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Abstract

With the development of sensor and communication technologies, the use
of connected devices in industrial applications has been common for a long
time. Reduction of costs during this period and the definition of Internet of
Things (IoTs) concept have expanded the application area of small connected
devices to the level of end-users. This paved the way for IoT technology to
provide a wide variety of application alternative and become a part of daily
life. Therefore, a poorly protected IoT network is not sustainable and has
a negative effect on not only devices but also the users of the system. In
this case, protection mechanisms which use conventional intrusion detection
approaches become inadequate. As the intruders’ level of expertise increases,
identification and prevention of new kinds of attacks are becoming more
challenging. Thus, intelligent algorithms, which are capable of learning from
the natural flow of data, are necessary to overcome possible security breaches.
Many studies suggesting models on individual attack types have been suc-
cessful up to a point in recent literature. However, it is seen that most of
the studies aiming to detect multiple attack types cannot successfully detect
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all of these attacks with a single model. In this study, it is aimed to suggest
an all-in-one intrusion detection mechanism for detecting multiple intrusive
behaviors and given network attacks. For this aim, a custom deep neural
network is designed and implemented to classify a number of different types
of network attacks in IoT systems with high accuracy and F1-score. As a
test-bed for comparable results, one of the up-to-date dataset (CICIDS2017),
which is highly imbalanced, is used and the reached results are compared
with the recent literature. While the initial propose was successful for most
of the classes in the dataset, it was noted that achievement was low in classes
with a small number of samples. To overcome imbalanced data problem,
we proposed a number of augmentation techniques and compared all the
results. Experimental results showed that the proposed methods yield highest
efficiency among observed literature.

Keywords: Convolutional neural networks, deep learning, imbalanced
datasets, Internet of Things, IoTs, web security.

1 Introduction

In recent years, there is growing attention to sensor and communication
technologies. All these computing devices, independent of their capability
and sizes are aimed to be executed in a connected environment with the use
of the Internet of Things (IoTs) concept. The use of connected devices in
a networked environment has been common for a long time especially in
industrial applications. For reducing the cost and increasing the efficiency
of this network, applications are expanded to be able to use small con-
nected devices, in an IoT concept, to the level of end-users. Recently, IoT
technology has become a part of daily life by providing a wide variety of
application alternatives. Considering that many IoT networks are connected
to the internet for varying purposes, this means that the devices, in proper
circumstances, may be accessible from anywhere, anyone, and at anytime.
Hence, the vulnerabilities of these devices have become a major concern in
this area since they may affect the daily lives of loads of people in terms of
personal information leakage and financial losses.

While traditional cyberattacks previously aimed for one-time purposes
such as information leakage, financial profit, or damage to the system, today’s
intruders are also able to reach higher profits and even degree-of-confidential
documents on the governmental and military level while staying undetected.
In 2019, CNBC reported that cyber-attacks cost companies $200,000 on
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average, and threats tend to go an average of 101 days staying undetected [1].
Considering the fact that WikiLeaks has access to sensitive and protected
data of some governments in 2006 and the Stuxnet software disrupts Iran’s
nuclear research in 2010 [2], it revealed the importance of cybersecurity and
what could be the cause worldwide. This necessitated the formation of certain
policies in the field of information security and cyber defense. These policies
have also been tightening against increasing attacks [3–5]. Likewise as in
the degree-of-confidential spaces, now IoT devices are becoming the gates
between our individual internal network in our places and the outside world.
In 2016, the environmental control systems (ECS) of two apartment buildings
in Lappeenranta, Finland have attacked with Distributed Denial-of-Service
(DDoS) method and literally left in the cold for a weekend in winter. The
attack disabled the ECS in the two apartments completely [6]. In 2017, a
casino in the North U.S was attacked by intruders to steal some data from
a remote server in Finland. The attackers used an internet-connected smart
fish tank to connect to the internal network where the tank was equipped
with sensors to configure temperatures and cleanliness level of the tank [7].
In 2015 and 2016, one of the well-known car brands Jeep was hacked and
its interior parts such as sensors, breaks, and steering wheel were remotely
controlled by the hackers sending messages to the vehicle’s internal network
known as CAN bus [8]. There are also several connected webcam related
incidents reported which were about hackers taking control of the webcam at
homes to spy on household [9–11]. As these are only a few examples that just
happened, such incidents necessitated even the stronger and wider application
area of security mechanisms. In this environment, anti-viruses, firewalls,
intrusion detection, and prevention systems, and many other security mecha-
nisms developed. These systems were used for a long time by the companies
and governments to ensure the security of the network infrastructure.

This study primarily focuses on working with event logs of one of the
widely used security mechanisms, Intrusion Detection Systems (IDSs). IDSs
aim to analyze network traffic of computer devices and report any unnatural
behavior within the system after all prevention mechanisms such as firewall
and anti-virus software fail to block malicious attacks. These systems are
equipped with many features exhibiting high performance against conven-
tional attacks [12]. However, the defense mechanism remains weak and as
flexible as the predefined and updated rules in their databases, which causes
previously unseen or complex intrusion attempts to be succeeded. Despite
the fact that they are being updated by the vendors, attackers can squeeze
their behaviors and bypass the rules easily. At this point, some intelligent
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Figure 1 General IoT architecture, layer threats and the risk indicator for layers.

algorithms which are capable of learning from the natural flow of data, are
necessary to overcome possible security breaches. Thus, Deep Learning (DL)
models, without any hand-crafted touches, yield inferences from the natural
flow of data and provide robust and future-proof solutions [13].

In this study, a self normalizing deep neural network (DNN) [14] includ-
ing a convolutional feature extractor layer is implemented to classify network
attacks with a high accuracy and F1-score. For reaching comparable results,
one of the up-to-date network traffic datasets (CICIDS2017) is preferred and
compared with the recent literature. Since this dataset includes a couple of
rare samples and forms an imbalanced scenarios, the rare class samples in
the dataset have been synthetically augmented by using various up-sampling
methods. These methods include a custom random data generation model,
SMOTEENN technique and a tabular data specific generative adversarial
model (CTGAN) [15] to check whether the model performs better when data
augmentation is applied to the low-accuracy classes. As a result, experimental
results showed that each proposed method has its own characteristics while
yielding the highest efficiency among the compared literature.

The remaining part of the paper is organized as follows. In Section 2.1, the
general definition of an IoT system and its security concerns are expressed.
In Section 2.2, IDSs are briefly introduced for a better understanding of
the problem. In Section 3, the recent related work among the literature is
discussed. Section 4 describes the overview of datasets that are used in the
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literature as well as the preparation for the selected dataset. In Section 5,
the proposed Deep Learning model is described before conducting different
augmentation techniques for performance evaluations in Section 6. Section 7
and 8 contains the discussions, future work and they also conclude the paper.

2 Background

In this section, the history of the Internet of Things concept and the definition
of intrusion detection systems are explained as background information.

2.1 Internet of Things

Although the term “Internet of Things” does not have a standard definition,
in general it is referred to a network which is made of uniquely identifiable
physical devices called “things” [16]. These things are capable of sensing by
capturing data from their environment through attached sensors, controlling
and monitoring activities, processing the data to act accordingly and exchang-
ing data with other connected devices and applications. The data processed
by these devices are sent to centralized or cloud based destinations to perform
some specific tasks [17].

Ranging from personal usage to very large scale industrial automation
tasks, IoT applications form a reliable interaction between machines, systems
and also people. Applications of IoT include but not limited to wearables,
building and home automation, smart cities, smart manufacturing, healthcare,
automotive and other small or large scale private and industrial needs [18].
The market where IoT systems are used is also getting larger such as trans-
portation, computing services, retail and wholesale, banking and securities,
insurance, etc [18]. According to a recent research by IoT Analytics [19],
the top IoT use cases in 2020 include industrial, transportation, energy, retail,
cities, healthcare, supply chain, agriculture and building applications. The
underlying study explores active 1400 IoT projects from 620 IoT platforms
and tells that during the COVID-19 pandemic, the use and value of some
application areas such as supply chain have gained more importance.1 As
the research indicates, common use cases for each application area can be
summarized as follows:

1The pandemic actually started to make us think about the importance and potential of all
IoT applications in order to meet the consumption needs of people with the new normality
concept.
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• Industrial applications: Remote PLC control, automated quality control
systems, equipment monitoring, production floor monitoring, wearables,
etc.

• Transportation applications: vehicle diagnostic / monitoring (such as
battery, tire pressure and driver monitoring).

• Energy applications: Grid optimization, remote asset monitoring, pre-
dictive maintenance.

• Retail applications: Smart vending machines, customer engagement,
product and inventory monitoring, etc.

• Smart city applications: Environmental monitoring, video surveillance,
traffic management

• Healthcare applications: Medical device monitoring, assisted living,
wearables, etc.

• Supply chain applications: asset tracking, cold chain monitoring, inven-
tory management, etc.

• Agriculture applications: Precision farming, area mapping, livestock
monitoring, quality controlling, etc.

• Smart buildings applications: Smart home systems (lighting, alarms,
security mechanisms, various sensors), building utilization, consump-
tion monitoring, etc.

Although the technological changes caused by the pandemic process are
beyond the scope of this study, IoT applications played an important role
in combating the pandemic and gave researchers some impressions about
how such significant events affected the use of a technology branch. As
some research state, existing IoT applications started to be used for the
new normality purposes. IoT smart city applications started to be used for
smart scheduling in order to guide vehicle traffic and minimize large crowds.
Thermal cameras located to critical points of buildings were used as instant
diagnosis tools. Smart phones including specific applications marked infected
people and used to track their locations in order to create a map of infection
area. These applications also provided rapid identification using QR codes
before letting people in the critical buildings [20]. Many hospitals started to
use integrated networks inside for various purposes, such as rapid diagnosis
tools which provided accurate treatments and small beepers, which were used
to inform the concerned medical staff during any emergency [21].

The IoT system infrastructure is generally based on three main layers
of stack. The physical perception layer is what a physical device perceives
from its environment. The network layer is the combination of supported
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communication and connection protocols. It also defines how data is for-
warded from the source to the destination. The application layer forms
context-aware applications and services available to the masses [22]. This
basic architecture can also be extended depending on what’s needed from
an IoT system. The architecture also defines where the possible threats are
located and how they impact the health of the system. Because the most of
IoT devices are actually the combination of already existing technologies, the
application and network layers include the communication protocols and they
are used anyway regardless of the IoTs ecosystem.

There are various types of known attacks against the IoT systems. How-
ever, due to heterogeneity in IoT systems, the impact of attacks cannot be
measured precisely. Thus, the establishment of security and the standardiza-
tion become more challenging [23]. A typical IoT architecture including most
of the possible threats for given layers and their risk degrees can be seen in
Figure 1.

Regardless of small or large scale, IoT systems, which are included in
daily life in many areas, have various challenges depending on what they are
used for. The key challenges can roughly be described such as architecture,
availability, reliability, mobility, performance, management, scalability, inter-
operability, security, privacy, etc. In this study, we focused on availability,
privacy and information security side since these are the utmost concerns in
IoTs world [23–25].

In a recent study, Tawalbeh et al. [24] stated that modern IoT systems
are diverse from traditional computers which make the whole system more
vulnerable to security breaches. Selamat [25] surveyed some open challenges
of IoT security and categorized possible threats concerning the application
area. According to research, possible threats in most cases are denial of
service attacks, unauthorized access, privacy violation, eavesdropping and
malicious attacks including malicious code injection. These threats directly
target three key concepts of information security: confidentiality, integrity
and availability of the systems. The authors of [24,26] explain that many IoT
systems, which work on a massive scale, are composed of nearly identical
computing devices based on similar software and hardware components.
Thus any security breach may affect a significant number of devices at the
same time. Similarly, due to the irregularity of automatic interconnections
between devices, the impact of any cyberattack to an IoT system also
becomes unpredictable as the number of connections is unknown. That’s
why if any weak link occurs in an IoT system, all the key concepts of
information security becomes under the risk. Similarly, Hussain et al. [27]
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reviewed the security requirements and current solution approaches for IoT
systems. Authors stated that many existing solutions remain insufficient to
cover the entire security spectrum for these systems; however some novel
machine learning approaches can leverage the solutions to some extent. The
study classifies and extensively details threats into following seven categories.
(1) physical attacks where attackers have access to the physical device using
variable methods and is able to change device settings. (2) physical and link
layer security issues of the connection protocols the devices have, as depicted
on Figure 1. (3) network layer attacks including man in the middle, spoofing,
data leakage and unauthorized access. (4) transport and application layer
attacks where TCP and UDP protocols involve. In this layer, well-known
attacks are malware attacks, DoS, DDoS, phishing, SQL injection, cross-
site scripting (XSS) and Botnet. (5) multi-layered attacks including traffic
analysis, side-channel, replay, man-in-the-middle and protocol attacks. (6)
conventional security issues in cloud that is one of the essential parts of IoTs.
(7) security issues across IoT architectures where each existing IoT module
may have its own security and privacy breaches. The study then explains
existing machine learning applications specifically designed for overcoming
some of the previously defined threats [27].

2.2 Intrusion Detection Systems

Intrusion Detection System (IDS) is basically a security mechanism ana-
lyzing the flow of internal and external users and application in a system.
IDSs aim to detect unauthorized activities and attack situations through
various analyzes on the information they gather [28]. Considering the basic
pipeline of security gates, the first step can be considered as authentication
mechanisms for access control, such as requiring user name, password and/or
signatures. The control mechanism beyond this level is particularly concen-
trated on firewalls where the network traffic passes through. Although the use
of firewalls reduces the number of known-type attacks from outside, it is a
necessity to use IDS(s) in order to detect intrusions and not to keep open doors
against those may compromise the confidentiality, integrity or availability of
a resource [29].

IDS can be implemented by using different approaches according to
their used environment and types of prevention approaches [29–31]. The
first strategy aims internal monitoring of a computer which targets to detect
suspicious behavior of applications installed, which is called as host-based
IDS. The second strategy is to look after the network of computers where the
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IDS constantly checks whether there exists unauthorized patterns of inbound
or outgoing packets on LAN. Such systems, called as network-based IDS,
may not be effective against a number of attack types such as Denial of
Service (DoS). Another kind of IDS, called as signature-based IDS, works
perfect with its database including rules and signatures. These kind of IDSs
are able to detect the vulnerabilities that are previously known. Because of
lacking security over rules and signatures, an anomaly-based IDSs come to
the stage to figure out previously unknown attack types by analyzing the
usage patterns the underlying system generates. With this way, it starts to be
easier to detect new kinds of attacks since it does not heavily depend on any
pre-defined rule or signature. Considering that the IDS learns the underlying
system, it may have little hard time to learn the system and give high rate
false positives during the learning phase.

Because the intruders keep developing comprehensive attacks today,
conventional IDSs using pre-defined and flexible rules and signature-based
approaches [32] remain inadequate. Intruders do not inherit from known
signatures and constantly generate updated or new types of signatures [33,34]
on top of present rules of IDSs. For this reason, IDSs, which have been
strengthened by machine learning in recent years, can associate historical
data and user and application behaviors with each other. Thus they are able to
make deductions from these information combined. Conventional machine
learning approaches are especially used in the training phase of what is
anomalous behavior and what is not. In this way, IDSs can differentiate
how normal data is defined [35]. Along with catching unseen signatures and
defining them as an “unknown attack” by studying the previously labeled
normal data, machine learning and deep learning techniques are well suited
for directly classifying the type of signatures. Even if the traces are different
from known types, the models become successful when sufficient data is
provided.

In this study, it is aimed to approach on catching and classifying the
attacks from IDS data rather than only applying anomaly detection.

3 Related Work

For almost a decade, Deep Learning based approaches have been providing
robust and ground-breaking results in many fields as big data and other hard-
ware related technologies are continuously improved. As the IoT network
produces big data by nature, it has become one of the popular areas deep
learning. However, depending on the case, the data generated here may not
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be equally disassembled. Such as occurred in CICIDS2017, many real world
problems include imbalanced data and it contradicts with the requirements of
many DL concepts where the data should be equally distributed. Considering
this, many recent research using this dataset focused on only specific types of
attacks instead of providing one network for fifteen classes. In this literature
review, only the recent research working with CICIDS2017 dataset have been
examined. In the literature there a some works on the IDS systems, and only
a few of them are directly focused on IoT devices. In this section, it is aimed
to give some important works in this area.

Some researchers focused on the detection of a specific attack only.
Roopak et al. proposed a deep learning model for detecting DDoS attacks
on IoT networks. Their intention was to raise an awareness in IoTs area and
touch upon the open research challenges in cyber security field. They applied
Multi Layer Perceptron, Convolutional Neural Networks (CNN), Long Short-
Term Memory Units (LSTM) and a hybrid CNN+LSTM model to describe
DDoS attacks. Findings showed that their hybrid model outperforms the other
models as well as conventional machine learning techniques such as Support
Vector Machines, Naive Bayes (NB) and Random Forest (RF). They reached
the highest accuracy level as 97.15% [36].

Faker and Dogdu proposed DNN and ensemble methods, RF and Gra-
dient Boosting Tree, to classify attacks. They also divided the dataset into
fourteen (the number of attacks) subsets by applying feature ranking with
K-Means and using homogeneity metric. With this way, all the subsets only
include the corresponding attack and benign labels and all the features in
each subset are ranked and sorted from highest to lowest homogeneity score.
After the scoring phase, the lowest scored features are deleted. The highest
accuracy they provided is 99.56% for their selected features and the same
accuracy for full dataset [37].

Hossain et al. stated that Brute-Force attacks (BFA) are one of the
incurable attack types when an invader has an access to a network. They
surveyed recent literature those used various techniques to detect BFA and
investigated SSH and FTP Brute-Force attacks of CICIDS2017 as their use
case. Since the use case was only for BFA, only Tuesday and Thursday data
is used from the dataset. In the study, LSTM and other conventional machine
learning techniques such as RF, NB, K-Nearest Neighbor are used and the
results are showing that LSTM outperforms the other classifiers with 99.88%
accuracy for Tuesday dataset and 99.86% for Thursday dataset. As the study
shared their precision and recall values in detail, the F1-score of the study
is 0.99% for FTP-Patator, 0.97% for SSH-Patator, 0.19% for Web Attack
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Brute-Force, 0% for Web Attack SQL Injection and 0.03% for Web Attack
XSS. It seems that the model works well with Tuesday data but does not yield
a good performance with Thursday dataset because of having low recall and
thus low F1-score [38].

Pelletier and Abualkibash evaluated the CICIDS2017 and stated that
imbalanced classes makes it harder to work with the dataset itself. Yet they
pre-processed the dataset using an R-language framework and deleted least
important features. Then applied the data to their deep neural network model
as well as to an RF to check the robustness of their model. The results show
that the neural network achieved 96.53% and RF achieved 96.24% accuracy
on average [39].

Zhang et al. touched upon the imbalanced dataset problem when dealing
with network intrusion detection, stated that uneven sample distributions
adversely affect the result and limit the quality of detection rate for attack
types. Therefore, they proposed a technique for combining a deep learning
model with built-in up-sampling and under-sampling approaches. For this
aim, the study suggested an imbalanced class processing pipeline where
the dataset is up-sampled by using Synthetic Minority Over-Sampling Tech-
nique (SMOTE) and then under-sampled by using Gaussian Mixture Model
(GMM). The study uses a 8-layer CNN based deep learning model which they
call it SGM-CNN. The model uses 2 pieces of CNN+CNN+MaxPool and a
dense layer followed by a dense layer. As a test-bed, both CICIDS2017 and
UNSW-NB15 datasets were used and the success rates compared with each
other. As their pre-processing step, one-hot encoding was used to change
categorical variables into numerical form, then a denoising autoencoder
was used as a feature reduction and selection mechanism. After the pre-
processing, they applied their so-called SGM for imbalanced data processing
on the training set. The results show that they had 99.86% overall weighted
average F1-score [40].

Abdulhammed et al. studied on dimension reduction approaches for
machine learning tasks on CICIDS2017 dataset and used both auto-encoder
and Principle Component Analysis (PCA) to create more discriminative and
representative features out of underlying dataset. After that, they applied
various machine learning tasks such as Random Forest, Bayesian Network,
Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis
(QDA) on resulting low-dimensional features. Their dimension reduction
approaches provided the 10 most significant features out of CICIDS2017
dataset while maintaining a high classification accuracy of 99.6% when using
Random Forest classification, yet they did not provide any F1-score for
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10-class scenario. Instead they indicated that the model gets 99.7% weighted
average of F1-score when the number features reduced to 30 [41].

Zhang et al. proposed a novel deep learning model that is a parallel cross
convolution neural network model (PCCN) where they aim to produce better
quality results for imbalanced attacks. In this study, the authors chose to work
on the raw dataset (by parsing PCAP files) over published CSV dataset. That’s
why they got different number of samples for their training and test sets.
They designed and implemented three different models where in the first
model two parallel CNN stack each including 4 convolutional layers share
their outputs by concatenating at some points in the pipeline. After cross-
relating the features with CNN layers, the resulting feature map is then sent
to a global convolutional layer followed by an average pooling. The resulting
feature map feeds the dense layer to provide the final result of the neural
network. The second model uses element sum instead of concatenation and
the third model uses parallel but asymmetric convolutional layers where the
result is only concatenated at the level of last layers. In the experiments, the
proposed PCCN model outperforms the other models including CNN and
LSTM equivalents. The study provided 2 result and comparison variations
for the test cases where the first one is from the payload of the dataset
and the second one is from the header information of the dataset which
we chose to work on, too. They got 97.31% weighted average of F1-score
when using only TCP/UDP header information, 98.65% F1-score when using
only payload itself and increased the overall F1-score performance to 99.68%
when using both the payload and header together [42].

Elmasry et al. introduced two studies mainly based on an evolutionary
algorithm approach to enhance deep learning techniques by utilizing Particle
Swarm Optimization (PSO) for both pre-training the models and then tuning
the hyper-parameters of the underlying models. The authors examined four
deep learning models in different studies that are (1) Deep Neural Net-
works, (2) Long Short-Term Memory Recurrent Neural Networks, (3) Gated
Recurrent Unit Recurrent Neural Networks and (4) Deep Belief Networks.
The studies indicates that using PSO, the detection rate of the attacks are
increased and the false alarm rate are decreased a certain amount. The studies
include KDD CUP 99, NSL-KDD, CIDDS, CICIDS2017 and NSL-KDD,
CICIDS2017 datasets separately for each paper. Unlike some other studies
mentioned in this paper, Elmasry et al. used PCAP files of CICIDS2017
to generate their training and test sets. In this way, they were able to fetch
18750 samples from each classes for their first paper [43] and 2142 samples
from each classes for their second paper [44], which makes the dataset
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absolute balanced. With this setup, the first study achieved up to 97.37%
F1-score for multi-class classification case. The second study achieved up
to 95.81% F1-score for multi-class classification and 99.95% F1-score for
binary classification by utilizing PSO and deep belief networks.

There are many other studies investigating issues about intrusion detec-
tion from various aspects. Xavier et al. accomplished to group the dom-
inant features of most frequently used datasets by reducing the multi-
dimensionality of them. They examined ISCX 2012 [45], CTU-13 [46],
MACCDC [47] and UGR’16 [48] datasets and proposed three feature groups:
(1) Basic connection characteristics, (2) content characteristics and (3) traffic
statistical characteristics. These groups represent various weights for different
types of attacks. The study applied feed forward multi-layer and recurrent
neural networks to these groups and compared the results with the recent liter-
ature at the time being the study made. Although the features were reduced to
a certain amount, the examined approaches still resulted the highest accuracy
among observed literature [49].

In order to better understand how intrusion detection datasets are com-
bined of different types of attacks and the relation between these attacks,
Zong et al. made a very useful work. The study points out the false alarms of
the machine learning models and their outcomes from the cyber security per-
spective. The study then focuses on visualizing the attack types in 3-D space
to better understand how machine learning models see the data itself and
act accordingly. To visualize the attack types, the authors chose to work on
NSL-KDD [50] and UNSW-NB15 [51] datasets and applied a pre-processing
on the data. The authors used PCA transformation to reduce the dimension
of the features to three in order to visualize the attacks. In the study, the
authors showed different angles of the group of attacks. While some of the
attack types in the visualization tool form a clear group (such as DoS), some
attack types looks only good at a specific perspective. With respect to this
visualization technique, authors then applied a number of machine learning
models and put their decision boundaries into the same visual. Therefore
the study provides a useful insights for understanding how machine learning
models decide their outputs especially for intrusion detection attacks [52].

4 Network Traffic Datasets

In order to suggest an approach for intrusion detection problem, it is essential
to study on a comprehensive data which includes up-to-date examples of
normal and abnormal logs. Likewise, the selected dataset should be examined
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Table 1 Some of the IDS datasets in the literature
Dataset Year List of Attack Families # of Features
DARPA 98 [53, 54] 1998 DoS, probing, R2L, U2R 41
KDD CUP 99 [55, 56] 1999 DoS, probing, R2L, U2R 41
NSL-KDD [50] 2009 DoS, probing, R2L, U2R 41
ISCX 2012 [45] 2012 DoS, DDoS, Brute-Force, Infiltra-

tion
20

UNSW-NB15 [51] 2015 Fuzzers, Analysis, Backdoors,
DoS, Exploits, Generic,

49

Reconnaissance, Shellcode, Worms
CICIDS2017 [57] 2017 DoS, DDoS, PortScan, Bot, Brute

Force, Web Attack, Infiltration,
Heartbleed

80

CICIDS2018 [57] 2018 DoS, DDoS, PortScan, Bot, Brute
Force, Web Attack, Infiltration,
Heartbleed

80

IoTID20 [58] 2020 DoS, Brute Force, Flooding (UDP,
ACK and HTTP), ARP Spoofing,
PortScan

80

MQTT-IoT-IDS2020 [59] 2020 Scan (Aggressive, UDP) Brute
Force (SSH, MQTT)

44

by other studies to be able to measure the robustness of the proposed model
against recent literature. For this aim, a number of public datasets are avail-
able to provide comparable experiment results. DARPA 98 [55] created by
MIT Lincoln laboratory where the local computer network of United States
Air Forces is simulated. The dataset includes commonly used protocols and
a number of attacks including DoS, U2R, R2L and Probe. It is composed of
7 weeks data for the training and 2 weeks for the testing. However it does not
reflect real-world scenarios. One of the commonly agreed datasets is KDD
CUP 99 [53]. It was used as a basement for many studies where the test
set of data represent known and unknown attacks. This dataset seems more
suitable for machine learning tasks. However, it is observed that there are too
many repetitive lines affecting the performance of algorithms. That’s why
the dataset named NSL-KDD [50] was constructed by Canadian Institute
for Cybersecurity where the shortcomings of KDD CUP 99 is purified and
the dataset became the de facto test-bed for machine learning studies. NSL-
KDD is still being used by many studies. A couple years later, ISCX 2012
[45] was created to provide more up-to-date, labeled and wide-range attack
real network traffic data. Except, it does not include Secure Socket Layer
/ Transport Layer Security traffic although most of today’s internet traffic
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uses them. However all these datasets do not include current scenarios and
have already been solved almost 100% by the current literature. In 2015,
another approach for creating a comprehensive dataset took place where
researchers proposed UNSW-NB15 having 10 classes of both normal and
modern synthesized attacks (including exploits, worms, backdoor, DoS, etc.)
in the network traffic [51].

Due to the changing needs, Canadian Institute for Cybersecurity prepared
a new intrusion detection evaluation dataset, called The Intrusion Detection
Evaluation Dataset (CICIDS2017) [57]. The dataset consists of a 5-day real-
world scenario including more than 2 millions of event logs where the first
day of dataset includes only benign traffic and the remaining days have most
up-to-date common attacks as well as benign logs. This dataset also differs
from UNSW-NB15 by having higher number of samples as well as having
more imbalanced data which more reflects the real world scenarios. All
attacks included in the dataset is shown in Table 2. In this dataset, the record-
ings were obtained from a real computer network where Mac OS, Windows
and Linux machines were used between attackers and victims in different
cases. The simulation test-bed consists of two networks: (1) The attack-
network is used to simulate how intruders and attackers route their traffic
to their targets and (2) the victim network which represents benign behavior
until an attack takes place. The corresponding representation of the test-bed
architecture for the CICIDS2017 dataset is depicted in Figure 2. The dataset
provides raw data (PCAP files) as well as feature-extracted comma separated
files (CSV) for each day where the CSVs include 80 features composed of
numerical and categorical variables. At a granular level, CICIDS2017 has
the highest class imbalance among all datasets in the observed literature. In
2018, The Communications Security Establishment joined the project and
a new variation of CICIDS2017 was released. This dataset is called CSE-
CIC-IDS2018 [57]. It is structurally similar to CICIDS2017, but it has more
than 16 millions of event logs where logs were gathered from 10 days of
network traffic. This dataset has also high class imbalance ratio but it is lower
compared to its predecessor, CICIDS2017.

Due to the rapid expansion of the IoTs world in a short time and the
diversity of the studies in this field, there are also different dataset studies
only in the IoT specific. For this aim, researchers conducted a dataset study
in 2019 by using a connected night candle and a Wi-Fi camera [60]. This
dataset contains various types of network attacks including DoS, Scan (Port
and OS), Flooding (UDP, ACK and HTTP) and Telnet Brute Force. Dataset is
composed of 42 raw network packet files (PCAP) with different client devices
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Table 2 CICIDS2017 scenario
Recording Day Duration Attack
Monday All day No attack
Tuesday All day FTP-Patator, SSH-Patator
Wednesday All day DoS (Hulk, GoldenEye, Slowloris, Slowhttptest)

Heartbleed
Thursday Morning Brute Force, XSS, SQL Injection

Afternoon Infiltration
Friday Morning Bot

Afternoon DDoS, PortScan

Figure 2 Representation of the test-bed architecture of CICIDS2017 dataset [57].

connected to the network including laptops and smart phones. After a short
time, another study developed its derivative by extracting number of features
from PCAP files into more readable CSV files, called IoTID20 [58]. This
study aimed to provide comparable test-bed for intrusion detection research
in IoT networks. Since it is a relatively new dataset, there are not many studies
in the literature using this dataset.

Since IoT networks frequently use lightweight and specific structures
to be compatible with a wide range of devices, they also contain security
vulnerabilities specific to these structures. One of these structures is the
Message Queuing Telemetry Transport (MQTT) protocol which IoT devices
use it (with other similar protocols) for communication purposes. A recent
study indicated the lack of such a MQTT-based IDS dataset. For this aim,
researchers developed a novel dataset called MQTT-IoT-IDS2020 [59, 61].
This dataset contains 4 IoT attacks including Scan (Aggressive, UDP) and
Brute Force (SSH, MQTT). The dataset contains 44 main features and it
is provided with PCAP files as well as processed CSV file. Since it is
specifically headed for MQTT-based attacks and it does not include many
other attack types this dataset is not in the scope of our study. It is also



Deep Learning-Based Security Solutions in IoT Networks 1737

Table 3 Number of samples after pre-processing and class description of CICIDS2017
Label Dist. (%) Description
Benign 80.3189 Normal traffic samples.
DoS Hulk 8.1376 Uses the Hulk tool to for a denial of service attack by

generating traffic.
PortScan 5.6156 Scans and sends packets to varying destination ports to

yield information from the server.
DDoS 4.5272 Uses multiple machines together for a denial of service

attack.
DoS GoldenEye 0.3639 Uses the GoldenEye tool to perform a denial of service

attack.
FTP-Patator 0.2805 Uses FTP-Patator to perform a brute force attack to

break the login password.
SSH-Patator 0.2085 Uses SSH-Patator to perform a brute force attack to

break the login password.
DoS slowloris 0.2049 Uses the Slow Loris tool to perform a denial of service

attack.
DoS Slowhttptest 0.1944 Exploits web requests to exceed the number of HTTP

connections allowed on a server and slows it down.
Bot 0.0691 Uses Trojans to breach the security of a server and oper-

ates the whole network by spreading to other machines.
WA Brute Force 0.0532 Uses trial and error approach to break login password.
WA XSS 0.0230 Injects malicious script to an input form of a web appli-

cation.
Infiltration 0.0012 Uses infiltration tools to infiltrate and gain full access to

a server.
WA SQL Inj. 0.0007 Injects and operates SQL code to break applications.
Heartbleed 0.0003 Uses OpenSSL crack to access valuable information

through web applications.

relatively new and there is no study in the literature using this dataset, as
our best knowledge.

In order to provide better compatibility and diversity of real-world IoT
threat scenarios previously mentioned in Section 2.1, CICIDS2017 dataset
has been selected for this study as a test-bed. It also better serves the aim of
this study with its higher class imbalance and need for lower computing and
processing time compared to its successor, CSE-CIC-IDS2018.

To experiment the proposed approaches, the selected CICIDS2017
dataset has been processed with the following basic steps:

• All the separated 5-day data where benign and attacking scenarios hap-
pened has been combined to form one raw data by dropping duplicate
rows beforehand.
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Figure 3 Imbalanced class distribution of CICIDS2017.

• Some of the columns were no interest in finding any patterns since
they include only zero values regardless their determined classes. These
columns having only zero values2 together with flow ID and timestamp
which neither can be used as it is nor converted into ordinal or similar
numeric values have been deleted. Some rows including NaN, −inf, +inf
have also been deleted to preserve from failures.

• Categorical representations such as source port/IP, destination port/IP
have been converted into a numeric format using binary encoding
technique.

• Resulting dataset has been re-scaled between 0 and 1 with a scalar func-
tion (using sklearn library of Python) and then normalized by removing
the mean and scaling it to unit variance.

• The resulting dataset now has 130 normalized features and 2,827,876
samples in total. The detailed number of samples of classes in the dataset
can be seen in Table 3 whereas the distribution of the number of samples
is visualized in Figure 3

5 Proposed Model

In this study, it is aimed to classify network attack types in an IoT network.
For this aim, CICIDS2017 dataset has been used to check whether given
network packet information includes a type of attack. The proposed model
consists of 2-layer CNN stack for automated feature extraction and a 4-
layer self normalizing neural network for the classification task. The CNN
stack is composed of 2 separable convolution layers [62] each having 3x1
kernel size, Rectified Linear Unit (ReLU) activation and followed by a

2bwd psh flags, bwd urg flags, fwd avg bytes/bulk, fwd avg packets/bulk, fwd avg bulk rate,
bwd avg bytes/bulk, bwd avg packets/bulk, bwd avg bulk rate
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MaxPooling layer. Separable convolution provides depth-wise convolution
for each feature of the input and achieved a good impression with its original
model, Xception [62].

The first layer of CNN stack has 128 and the second layer has 256 filters.
This part of the network forms a feature map out of the input samples. Thus,
yielding better understanding of the feature correlations. The second part of
the model is the self normalizing neural classifier which has 128, 64, 32
and 15 neurons respectively. All the layers except the final layer has Scaled
Exponential Linear Unit (SELU) activation and uses batch normalization [63]
with 10% alpha dropout. In this part of the network, SELU automatically
converges the neuron activation towards zero mean and unit variance. Thus,
forming a self-normalizing property. Alpha dropout sets the activation to
the negative saturation value to ensure the self-normalizing property while
providing generalization. Before the last layer, the output of the previous
layer and the input data are concatenated to inherit the original features of
the data itself which potentially has a positive effect on being stuck in plateau
as some research states [64]. The last layer has 15 neuron with the softmax
activation which provides a probability distribution for 15 outputs of the
dataset. As Adam optimizer is one of the well-known and mostly used opti-
mization functions in Deep Learning world, in this study the novel modified
version of Adam, called AdamW has been used. AdamW, fixes some of the
bottlenecks of Adam by setting weight decay property according to some
pre-known parameters such as the batch size, desired epoch number and the
size of the train dataset. With its weight decay formula, AdamW yields better
convergence in early epochs [65]. The details for the proposed architecture is
depicted in Figure 4 and hyper-parameters including the number of neurons
are detailed in Table 4.

In order to keep from absolute randomness and start with reasonable
initialization strategy, a custom bias initialize value has been attached to the
last layer of the network where the value is dynamically calculated according
to the log of least instance class in the training divided by the total number
of samples in the training set. The custom bias initialize value is simply
calculated as shown in Equation 1.3

initial bias = log

(
number of least samples

number of total samples

)
(1)

3Custom initial bias approach was inspired from TensorFlow Documentation [66] which
was also inherited from experiences of Deep Learning community.
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Figure 4 Proposed model. It uses 1-D Separable Conv. layers with MaxPooling. Fully
connected layers include Lecun Normal kernel initializer except the output layer and the
output layer uses a custom bias initializer.

Table 4 Parameters for the proposed model
Parameters Values
# of features/inputs 130
# of convolutional filters 128x3 - 256x3
activation for convolutional layers ReLU
# of fully connected neurons 128 - 64 - 32 - 15
activation for fully connected layers SELU
dropout method alpha dropout
dropout rate 10%
normalization method Batch normalization
# of outputs 15
activation for output layer softmax
optimizer AdamW

After initializing with a custom bias, class weights have been calcu-
lated as the weighting coefficients which were inversely proportional to the
incidence of classes in the dataset. This process was done automatically by
the underlying framework. With this property enabled, the model had more
robustness with imbalanced classes since the rare samples had more influence
on the back-propagation phase.

6 Experiments

This section demonstrates the classification experiments conducted on the
pre-processed CICIDS2017 dataset and presents the results of these exper-
iments for the proposed approach. Experiments included 2 main scenarios
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Table 5 Underlying hardware for the experiments
Category CPU GPU (x4)
Manufacturer Intel NVIDIA
Model Xeon(R) Gold 6138 Tesla V100
Clock Frequency 2000 MHz 1246 MHz
Cores 80 5120
DRAM Memory 100 GB DDR4 16 GB DDR5

where the first one was to feed the model directly with data and the latter
one was using various up-sampling methods to check whether they were
able to overcome imbalanced data problem by generating augmented samples
from existing class samples. Each scenario had their own characteristics and
yielded reasonable performance on the problem. On the second scenario,
we conducted 3 up-sampling techniques where each technique also had 2
sub-scenarios described below.

The experiments run on an Ubuntu 18.04 OS where the proposed
approach’s source code was written by using TensorFlow 2.2 framework in
Python language. The training and the test phase were run on NVIDIA GPUs
where each scenario used one of the GPUs in parallel. Table 5 shows the brief
specifications for underlying hardware.

In order to get better insights from the proposed model and scenarios
as well as examine the robustness of the approach, all the experiments have
been run with k-fold cross validation technique where k is 5. This means that
at each fold, 80% training data and 20% test data were randomly created
so that training and test sets are separated equally from each class. The
main motivation behind the reason that k is 5 is that we tried to choose the
maximum number such that the rarest class has at least 2 test samples. In this
case, Heartbleed which has the lowest number of samples had 9 samples in
training and 2 samples in test sets. Now we have 5 different train and test
distribution to apply to the model. In the experiments, each distribution run
100 epochs with batch size set to 10240. The results of the tests then merged
with the arithmetic mean. Thus, note that all the outputs described below are
the overall average of the k-fold results, instead of cherry-picking the best
train-test distribution [67].

In order to make clear insights on a dataset, numerous evaluation metrics
were defined so far. Depending on the problem, sometimes even accuracy
metric works. However, especially in the imbalanced problem space, working
with more equipped metrics is important for evaluation health. Precision and
recall are two of the important metrics in imbalanced problems. Precision
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quantifies the positive observations that actually belong to the positive class
(defined in Equation 2). Recall, also called as sensitivity, quantifies the
positive observations made out of all positive samples in the dataset (defined
in Equation 3). So, maximizing these two metrics yields higher efficiency in
finding the best solution for a problem. For this aim, another metric called F1-
score (also called F-measure) is also defined where F1-score is the harmonic
mean of precision and recall (defined in Equation 4). In this study, relying on
F1-score satisfies the search of efficiency in this imbalanced distribution. For
this aim, all the results have been calculated with the F1-score as well as their
respective precision and recall values.

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1score = 2
precision ∗ recall
precision+ recall

=
TP

TP + 1
2(FP + FN)

(4)

In the first scenario, we applied the 130-feature data directly to the
proposed model depicted in Figure 4. After 100 epochs for each fold, we
recorded the results. The averaged result seemed very promising. Eleven
classes out of fifteen have F1-score over 98.4% where the remaining range
between 22.1% and 93.5%. Web Attack classes had the least success recall
and F1-scores. WA XSS had 22.15% F1-score with 16.84% recall rate. WA
SQL Injection had 41.33% F1-score with 32.99% recall rate. This is mostly
because that the dataset includes only TCP/UDP header information and
corresponding web attacks do not have very obvious fingerprints in header,
instead most of the information lays in the payload itself. There are also
less number of samples compared to the other classes. Therefore it could
not adequately identify fingerprints that were already scarce. Likewise, WA
Brute Force was the third least-success class. As Brute Force nature, it would
yield higher success if a time-dependent recurrent model had involved in the
approach, such as Long Short-Term Memory Units. Yet, CNN was able to
catch the required features to a certain level with its convolutions. As the
number of samples can bee seen in Table 3 and Figure 3, the shortcomings
of being highly imbalanced also affected the results which necessitated more
samples to be more precise for the classification of corresponding classes.
Despite having the least number of samples, Heartbleed class was 100%
determined compared to other classes having larger number of samples.
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Table 6 Detailed classification results for raw scenario of proposed model
Label Precision Recall F1-score
Benign 0.9899 0.9889 0.9894
DoS Hulk 0.9993 0.9998 0.9995
PortScan 0.9998 0.9994 0.9996
DDoS 0.9998 0.9998 0.9998
DoS GoldenEye 0.9930 0.9928 0.9929
FTP-Patator 0.9986 0.9998 0.9992
SSH-Patator 0.9991 0.9986 0.9988
DoS slowloris 0.9852 0.9917 0.9884
DoS Slowhttptest 0.9899 0.9889 0.9894
Bot 0.9237 0.9488 0.9356
WA Brute Force 0.7074 0.8951 0.7887
WA XSS 0.4160 0.1684 0.2215
Infiltration 1.0000 0.9714 0.9846
WA SQL Inj. 0.5800 0.3299 0.4133
Heartbleed 1.0000 1.0000 1.000
Accuracy 0.9995
Macro Avg 0.9061 0.8856 0.8874
Weighted Avg 0.9994 0.9995 0.9994
time (mins.) 53.9100

The main reason behind is that Heartbleed has very obvious fingerprints in
headers and its features do not overlap with the other classes in the problem
space.

In this very first experiment, the total weighted average of F1-score was
0.999 and macro average4 was 0.887 with recall 0.885. The detailed results
of each class including precision, recall and F1-score were recorded as raw
scenario and showed in Table 6. The training phase of 100 epochs were also
captured and depicted in Figure 5. On average, each train converged to it’s
optimal result in terms of F1-score after 27th or 28th epochs5 and then slight
improvements occurred on the results until the model insisted on memorizing
the train set around 60th epochs. For better comparability, we decided to keep
the 100 epoch limit constant in each scenario we tested.

After getting the results, we compared this approach with the recent
literature, as depicted in Table 7. Some of the studies [36,38] included specific
target classes in their models and experiments, therefore we compared only
the corresponding sub-results of the underlying classes. Some of them pro-
vided a complete model for all of the classes in the problem set as ours. In all

4Macro average is the arithmetic mean of all the scores regardless of the number of samples.
5Convergence epoch numbers varied between each fold.
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Figure 5 Training the model with 100 epochs. The charts show accuracy, F1-score and the
loss value of the model respectively.

Table 7 Comparison of models for CICIDS2017 with recent studies and our raw approach
Our

Reference Measure Reference Results
Model Type (%) (%)
CNN+LSTM, Accuracy 97.15 99.98
DDoS attacks [36]
DNN, all classes [37] Accuracy 99.50 99.95
LSTM, SSH-Patator [38] F1-score 97.00 99.88
LSTM, FTP-Patator [38] F1-score 99.00 99.92
LSTM, WA BF [38] F1-score 19.00 78.87
LSTM, WA XSS [38] F1-score 3.00 22.15
LSTM, WA SQL Inj. [38] F1-score 0.00 41.33
PCCN, all classes [42] F1-score 97.31 99.94
PCA+RF, all classes [41] F1-score 99.70 99.94
SGM-CNN, all classes [40] F1-score 99.86 99.94

cases, the model provided in this study outperforms the examined literature
whether they targeted specific or all classes.

Even if the proposed model provides outstanding performance for most of
the classes in the data set, there is still a problem for a few classes such as WA
XSS, WA SQL Inj. and WA Brute Force having 0.22, 0.41 and 0.78 F1-scores
respectively. These classes are among the 5 classes having the least number
of samples (with Infiltration and Heartbleed). That’s why we wanted to check
whether any performance increase occurs if we apply data augmentation to
the least number of classes. For this aim, the following experiments took
place with alternative variations.

For this aim, 3 more experiments were conducted with 2 variations for
each. These experiments included different kinds of up-sampling techniques
each having 2 different threshold formulation to determine which classes
to be augmented and the number of samples generated through the up-
sampling. The followings experiments are (1) random sample generation, (2)
SMOTEENN and (3) CTGAN techniques.
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For the following scenarios, we wanted to add new samples to the classes
having low F1-score by generating new samples out of the existing ones. In
this case, it was not clear which classes to select and how much we would
increase the number of samples of the selected classes. Benign class in the
training set represents overwhelming majority and it would make the bias
so high to augment rare classes to that number of samples. Likewise, the
second majority class DoS Hulk still had huge difference on the number of
samples compared to Heartbleed, Infiltration and Web Attacks. Therefore, it
was best to make it adaptive according to the distribution of classes of the
given problem itself. For this aim, two different thresholds were calculated
and used for the up-sampling techniques.

In the first threshold technique, the classes are sorted in descending order
depending on their number of samples in the training set and the threshold
is determined as the number of samples of the middle class, which is 4637.
The second threshold calculation technique was similar to the first one; but
it depends on the number of samples for each class excluding the number
of samples for the Benign class (in order to find a more saturated threshold
over minority classes). For this aim, the number of samples of the classes are
added up together and divided by 14 (the number of minority classes), which
is 31803. Determining thresholds also resulted in having the classes to be
augmented and the number of samples to be constructed. These classes and
the corresponding numbers are shown in Table 8.

After determining the thresholds, we conducted the next 3 up-sampling
techniques for each threshold.

Table 8 Chosen classes and the number of samples to be augmented for the up-sampling
methods for each threshold. Note that these numbers represent the samples in the training set
for each fold

Augmented
Classes

# of Existing
Samples

threshold1
(4637)

threshold2
(31803)

FTP-Patator 6348 – 25455
DoS GoldenEye 8234 – 23569
SSH-Patator 4717 – 27086
DoS slowloris 4637 – 27166
DoS Slowhttptest 4400 237 27403
Bot 1565 3072 30238
WA Brute Force 1205 3432 30598
WA XSS 522 4115 31281
Infiltration 29 4608 31774
WA SQL Inj. 16 4621 31787
Heartbleed 9 4628 31794
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6.1 Up-sampling with Random Noise Generation

In the first up-sampling technique, we designed and implemented simple
function that adds random noise to the existing samples of the classes to form
new samples. The generator basically adds noise to the selected sample by
generating normal distribution noise multiplied by 0.001 ∗ class mean. The
noise factor then divided by 2 at each generative iteration to reduce irregular
distribution of classes and make the new samples to get closer to each other.
The random sample generator is shown in Algorithm 1.

Algorithm 1 Random Sample Generator
Input: class, num samples to generate
Output: noisy samples

Initialization :
1: noise = class.samples.mean() ∗ 0.001

LOOP Process
2: for i = 1 to num samples to generate do
3: noisy sample = sample+ noise ∗ random.normal(size = sample.shape)
4: noise = noise ∗ 0.5
5: end for
6: return noisy sample

For the threshold1 variation, the threshold was 4637 which is equal to
the number of samples of DoS Slowloris. The classes having lower number
of samples in each fold of training have been processed and augmented so
that the number of samples for these classes become equal to the number
of samples of DoS Slowloris. This scenario resulted with 0.9156 macro
average F1-score. The random sample generator in this scenario increased
the success of the model by approx. 3.15% overall where F1-score of WA
XSS increased by 92.3%, WA SQL Inj. increased by 80.1% and WA Brute
Force decreased by 11.1%. Adding random noise with this threshold also
has little effect on the success of determining other augmented classes either
positive or negative, such as Infiltration F1-score decreased by 1.52. This is
mostly because of the bias the noise adds to the data. The detailed results of
each class were recorded as rndt1 scenario in Tables 9 and 10.

After running threshold1, the threshold2 variation has been experi-
mented where the threshold calculated as 31803. The classes having lower
number of samples in each fold of training have been processed and aug-
mented so that the number of samples for these classes become equal to
threshold2. We compared the results with the previous threshold1 version
of this up-sampling technique.
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Table 9 Recall value comparison of both raw and up-sampling scenarios for proposed
model. Bold values represent the best shot for each class

Label raw rndt1 rndt2 smtt1 smtt2 ctgant1 ctgant2

Benign 0.9999 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
DoS Hulk 0.9998 0.9997 0.9992 0.9993 0.9995 0.9997 0.9993
PortScan 0.9994 0.9994 0.9992 0.9993 0.9992 0.9991 0.9994
DDoS 0.9998 0.9998 0.9996 0.9998 0.9995 0.9997 0.9998
DoS Golden-
Eye

0.9928 0.9916 0.9948 0.9880 0.9926 0.9940 0.9938

FTP-Patator 0.9998 0.9998 0.9997 0.9996 0.9996 0.9998 0.9998
SSH-Patator 0.9986 0.9991 0.9993 0.9998 0.9984 0.9996 0.9996
DoS slowloris 0.9917 0.9860 0.9875 0.9898 0.9887 0.9775 0.9889
DoS
Slowhttptest

0.9889 0.9894 0.9896 0.9830 0.9856 0.9901 0.9849

Bot 0.9488 0.9657 0.9683 0.9673 0.9690 0.9693 0.9555
WA Brute
Force

0.8951 0.6708 0.6987 0.7311 0.6947 0.8348 0.8560

WA XSS 0.1684 0.4843 0.4111 0.4246 0.4125 0.2484 0.2134
Infiltration 0.9714 0.9428 0.9428 0.9714 1.0000 1.0000 1.0000
WA SQL Inj. 0.3299 0.8099 0.6599 0.7600 0.7600 0.9099 0.7700
Heartbleed 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Accuracy 0.9995 0.9994 0.9993 0.9993 0.9993 0.9994 0.9994
Macro Avg 0.8856 0.9225 0.9100 0.9208 0.9199 0.9281 0.9173
Weighted Avg 0.9995 0.9994 0.9993 0.9993 0.9993 0.9994 0.9994
time (mins.) 53.91 58.24 66.28 65.01 754.57 549.19 2156.99

This technique resulted with the F1-score of WA Brute Force increased
by 1.57% but WA XSS decreased by 8.47% as well as WA SQL Inj. decreased
by 10.61%. Total macro average F1-score was 0.906. It was better than
the scenario with no augmentation but it had low success compared to the
threshold1 variation. This is mostly because the number classes augmented
are higher than the previous experiment and the threshold is also way larger
compared to it. Thus generating more spread samples over the problem space.
Therefore the bias gets expanded and some of the samples were overlapped
with the samples of other classes in the problem space. The detailed results
of each class were recorded as rndt2 scenario in Tables 9 and 10.

After experimenting that increasing the number of samples up to some
point yielded better results, we continued to test two other up-sampling
techniques: SMOTEENN and CTGAN.

6.2 Up-sampling with SMOTEENN

SMOTEENN is a combined data augmentation technique where Synthetic
Minority Over-sampling Technique (SMOTe) is applied to the minority
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Table 10 F1-score comparison of both raw and up-sampling scenarios for proposed model.
Bold values represent the best shot for each class

Label raw rndt1 rndt2 smtt1 smtt2 ctgant1 ctgant2

Benign 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
DoS Hulk 0.9995 0.9995 0.9993 0.9994 0.9994 0.9995 0.9993
PortScan 0.9996 0.9996 0.9994 0.9996 0.9994 0.9995 0.9996
DDoS 0.9998 0.9998 0.9997 0.9995 0.9996 0.9998 0.9995
DoS Golden-
Eye

0.9929 0.9918 0.9900 0.9893 0.9901 0.9932 0.9924

FTP-Patator 0.9992 0.9994 0.9995 0.9994 0.9988 0.9993 0.9994
SSH-Patator 0.9988 0.9989 0.9985 0.9975 0.9968 0.9945 0.9989
DoS slowloris 0.9884 0.9883 0.9866 0.9877 0.9857 0.9861 0.9884
DoS
Slowhttptest

0.9894 0.9883 0.9868 0.9859 0.9865 0.9853 0.9883

Bot 0.9356 0.9293 0.9201 0.9196 0.9164 0.9233 0.9232
WA Brute
Force

0.7887 0.7003 0.7115 0.7319 0.7071 0.7631 0.7713

WA XSS 0.2215 0.4257 0.3896 0.3971 0.3830 0.2881 0.2342
Infiltration 0.9846 0.9692 0.9560 0.9846 0.9632 1.0000 1.0000
WA SQL Inj. 0.4133 0.7444 0.6657 0.7326 0.6960 0.6306 0.6777
Heartbleed 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Accuracy 0.9995 0.9994 0.9993 0.9993 0.9993 0.9994 0.9994
Macro Avg 0.8874 0.9156 0.9068 0.9149 0.9081 0.9041 0.9048
Weighted Avg 0.9994 0.9994 0.9993 0.9994 0.9993 0.9994 0.9994
time (mins.) 53.91 58.24 66.28 65.01 754.57 549.19 2156.99

classes to balance class distribution by augmenting the minority samples
replicating them with linear interpolation and Edited Nearest Neighbors
(ENN) is then applied to the augmented data to clean possible outliers [68]
by removing majority class samples close to the decision boundary (N=3 is
the pre-defined default value for sklearn library). After running 5 folds for
the threshold1 variation, the overall macro average F1-score was 0.914. The
result was better than the raw scenario, but a little bit lower compared to
rndt1. By looking into the individual classes it can be seen that WA Brute
Force and Infiltration had better F1-score compared to rndt1; but WA XSS
and WA SQL Inj. had lower F1-score. There are also varying little changes
on the other classes. The detailed results of each class were recorded as smtt1
scenario in Tables 9 and 10.

The threshold2 variation of SMOTEENN up-sampling had 0.908 macro
average F1-score. This variation was better compared to the raw scenario;
but it was lower compared to the rndt1. However, it had better results over
rndt2, such as 0.22% higher macro F1-score together with WA SQL Inj.
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and Infiltration F1-score increase. By looking at the overall results, this
variation is not very separable from the rndt2 scenario other than noisy
changes. The detailed results of each class were recorded as smtt2 scenario
in Tables 9 and 10.

6.3 Up-sampling with CTGAN

As the last sub-scenario, we generated augmented samples over two thresh-
olds by using CTGAN. For this case, the CTGAN algorithm run 100 epochs
with batch size equal to 10 for each fold of the training phase. For the
threshold1, the macro average of F1-score was 0.9041 where it’s still better
from the raw scenario, but has lower score compared to the previous up-
sampling variations. For the threshold2, the macro average of F1-score is
0.9048.6 Although, the macro average F1-score is lower compared to the
other two up-sampling techniques, CTGAN-powered up-sampling in both
thresholds resulted with 100% F1-score for Infiltration class for all folds of
training and testing phases.

One of the main reasons CTGAN technique could not outperform the
other techniques for some of the classes, as the setup suggests, could be
the distribution quality of samples in each class. As the GAN (Generative
Adversarial Network) itself is a generative model getting its roots from the
quality of the samples it is trained, we can make an inference that CTGAN
could not detect enough quality patterns from the samples except that training
samples from Infiltration class were most likely to be a good fit for CTGAN
where it successfully generated close augmented samples for CNN classifier.
The other reason can be the number of samples and the number of iterations
as well as the batch size. However, we find it very useful to use CTGAN
to generate structured realistic samples from tabular data and compare them
with the other techniques instead of just relying on conventional or random
approaches. Yet, optimizing the hyper-parameters of CTGAN is not in the
scope of this paper. Under proper circumstances and right parameter opti-
mizations, it may higher the quality of the results. The detailed results of
threshold1 and threshold2 for this up-sampling scenario were recorded as
ctgant1 and ctgant2 respectively.

The overall detailed results of all scenarios can be seen in Tables 9 and 10
for recall and F1-score respectively.

6all related source code and documentation can be found here:
https://github.com/ucekmez/phd
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7 Discussion

We conducted the augmentation experiments to check whether generating
synthetic addition for the classes which have lower number of samples yields
an improvement in both for these classes and the overall score as well. During
the experiments of different threshold variation, many classes in the problem
set seemed that they tend to be better when augmented with more samples,
thus it eliminates the imbalanced dataset problem to a certain level. However,
choosing which classes to be augmented is one of the hyper-parameters
of this kind of problem when there are many classes to be considered.
For this reason, we experimented two different thresholds for determining
the classes as well as the number of samples to be generated. threshold1
affected 7 classes and the threshold2 affected 11 classes. In most cases
threshold1 outperformed the other one. This is because threshold2 makes
more distribution for the affected classes, thus it creates more overlapped
samples with each other as well as with the remaining classes. Augmentation
scenarios provided lower scores for the WA Brute Force attack compared to
the raw scenario where no augmentation applied, but the other Web Attack
classes such as WA XSS and WA SQL Inj. increased up to 80.11% and 92.1%
respectively. The overall best performance still was the raw scenario with
99.94% F1-score and 99.95% recall score, but the best macro averages took
place with randomt1 scenario where it yielded 91.56% F1-score and 92.25%
recall score.

Another issue that draws our attention in the experiments is that the
random sampler function has got better results compared to SMOTEENN in
most classes. Our random sampler basically calculates random noise based
on the values of each sample in the training set, regardless of their distance
to each other. On the contrary of SMOTEENN using linear interpolation,
random sampler does not necessarily create the new sample in the middle of
two other samples. Instead, it chooses the values randomly. At each iteration,
random sampler uses the previously generated synthetic samples to create
new samples. Since creating new samples from the ones that were already
synthetic will increase the bias substantially, the function halves its noise
factor to control it. Thus, it converges inside a virtual boundary. Considering
these two techniques, our random sampler gives us more space and more vari-
ety of synthetic samples. We resulted that this feature yielded more accuracy
in our conducted experiments. Especially random sampler works better in the
rarest class distribution because it creates more colorful samples compared to
SMOTEENN which has a low decision boundary for few samples.
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Along with the success scores of the up-sampling techniques, the time
taken by the proposed technique to be trained should also be considered as a
feasibility factor. As shown in Table 10, the time it takes to train raw model
is ≈ 54 minutes, where it adds ≈ 4 minutes to run rndt1, ≈ 12 minutes to
run smtt1 and ≈ 495 minutes to run ctgant1. With these times, it can be
said that ctgan scenario takes way more than to train compared to the other
experiments, yet it does not outperform raw, rnd and smt. Still it happened
a good exercise to test whether generating samples based on a generative
adversarial network is comparable to noise-based and linear interpolation-
based techniques.

8 Conclusion

IoT technologies are one of the attractive research areas in the cybersecurity
concept of the world. Although these technologies simplify lots of real-
world affairs, they also bring many security deficiencies for us. Machine
learning approaches have great efficiency in the detection of intrusions in
IoT networks. Therefore, deep learning algorithms, as examples of machine
learning approaches, are preferred in recent years. However, for training
the system, the used datasets are also so important, up-to-date, and new
datasets are preferred especially for increasing the accuracy of the real-world
applications. However, these data sets are generally unbalanced, and this
should be taken into consideration for implementing an online/active system.

In this study, we proposed a CNN-powered self-normalizing neural
network classifier and conducted experiments on determining attack types
in a simulated IoT network by using an imbalance reference dataset. We
compared the performance with other recent studies, which also used deep
learning to solve classification tasks on the same dataset. Results of our
study outperformed them for all cases with 0.9994 overall weighted aver-
age F1-score. However, the model served lower F1-score for a few classes
having a low number of samples. To check whether adding synthetic data
to those classes increases the robustness of the model for this imbalanced
data problem, we tried to run 3 up-sampling techniques and compared them
with each other. Yet determining which classes to be augmented as well as
the number of samples to be generated here remained like a hyper-parameter.
For that reason, 2 simple-minded thresholds were calculated, and the result
qualities were compared. Experiments showed that data augmentation tech-
niques provide better convergence for most of the targeted classes as well as
that they also extend the sample distribution of the problem space, which in
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turn generated some overlapping samples with wrong classes. However, as
a result, it can be said that synthetic data production in a highly imbalanced
dataset increases performance in targeted classes to some extent, depending
on the hyper-parameter values. This approach should still be validated using
other datasets having a high imbalance such as CSE-CIC-IDS2018 or new
ones to be produced in the future.

This study mainly focused on improving the results with a data-centric
approach by applying a number of augmentation techniques to the dataset.
However, a model-centric approach, such as hyper-parameter optimization
techniques, could also be used for improving the model with the stock dataset.
AutoML packages of the underlying Deep Learning frameworks and evolu-
tionary algorithms (such as Genetic Algorithm, Ant Colony Optimization,
Particle Swarm Optimization, etc.) can be used to fine-tune the number of
CNN layers, the number of neurons in each layer, learning rate of optimizer
function and the rate of dropout (if used). However, it was out of our scope.
Yet it can be seen as an open challenge for future researchers willing to work
on developing a model-centric approach to this problem.

In addition to all these, in the post-pandemic new normality, usage habits
in both the health field and other improvements offered by IoTs may also vary.
New various contactless emerging technologies may be used in health, social
distancing, monitoring, and other related problems with the help of IoTs,
5G, Blockchain and robotic infrastructures [69]. This may, in turn, result in
more complex types of networks and thus new complex safety and security
problems.
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