the server
contain the corresponding attack payload. Filters that are implemented in
browsers got to define and block the attack. Although in some browsers,
client-side known XSS filters are employed by default. Unfortunately, they
need their limitations to alleviate several XSS vulnerabilities categories.
Within the worst case, these filters are often easily bypassed. Hence, we try
to build a robust, effective, client-based security mechanism to protect web
applications from cross-site scripting vulnerabilities; find the best filter that
achieves the best security for our browsers.

In the next section we review several related works and make compression
between the best filter that defense against XSS attacks. In Section 3 we
describe our approach, and Section 4 evaluates the design, both in terms of
correctness and performance. Section 5 contains our concluding remarks.

2 Related Works

Before going through this work, it is important to look at the existing related
works, specifically paying attention to the current client-side filtering status
of cross-site scripting attacks, which contains vulnerabilities and suggestions
for further improvements. Based on this, “XSS Firefox Client-Side Filter” is
the first client-side proposed solution for XSS (Vikne and Ellingsen, 2018).

In the paper (Bates, Barth, and Jackson, 2010) analyses existing client-
side filters and techniques for cross-site scripting, before presenting a better
solution based on a different design.

The analyzed filters use regular expressions to filter them, which the paper
concludes are either unacceptably slow or easily circumvented. Then they
introduce a new filter design that achieves high performance and high accu-
racy, by implementing the filter to block scripts after the HTML parser but
before executing the script, and by using string match instead of regular
expressions. The filter, XSS Auditor, was first implemented in the Web Kit
rendering engine and is now enabled by default in Google Chrome.

Noxes (Vigna, Jovanovic, Kirda, Kruegel, Vigna, and Jovanovic, 2006).
The first web intermediary was executed as a client-side answer for moderate
XSS risks. It deciphers all solicitations and won’t permit any solicitations to
be sent across areas aside from some whitelisted URLs. This will guarantee
that no touchy client data is shipped off some other zones. In any case, this
methodology experiences countless bogus positives and controls the use of

A Defensive Framework for Reflected XSS in Client-Side Applications 2215

numerous kindhearted activities the same number of locales profit cross-area
demands.

NoScript (Maone, 2012) is primarily supposed to be a tool, which inter-
rupts execution of malicious scripts from maximum web pages. Though,
obstructing the execution of scripts is not a genuine choice for web applica-
tions. For resolving this issue, NoScript also acts as a client-side XSS filter,
which sanitizes the HTTP request transmitted via web browser.

Pelizzi and Sekar (Pelizzi and Sekar, 2012) analyzed some of the serious
performance issues in the XSS-Auditor (al, 2010) and NoScript (Maone,
2012) and proposed a new XSS filter, that utilizes an approximate string
matching algorithm for detecting the whole and partial-script injections.
The algorithm checks the length of the parameters and the script of the
web page. If the parameters are longer than the script, it searches within the
parameters for the script for a whole script injection. If the script is longer
than the parameter, it searches the script for the parameters for partial-script
injection.

Many propose client-side defenses against XSS attacks and demonstrate
how client-side XSS filters can reduce the impact of Cross-Site Scripting
Attacks. Several client-side XSS codes try to mitigate XSS vulnerabilities by
preventing an attacker from extracting that information to the server. The goal
of these codes is to monitor the flow of information within the website’s
JavaScript environment. Because of the XSS attack, it is highly recommended
to use both server and client-side filtering, so that you can protect against all
types of XSS attacks and achieve a good defense in depth strategy. This paper
focuses on client-side liquidation, which includes a discussion of the various
current solutions presented in this section.

Client-side filters are in the client which typically would be the web
browser used to access web applications. Client-side filtering may be able to
detect DOM Based XSS attacks, providing the extra protection server-side
filters are missing. However, even though client-side filters could possi-
bly detect all types of XSS attacks, it should not be used alone, without
server-side filters by placing the filter on the client-side.

Client-side XSS filters are an important second line of defense against
XSS attacks. We warn web developers against relying on client-side XSS
filters as a primary defense of security vulnerabilities in their applications,
but we recommend that each browser includes an XSS filter to help pro-
tect its users from unpatched XSS vulnerabilities. Instead of using regular
expressions to simulate the HTML parser, client-side XSS filters should
integrate with the display pipeline and examine the response after analyzing

2216 K. F. Alenzi and O. A. B. Abbas

Table 1 Compares the latest client-side technologies to filter browser based on seven key
factors
Related Work/
Key Factors XSSFilt XSSAuditor IE 8.0 XSS-immune
Methodology Approximate

String
matching

Exact
String
matching

Regular
Expression
based

String
comparison
and sanitization
based

Web browser
utilized for
deployment

Firefox Google
Chrome 4

Internet
Explorer 8, 9

Google Chrome

Category of an
XSS worm
Detected

Reflected,
stored

Reflected,
DOM-based

Reflected Reflected,
stored,
DOM-based

Partial script
injection
Detection

Yes No No Yes

Regular
expression
Utilized

No No Yes No

Context-aware
sanitization

No No No Yes

False-positive rate Medium Medium Medium Low

it. Client-side filters are the best method to defense against XSS attacks. A lot
of filters have been designed to protect the client against XSS attack. We will
discuss some of these filters in this section.

A performance comparison mentioned in (Gupta, 2016). between IE8,
NoScript, XSSAuditor, and XSS-immune shows that XSS-immune is the best
XSS filter. See Table 1.

3 Proposed XSS Filter Methodology

In this section we describe the proposed XSS filtering algorithm (XSSFilter),
how it is implemented and integrated into our system, also containing details
about every part of the filtering process. The Algorithm aims to create XSS
filtering model based on the filtering rules, that compares and test every script
returned in the http response with every potentially dangerous script from
the request. That helps achieve better, more accurate results and effective
performance in relieving XSS attacks.

The XSSFilter focuses on primarily stopping Reflected XSS attacks via
conduct a Context analysis to interpret and translate the content in the html

A Defensive Framework for Reflected XSS in Client-Side Applications 2217

code by building a set of rules to detect XSS vulnerabilities. These are the
rules work through compare the contents of the request with the response to
detect the Reflected XSS Vulnerability. It works by building an assortment of
rules for XSS weakness detection:

1. Selected risk vectors are dispatched against contributions of the web
application. Those risk selected attack vectors are launched against
inputs of the web application. Those attack vectors are generally injected
in a HTTP request as parameters or as fields in a web form.

2. The vulnerability filter receives the responses to the requests which
contained the injected code.

3. The vulnerability filter checks for the presence of injected script in the
received responses. If affirmative, XSS attack is considered successful
and a vulnerability of the scanned web application has been discovered.

4. When discover the reflected XSS attacker the filter will be closed and
block the website.

The proposed filter applies numerous techniques for dealing with the
various stages required in the test and filtering process measure. This process
contains a series of different tasks that are performed in a particular order,
before concluding whether there exists a cross-site scripting injection or
not. It includes methods for fetching the input from the request to different
methods for comparing this data with either inline script, external script, or
on-event handlers, all of which need to be processed differently and it proxies
the HTTP(s) requests from a browser sends them to different modules/plug-
ins for vulnerability scanning. The figure below shows the main improvement
in our method:

Figure 4 Current reflected-XSS detection system.

2218 K. F. Alenzi and O. A. B. Abbas

Figure 5 The proposed reflected-XSS filter detection system.

XSSFilter utilized in this strategy is Regular Expression in Xpath is a
special sequence of characters that helps you match or find other strings or
sets of strings, using a specialized syntax held in a pattern. in XSS filter
takes at URL filter By adding specific URLs with patterns containing text
and regular expressions can allow, block, exempt, and monitor web pages
matching any specified URLs or patterns. In this section, we have decided to
discover reflected XSS weaknesses.

3.1 XSS Filter Modules

Now, we will start by a brief review of the Algorithm implementation, we
divided it into the following four components.

• Raw HTTP demand parser
• Initial prober
• Context analyzer
• Payload generator

3.2 Raw HTTP Request Parser

The first step is related to the raw HTTP request parser that takes input from
a file and converts it into a request object. HTTP is one of several protocols
(communication strategies) used to transfer data from one device to another
over the Internet. It is a protocol that browsers mainly use to communicate
with websites.

The HTTP message handling framework is designed to be expressive and
flexible while maintaining memory efficiency and speed. It uses the same

A Defensive Framework for Reflected XSS in Client-Side Applications 2219

Figure 6 XSSFilter architecture.

API to parse, format, and implement HTTP messages, which helps ensure
consistent behavior of HTTP services regardless of the I/O model. Analyze
the HTTP request message and create an object model for it that can be used
both on the server and the client. In this step, we have set up our environment.
Here, our project method implements the raw HTTP request, let the Flow
builder control all aspects of the HTTP request. For example, this allows us
to connect to XSS services, connect to HTML services, or for many other
advanced uses.

This step aims to build an environment based on passing HTTP requests
to take the inputs from the file, in short, an environment that receives the
input. This means to start by fetching all the input data to the website in form
of GET and POST parameters, before checking each of these parameters if
they contain any potentially malicious code that can be used for executing a
cross-site scripting attack. Raw HTTP request parser would be a raw HTTP
request parser that takes input from a file and converts it into a request object.
Then we convert the body and request parameters into a DICT so that we can
easily parse and add our payloads.

Request.txt: is a text file consists of the needed instructions to achieve
the first step; HTTP exchanged between a server and a client. HTTP
requests are messages sent by the client to initiate an action on the server.
They have three components: HTTP method, HTTP headers, and Body as
shown in Figure 7.

After we have done this step passing the input HTTP request and trans-
form it to inputs proportional to the environment. Once we are done parsing,
we need to find a way to insert a probe in request params as well as the post
body and check whether if it is reflecting in the response or not. To do this

2220 K. F. Alenzi and O. A. B. Abbas

INITIAL PROBER
Figure 7

Figure 8 Steps to context analyzer by LXML.

we are going to use the requests package in python to parses params and
body to create a list of requests objects with probes as a payload. The next
step will send each request and check which parameter value is reflected in
the response. We mean it takes a copy of the request that contains all the
request contents, and we will need to find a way to insert a probe in request
parameters and send it to the server. The risk-filter checks for the presence of
infused content in the got reactions. On the off chance that positive, the XSS
risk is viewed as effective and weakness of the examined web application has
been found. Means if a file reflects in the HTTP response, we can conduct a
Context analysis to interpret and translate the content in the HTML code, and
if there is no reflection in the response, the scanning process stops.

A Defensive Framework for Reflected XSS in Client-Side Applications 2221

3.3 Context Analyzer

Context Analyzer is one of the most important stages in this algorithm and
building a context analyzer is the most difficult part. To write a context
analyzer we use LXML package that parses HTML into an XML tree.
It takes the HTML code and probe as inputs, and then returns a list of
contexts in which XSS vulnerability may occur, because XSS vulnerability
appears in many HTML contexts (HTML Tags-HTML Attribute Name-
HTML Attribute Value-HTML Text Node-HTML Comments-Style-Style
Attribute-Href Attribute-JS node). We Analyze it through XPath regular
expression in LXML XPath. Figure below shows the steps.

Our goal here is to download the HTML contents of the main pages.
Regular Expression in Xpath helps with using part of a locator attribute that
stays constant to identify a web element on a web page. Sometimes the values
within the HTML code for the attributes change. For instance, attributes
would change every time the web page you are working on is refreshed as
well as the contents of all hyperlinks on the main page. after a raw HTML
string is parsed and converted into an XML tree. Then we will search the
XML tree using RegEx to find the context in which the string has been
reflected. If a string is found, then we extract all the codes and perform anal-
ysis and translation of the content in the code to detect the XSS vulnerability.
The benefit of setting the context is in the next step of the algorithm.

3.4 Payload Generator

After a raw HTML string is parsed and converted into an XML tree, then
scanning the XML tree using RegEx to find context in which the string has
been reflected and successfully created a context analyzer. What is left is to
create payloads based on the context and confirm those payloads. For this
part, we created payload generator function that takes contexts and returns a
list with RegEx to find in the XML tree and the payload. The importance
of this stage is that it takes the context that contains injections to make
corrections, modifications, and substitutions contexts with other codes, the
test process is repeated to confirm the vulnerability is addressed. The last
step is creating a new HTTP request does not contain XSS vulnerabilities.

If vulnerability is discovered, the filter will prevent it from being exe-
cuted within the user’s browser by creating a new modified request without
injection. This request contains the modifications that were implemented in
the previous stages. The new result is displayed by displaying the modified
requests.

2222 K. F. Alenzi and O. A. B. Abbas

3.5 XSS Filter Implementation

The above four components implemented in four modules coded in python
utilizing LXML and solicitations libraries and developed under Windows 10
Pro operating system – PyCharm (IDE).

Module 1: This step aims to build an environment based on passing HTTP
request to take the inputs from the file and when using the filter, and Before
checking each of these parameters if they contain any possible malicious code
that can be used to conduct a cross-site scripting hacking, it starts by fetching
all input data to the website in the form of GET- and POST-parameters. Then
the filter will continue its examination of all input in the HTTP request.

Module 2: We Pass the input of the HTTP Request and convert it into inputs
appropriate to the environment. This is considered the objectives of this stage.
Also, we need to find a way to insert a probe in request parameters as well as
the post body and check whether if it is reflecting in the response or not.

Module 3: first we use regular expression in LXML XPath to implementation
the filter. In this step our goal is to download the HTML contents of the main
page, as well as the contents of all hyperlinks on the main page using the
LXML tree, which supports the simple path syntax of the find. a context
analyzer is going to use a package called LXML that parses HTML into an
XML tree. We will search the XML tree using regex to find the context in
which the string has been reflected. If finds for a string. The path always
collects all results before returning them.

Module 4: The most important in these Modules is repeating the request
in the browser to confirm the vulnerability. In this XSSfilter, we will work to
repeat the request in the browser to confirm the vulnerability, and in the event,
takes the context that it contains injections. If the vulnerability is discovered
the filter will prevent it from being executed within the user’s browser, and
the new result is displayed by displaying the modified requests.

4 Results and Discussion

Client-side XSS filters do not need absolute correctness to be of use.
However, the effectiveness of the filter depends on the percentage of vulnera-
bilities protected by the filter, and the rate of false-positive and false-negative.
Our system comes with built-in XSS protection. XSS Filter uses the idea
of matching inputs to outputs to detect XSS vulnerabilities. In practice,
when testing the implemented filter, simple cross-site scripting attacks were

A Defensive Framework for Reflected XSS in Client-Side Applications 2223

successfully detected and blocked by scanning all request inputs and compar-
ing them with the response and evaluating the context in which the injection
was made. In our system, we use this website to test the code, the website
contains reflected XSS injection. (testPHP)

The filter puts a specific word in the request and sends more than one
request for one site and then searches for it in the result. In case there is a
discovered vulnerability, it prints the result. If the vulnerability is not dis-
covered, it prints a message that this site does not contain XSS vulnerability.
The filter works to test each input to the site separately by analyzing the link,
meaning that for each element in the perimeters it sends a request modified
by this perimeter, and also for each element in the body sends a new request,
and so on. In the event of success in penetration, it should be printed that this
perimeter is permeable.

5 Evaluation

In this sub-section, we assess the accuracy and efficiency of our client-side
XSS filter and we present our evaluation of the XSS Filter. We first define our
criteria and metrics for evaluation using the threefold criterion, these are
Performance, Protection Effectiveness and Usability. we will present a thor-
ough evaluation of XSS Filter. Finally, we compare XSS Filter with other
XSS approaches.

5.1 Performance

Performance is a crucial factor in determining the utility of a client-side
XSS filter. Browser vendors are reluctant to deploy features that slow down
key browser benchmarks, including JavaScript performance and page load
time. By providing the interface between the browser’s HTML parser and
JavaScript engine, XSS Auditor achieves high performance and high reliabil-
ity. The semantics of an HTTP response are analyzed by Post-parser. Blocks
suspicious attacks avoid the passing of the inserted script to the JavaScript
engine instead of risking changes in the HTML code. In XSSFilt, however
there are two logical steps involved in XSSFilt operations.

(a) Realizing script content on the victim page.
(b) The identification of whether this code derives from requested data.

While the completeness of their regular expressions depends on IE and
NoScript, they require to strike a complex balance between usability and
security, but in XSS-immune, the highest observed value of XSS-immune

2224 K. F. Alenzi and O. A. B. Abbas

performance on these web applications is almost 98 percent. In comparison
with other filters, there was the lowest number of false positives and enough
false negatives are observed in all the platforms of web applications.

As for our approach, it is like the IE 8 filter to make a comparison between
the request and the response, but the difference here is in this approach.
Our system sends request according to perimeter and puts in each perimeter
a test word (teyascan) then compare it with the response. If it comes back in
the response, it prints that perimeter is hackable.

To calculate the efficiency of the filter, the filter should be able to detect
and avoid the execution of the inserted script. This is being tested by an auto-
mated test consisting of several separate script injections. in XSS Filter we
tested our system by Vulnerable test websites for Acunetix Web Vulnerability
Scanner (acunetix).

Xspear is a scanner for web vulnerabilities. It is a full web application
security testing solution that can be used in both stand-alone and complex
environments. Xspear is a powerful XSS scanning and parameter analysis
tool on ruby gems, capable of both static and dynamic XSS vulnerability
analysis. Therefore, it can scan, detect, and analyze potential XSS vulnerabil-
ities on web applications. From XSpear features is Testing request/response
for XSS protection bypass and reflected (or all) params – Reflected Params
and Filtered test event handler HTML tag Special Char Useful code – Testing
custom payload.

To evaluate the testing of XSSFilter to make sure the modified browser
ran the code for our implemented filter, we used the search function on each
of the websites and tested with two different parameters, one safe and one
unsafe to compare the load time between the modified browser and original
browser. We found that our system was able to detect 3 sites out of 5 that they
were tested. And After performing a link analysis, it was able to print that the
site is vulnerable. And If there is no vulnerability, a message appears stating

Table 2 The detection XSS in the 5 sites

 Site 1 Site 2 Site 3 Site 4 Site 5

XSSFilter

Xspear

A Defensive Framework for Reflected XSS in Client-Side Applications 2225

that the site is secure. However, a variety of factors may have influenced
performance testing. These variables, which may have had a greater effect on
the results, are the variations in the local Internet speed of the test machine
and the fluctuations in web traffic received by the websites examined at the
time of the test. These factors typically differ during the day, depending on
the moment.

5.2 Filter Efficiency

Without waiting for websites to repair them, client-side filter methods defend
users from XSS vulnerabilities. Internet Explorer 8(12) comes with XSS
security built in the approach of IE8, the uses the concept of balancing inputs
to outputs, IE8 aims to provide ordinary users with security. It has been shown
that their regular expressions are inadequate for security.

XSSAuditor (14) is the name of a Google Chrome-integrated XSS filter.
This filter aims at a modern architecture that can only be used for browser
defenses. This technique has many features, the most important being inter-
posing on all script evaluation requests, defeating browser quirks, and uncom-
mon attack vectors. XSSFilt has too enjoys features. However, XSSAuditor
relies on full string matching, unlike XSSFilt, and can therefore skip risks
because of the application-specific sanitization. But the XSSAuditor does not
detect partial script injections. For XSSFilt, XSSAuditor is 95 percent versus
99.75 percent. Meaning, however, skewed towards simple vulnerabilities
adding a script tag. The XSS filter of NoScript performed well against both
datasets.

Specifically, however, NoScript is looking for JavaScript syntax and
simple Java-Script functions including a warning. NoScript’s method suf-
fers from a higher rate of false positives, since NoScript sanitizes outgoing
requests rather than incoming responses. It cannot confirm if the offending
content is present in the response, which leads to JavaScript code execution.
It cannot confirm if the offending content is present in the response, let alone
if it leads to JavaScript code execution. But in our experiments, we were able
to add built-in XSS defenses to our system. Much like IE8. The XSS filter
uses the matching input and output theory to identify vulnerabilities in XSS,
and put a test word to compare whether it is reflected in the response or not.
The efficiency of the filter revolves based that after the process of analyzing
the code, the filter makes some corrections, modifications, and substitutions
of contexts with other codes.

2226 K. F. Alenzi and O. A. B. Abbas

5.3 Usability

Usability refers to the consistency of user experience when communicating
with goods or systems, like websites, apps, devices, or applications. Usability
is about performance, efficiency, and overall user satisfaction. In XSS Parser,
the filter searches for malicious strings in outbound requests and relies on
a regular expression corresponding to that string. The same pattern is then
searched in the answer of the server. XSS filters depend on the completeness
of regular expressions that need to strike a complicated balance between
usability and security.

Aspects of our framework are not to block the entire web page. User
experience will be significantly impacted by a lot of discovered attacks, which
would allow consumers to use regular browsing behaviors without disrupting
or delaying their duties.

XSSFilter system is easy to use and fast in detecting and stopping vul-
nerability in a short time. Our XSSFilter has the advantage of being fast in
obtaining results to discover the vulnerability and it changes the order page
with high accuracy.

5.4 Comparison Between All Filters

In research (Gupta, 2016), the performance analysis of existing client-side
XSS filters (i.e. IE8, NoScript, and XSSAuditor) was also compared with
XSS-immune. The result in the table shows that the XSS-immune is the best
XSSFilter and they compare it with the current XSS defensive methodology.

Most current XSS filters are unable to detect partial injection of XSS
worms. Besides, a lot of pre-processing is required in the current architecture
of web applications for efficient deployment on various web browser plat-
forms as well as web applications. Context-conscious sterilization is simply
avoided by most of these sterilization techniques. While XSS attack vectors
are sterilized in a way that is not context-sensitive, this form of conventional
sterilization method is easily bypassed by attackers. As a consequence, an
unacceptable rate of false-positive and false-negatives is found in current XSS
filters.

False positives are misclassified security warnings, suggesting that there
is a danger when there is no one. The benefit of the filter is dependent on
the percentage of vulnerabilities protected by the filter and the rate of false-
positive and false negatives. This table shows the number of false positives
for each candidate and shows a comparison of several false-positive filters.
As it is understood, false positives typically cause further disruption to users.

A Defensive Framework for Reflected XSS in Client-Side Applications 2227

NoScript will result in a higher rate of false positives. As NoScript
sanitizes outgoing requests rather than incoming responses, it cannot confirm
whether the offending content occurs in the response. On the other hand, XSS
Auditor only prevents the execution of the offending script but typically does
not prohibit the display of the main content of the website.

6 Conclusions

When talking about web protection, which is an overly wide area, but security
goals are critical when developing stable web applications. To be able to
accommodate all of them, web applications need to defend against a variety of
different attacks by malicious actors seeking to steal their data and the data of
their users. This is not a simple job, since there are so many different forms
of attacks targeted at all sorts of vulnerabilities that are often found in web
applications. The most common security threat is cross-site scripting (XSS).
This paper presented a thorough study and comparison of many popular XSS
filters, NoScript and XSSAuditor, XSS-immune, XSSFilt, identifying their
weaknesses and proposing a new filter, XSSFilter. This paper describe
the implementation of the filter, XSSFilter filter compares the request with the
response, after a raw HTML string is parsed and converted into an XML,
the filter detect a vulnerability and then prevent it through by creating a new
modified request without injection. The new result is displayed by modified
requests.

We showed that our proposed XSSFilter is easy to use and fast in
detecting and stopping vulnerability in a short time. Our system in XSS
Filter has the advantage of not being late in obtaining results to discover the
vulnerability and it changes the order page with high accuracy by creates
a correction and modification of the HTML request page before submitting
and displaying it, to avoid reflected XSS vulnerabilities by altering the HTML
request.

References

[1] Gupta, S. (2016). “XSS-immune: a Google chrome extension-based
XSS defensive framework for contemporary platforms of web applica-
tions,” Secur. Commun. Networks, vol. 9, no. 17, pp. 3966–3986.

[2] acunetix. (n.d.). https://www.acunetix.com/vulnerability-scanner/.
Retrieved from acunetix.

https://www.acunetix.com/vulnerability-scanner/

2228 K. F. Alenzi and O. A. B. Abbas

[3] al, B. e. (2010). Mozilla Developer Network. Recuperado el, 1. Bates.
(2010).

[4] Bates, D., Barth, A., and Jackson, C. (2010). Regular expressions
considered harmful in client-side XSS filters. Paper presented at the
Proceedings of the 19th international conference on World wide web.

[5] Christey, S., and Martin, R. A. (2007). Vulnerability type distributions
in CVE Mitre report. OWASP Foundation.

[6] Grossman, J. (2007). Whitehat website security statistics report. White-
Hat Security.

[7] Hydara, I., Sultan, A. M., Zulzalil, H., and Admodiasaso, A. (2015).
Current state of research on cross-site scripting (XSS) – A systematic
literature review. Information and Software Technology.

[8] Internet. (2015). https://www.alexa.com/topsites. Retrieved April 2020,
from Alexa.

[9] Introducing Content Security Policy. (2013). Retrieved March 2020,
from https://developer.mozilla.org/en/.

[10] lxml. (n.d.). https://lxml.de/. Retrieved from lxml.
[11] lxmlpath. (n.d.). https:/ / lxml.de/xpathxslt .html. Retrieved from

lxmlpath.
[12] Maone, G. (2012). NoScript-JavaScript/Java/Flash blocker for a safer

Firefox experience. In.
[13] Mewara, B., Bairwa, S., and Gajrani, J. (2014). Browser’s defenses

against reflected cross-site scripting attacks. Paper presented at the
2014 International Conference on Signal Propagation and Computer
Technology (ICSPCT 2014).

[14] Mozilla. (n.d.). https://developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/Accept. Retrieved from Mozilla Developers.

[15] Nava. (2010).
[16] Nava, E. V., and Lindsay, D. (2009). Our favorite XSS filters/IDS and

how to attack them. Black Hat USA.
[17] Network. (2014).
[18] OWASP, T. (2017). The Ten Most Critical Web Application Security

Risks. OWASP Foundation.
[19] Pelizz̀i. (2012).
[20] Pelizzi, R., and Sekar, R. (2012). Protection, usability and improve-

ments in reflected XSS filters. Paper presented at the proceedings of the
7th ACM Symposium on Information, Computer and Communications
Security.

https://www.alexa.com/topsites
https://developer.mozilla.org/en/
https://lxml.de/
https://lxml.de/xpathxslt.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept

A Defensive Framework for Reflected XSS in Client-Side Applications 2229

[21] Rodrı́guez, G. E., Torres, J. G., Flores, P., and Benavides, D. E. (2020).
Cross-site scripting (XSS) attacks and mitigation: A survey. Computer
Networks.

[22] Rodrı́guez, Torres, Flores, and Benavides. (2020).
[23] Stock, B. (2014). “Precise client-side protection against DOM-

based cross-site scripting,” in 23rd {USENIX} Security Symposium
({USENIX} Security 14), pp. 655–670.

[24] testPHP. (n.d.). http://testphp.vulnweb.com. Retrieved from TestPHP.
[25] Vigna, Jovanovic, Kirda, E., Kruegel, C., Vigna, G., and Jovanovic, N.

(2006). 1Noxes: a client-side solution for mitigating cross-site script-
ing attacks. Paper presented at the Proceedings of the 2006 ACM
symposium on Applied computing.

[26] Vikne, A., and Ellingsen, P. (2018). Client-Side XSS Filtering in Firefox.
In: SOFTENG.

[27] Vogt, P., Nentwich, F., Jovanovic, N., and Kirda, E. (2007). Cross Site
Scripting Prevention with Dynamic Data Tainting and Static Analysis.
Paper presented at the NDSS.

[28] vulnerability report. (2014). Retrieved March 2020, from https://www.
infopoint-security.de/medien/cenzic-vulnerability-report-2014.pdf.

[29] Wichers, D. (2013). OWASP TOP 10-2013. OWASP Foundation.

Biographies

Khulud Fisal Alenzi has received her BS and MSc degrees from University
of Tabuk in 2015, 2020 respectively, College of Computers and Information
Technology. Her major research interests include Cyber Security and Web
Applications.

Onytra Abbas Bashir Abbas received her PhD in AI (text summarization
and caching in mobile web application) from Sudan University of Science and
Technology, Sudan (SUST) 2012. She is currently Assistance Professor in
the College of Computers and Information Technology, University of Tabuk.
Her major research interests include Cyber Security, Machine Learning and
Web applications.

http://testphp.vulnweb.com
https://www.infopoint-security.de/medien/cenzic-vulnerability-report-2014.pdf
https://www.infopoint-security.de/medien/cenzic-vulnerability-report-2014.pdf

	Introduction
	Persistent XSS (Stored Attack)
	Non-Persistent (Reflected Attack)
	DOM-Based Vulnerabilities

	Related Works
	Proposed XSS Filter Methodology
	XSS Filter Modules
	Raw HTTP Request Parser
	Context Analyzer
	Payload Generator
	XSS Filter Implementation

	Results and Discussion
	Evaluation
	Performance
	Filter Efficiency
	Usability
	Comparison Between All Filters

	Conclusions

