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Abstract

As a natural consequence of offering many advantages to their users, social
media platforms have become a part of their daily lives. Recent studies
emphasize the necessity of an automated way of detecting offensive posts
in social media since these ‘toxic’ posts have become pervasive. To this
end, a novel toxic post detection approach based on Deep Neural Networks
was proposed within this study. Given that several word embedding methods
exist, we shed light on which word embedding method produces better
results when employed with the five most common types of deep neural
networks, namely, Convolutional Neural Network (CNN), Long Short-Term
Memory (LSTM), GRU (Gated Recurrent Unit), Bidirectional Long Short-
Term Memory (BiLSTM), and a combination of CNN and BiLSTM. To this
end, the word vectors for the given comments were obtained through four
different methods, namely, (i) Word2vec, (ii) fastText, (iii) GloV e, and
(iv) the Embedding layer of deep neural networks. Eventually, a total of
twenty benchmark models were proposed and both trained and evaluated
on a gold standard dataset which consists of 16K tweets. According to the
experimental result, the best F1 − score, 84.844%, was obtained on the
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proposed CNN model without employing pre-trained word vectors which
outperformed the state-of-the-art works and implies the effective embedding
ability of CNNs. Other key findings obtained through the conducted exper-
iments are that the models, that constructed word embeddings through the
Embedding layers, obtained higher F1− scores and converged much faster
than the models that utilized pre-trained word vectors.

Keywords: Word embedding, word vector, deep neural network, convolu-
tional neural network, recurrent neural network, toxic comment detection.

1 Introduction

Social media platforms have become the essential reason for using the web
in the last decade as a recent report by the cooperation of We Are Social and
Hootsuite highlights that almost 85% of the web users (3.8 billion of 4.5
billion) use social media platforms and almost 60% of the world’s population
uses the web [1]. Social media platforms let users share their opinions on
anything they want. Alongside sharing their own opinions, people tend to use
these platforms to seek others’ opinions about anything they are interested in.
During this bi-directional opinion sharing on these platforms, debates happen
due to the ability to add comments. Cyberbullying has been defined by many
national crime prevention councils as most studies reported that the preva-
lence rates of cyberbullying range from 10% to 40% of internet users [2].
The effects of cyberbullying vary from temporary anxiety to suicide [3].
When one of these sides uses ‘toxic comments’ as a result of using offensive
language, unfortunately, virtual fights do happen which can lead people both
to stop expressing themselves and to stop seeking others’ opinions out of
fear of abuse through social media platforms [4] which eventually means less
number of visitors and less money when the subscription models and ads are
considered [5]. Also, legal reasons might require these platforms to propose
countermeasures against the toxic comments such as actively monitoring all
the available content on the platform and deleting when such comments are
detected within 24 hours [5]. Therefore, a mechanism for the detection of
these toxic comments is a key necessity for social media platforms to let
people use these platforms without any concerns. This detection mechanism
needs to be ‘automated’ to not be time-consuming and labor-intensive when
the fact that an enormous volume of content posted daily on the social
media platforms was considered. Toxic comment detection is a challeng-
ing task. First of all, what makes a comment ‘toxic’ is quite subjective.
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Not all comments that contain swear words convey negative meanings as
expected. One example of this case is that 78% of the swearing posts in
the Formspring,1 a question-and-answer-based social network, are actually
non-toxic comments [6]. Similarly, it is reported that 82% of the toxic tweets
in a Twitter toxic comment (tweet) dataset do not use any swear words [6].
Therefore, the presence of swear words is neither necessary nor sufficient to
regard a comment as ‘toxic’ [6]. A toxic comment is generally classified into
five classes as follows [5]: (i) obscene language, (ii) insult, (iii) threat, (iv)
identity hate, and (v) severe toxic.

The first step of detecting toxic comments is understanding the content
of these comments. Word embeddings are the vectorial representations of
words that each vector consists of real numbers. This mapping lets creating
more compact and expressive word presentations [7] that can be utilized with
many machine learning algorithms. Word embedding has been widely used
in Natural Language Processing (NLP) applications such as machine trans-
lation [8], conversational dialog systems, and sentiment classification [9].
Words can be represented as vectors or bag-of-words. The biggest advan-
tage of utilizing vector representations, that are constructed through word
embeddings, instead of the bag-of-words representation, is that vector rep-
resentations are capable of capturing the semantic meaning of the text [10].
Various types of deep neural networks have demonstrated the state-of-the-
art in many domains. In addition to various deep neural networks, there
exist various widely used state-of-the-art word embedding methods in the
literature. Therefore, the main motivation of this study is to shed light on
which type of deep neural network and which word embedding method
provide the best performance for toxic detection. To this end, in this study,
a total of twenty models based on the five most commonly used types of
deep neural networks, namely, Convolutional Neural Network (CNN), Long
Short-Term Memory (LSTM), GRU (Gated Recurrent Unit), Bidirectional
LSTM (BiLSTM), and a combination of CNN and BiLSTM , were pro-
posed with utilizing three state-of-the-art word embedding methods, namely,
Word2vec [11, 12], fastText [13], and GloVe (Global Vectors for Word
Representation) [14] for toxic detection on a gold standard dataset. The main
contributions of this study are given as follows:

• A total of twenty models based on the five types of widely-used deep
neural networks, namely, CNN , LSTM , GRU , BiLSTM , and a
combination of CNN and BiLSTM , were experimented in order to

1Formspring was later rebranded as Spring.me.



2246 A. T. Kabakus

reveal the performance differences of these deep neural networks for the
toxic detection task.

• The effects of various word embedding methods on the proposed deep
neural network models were investigated in order to shed light on
which embedding method provides a better result for the toxic comment
detection task when it is deployed with a deep neural network.

• Instead of utilizing handcrafted features, which are not robust against
the variations of writing style, the features of the proposed models were
automatically extracted thanks to the proposed deep neural network
models.

• Instead of training the deep neural networks for a fixed number of
epochs, the training process was dynamically managed thanks to an
employed callback. To the best of our knowledge, this is the first study in
the literature on toxic comment detection that employed this technique.

• The learning rate of each proposed deep neural network was adapted to
the performance of the network thanks to an employed callback. To the
best of our knowledge, this is the first study in the literature on toxic
comment detection that employed this technique.

2 Related Work

Davidson et al. [15] employed a variety of traditional machine learning algo-
rithms, namely, Logistic Regression, Naı̈ve Bayes, Decision Tree, Random
Forest, and Linear SVM, for hate speech detection. To this end, they utilized
the Twitter API to construct their own dataset to evaluate the employed
models. According to the experimental result, the best performing model,
which was based on Logistic Regression with L2 regularization, achieved
an overall precision of 0.91, a recall of 0.90, and an F1 − score of
0.90 on the constructed dataset. They also reported that both Logistic
Regression and Linear SVM significantly better performance than the other
models.

Zhang et al. [16] proposed an approach for toxic detection that was based
on a deep neural network that was a combination of Convolutional and GRU
networks. According to the conducted experiments, the best F1−score, 0.94,
of the proposed model was obtained on the dataset constructed by Davidson
et al. [15]. Another finding of this study was that the proposed model
outperformed the other SVM and CNN models. Similar to our model, they
implemented their model by using Keras. But unlike our implementation,
they employed Theano as the backend of Keras instead of TensorFlow.
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Badjatiya et al. [17] investigated hate speech detection on Twitter. To
this end, they employed three methods, namely, (i) CNN, (ii) LSTM, and
(iii) fastText. When it comes to word embedding, they utilized two methods
to initialize the word embeddings, namely, (i) random embeddings, and (ii)
GloVe embeddings. According to the experimental result, the proposed LSTM
model with Gradient Boosted Decision Trees on the randomly initialized
embeddings achieved the best performance on a Twitter dataset [18] with
providing a precision, recall, and F1−score of 0.73. It is worth mentioning
that, as the authors mentioned in the paper, the random embedding method
surprisingly yielded a better performance for their model. The methodolog-
ical issue in this study is that they extracted the features by utilizing the
complete labeled dataset which leads to an artificial increase in the per-
formance of the model while underestimating the generalization error as
a result of overfitting [19]. This issue was discussed in detail by Arango
et al. [19] and they reported that replication of this model obtained a macro
averaged F1-score of 73.1% when this methodological issue was taken into
account. They trained the models for a fixed number (10) of epochs. Unlike
this training preference, the number of epochs the model was trained for
was dynamically set for the proposed model which means that the training
was stopped when the model’s performance has started decreasing. Another
difference in terms of model training is that the learning rate of the proposed
model was dynamically adapted through the performance of the model in the
last epochs.

Zampieri et al. [20] proposed an approach to detect both the toxic lan-
guage and the type of toxic in social media. To this end, they experimented
on three methods, namely, (i) SVM, (ii) BiLSTM, and (iii) CNN. In order
to evaluate the proposed models based on the aforementioned methods, they
complied a new Twitter dataset, namely, OLID (Offensive Language Identifi-
cation Dataset) which consisted of a total of 14, 100 tweets. According to the
experimental result, the best Macro − F1 score, 0.80, was obtained by the
proposed CNN model for the toxic language detection task.

Park and Fung [21] proposed three methods based on CNN to clas-
sify sexist and racist abusive language, namely, (i) CharCNN which is a
character-level CNN, (ii) WordCNN which segments the input sentences into
words and converted into 300-dimensional embeddings, and (iii) Hybrid-
CNN which is a combination of CharCNN, and WordCNN that utilizes both
character and word inputs. They utilized the Twitter datasets provided by
Waseem and Hovy [18] and concatenated them into a new one. Then they
divided this concatenated dataset into three datasets as follows: (i) “One-step”
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dataset that aims multi-class segmentation for the labels “none”, “racism”,
and “sexism”, (ii) “Two-step-1” dataset that merges the “sexism”, and
“racism” labels into one abusive label and aims abusive language detec-
tion, and (iii) “Two-step-2” dataset that consists of the labels “none”, and
“abusive” in order to experiment a classifier to distinguish “sexism” and
“racism”. According to the experimental result, the proposed HybridCNN
achieved an F1− score of 0.827 on the “One-step” dataset and the Logistic
Regression achieved an F1− score of 0.824 on the “Two-step” dataset.

Twitter is not the only social media platform that has been investigated
for the toxic detection task. Van Hee et al. [22] utilized the ASKfm, an
online question-and-answer platform, to construct a dataset. The constructed
dataset comprised 113, 698 manually annotated posts written in English.
They proposed a model based on Linear SVM and evaluated its perfor-
mance on their own dataset. The proposed model was tuned thanks to the
Grid Search, a widely-used tuning method to reveal the optimum values of
hyper-parameters. According to the experimental result, the proposed model
achieved an F1 − score of 0.6426. In addition to the ASKfm, Wikipedia
was also utilized for toxic detection task in the literature. Chakrabarty [23]
proposed an approach based on a 6-headed machine learning TF-IDF (Term
Frequency-Inverse Document Frequency) model. This proposed model was
evaluated on a labeled Wikipedia comment dataset and the model achieved a
Macro− F1 score of 0.9817. Similar to the ASKfm, Formspring is another
online question-answer platform that was utilized for the toxic detection task.
Reynolds et al. [24] constructed a dataset by crowd-sourcing the Formspring
platform which consisted of 3, 915 posts. In order to label these posts, the
authors utilized the Amazon Mechanical Turk service, an online service to
set labels for the given datasets. They employed a C4.5 decision tree and
an instance-based learner for toxic detection on the constructed dataset.
According to the experimental result, both learners achieved an accuracy of
78.5% for the true positives. Agrawal and Awekar [6] proposed deep neural
networks, which were similar to the models proposed by Badjatiya et al. [17],
for detecting toxic comments on Twitter, Formspring, and Wikipedia. They
experimented with four types of deep neural networks, namely, (i) CNN, (ii)
LSTM, (iii) BiLSTM, and (iv) BiLSTM with an attention mechanism. They
evaluated the proposed models on the same dataset of Badjatiya et al. [17]
but they oversampled the data from the “hate” class after observing that only
a few posts were marked as “hate” for their training set. The methodological
issue here is that they oversampled the dataset before the train-test split which
is a reason for the ‘overfitting’ problem [19]. This issue was discussed in



Towards the Importance of the Type of Deep Neural Network 2249

detail by Arango et al. [19] and they reported that replication of this model
obtained a macro averaged F1-score of 79.6% when this methodological issue
was taken into account. Similar to Badjatiya et al. [17], the models within this
study were trained for 10 epochs.

3 Material and Method

In this section, first, the employed word embedding models are briefly
described. Second, the proposed deep neural network models for toxic detec-
tion are described. Finally, the gold standard dataset that was used by the
proposed models is described.

3.1 Word Embedding Methods

In the following subsections, the three employed word embedding meth-
ods, namely, (i) Word2V ec, (ii) fastText, and (iii) GloV e, are briefly
described. The word embedding models based on these methods were
implemented using a widely used Python library, namely, gensim [25].

3.1.1 Word2Vec
Word2vec is a state-of-the-art technique to efficiently create word embed-
dings from a given text, which is generally a large corpus of text. Word2vec
was proposed in 2013 by a team whose members work at Google.

3.1.2 GloVe
GloV e is a global log-bilinear regression model for unsupervised learning
of word representations that aims to represent words as numerical sequences
that are trained on aggregated global word-word co-occurrence statistics from
a corpus. GloV e was proposed in 2014 and was developed as an open-source
project at Stanford University.

3.1.3 fastText
fastText is another widely used word embedding method that is based on
Word2vec and developed by Facebook AI Research (FAIR) lab. The initial
version of fastText was released in 2015. The advantages of fastText are
listed as follows: (i) It is robust for rare words, (ii) it is able to group inflected
words, and (iii) it is fast to compute [26].

An overview of the employed word embedding methods within this
study is listed in Table 1. In order to compare the performance of the
word embedding methods, their pre-trained models, which were trained on
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Table 1 An overview of the employed word embedding methods
Model Embedding Method Vector Size Vocabulary Size Corpus
E1 Word2vec 300 2.8M Common Crawl
E2 fastText 300 1M Common Crawl
E3 GloV e 300 1.2M Common Crawl

the same corpus, namely, Common Crawl, were employed. Alongside these
methods, as an additional embedding method, the pre-trained word vectors
were not given to the proposed deep neural networks in order to reveal the
efficiency of deep neural networks to create word vectors from the given
textual data.

3.2 Proposed Deep Neural Network Models

A total of twenty models, which were based on the five of the most popular
deep neural networks, namely, (i) CNN , (ii) LSTM , (iii) GRU , (iv)
BiLSTM [27], and (v) a combination of CNN and BiLSTM , were
proposed to reveal the efficiency of employing the pre-trained word vectors
instead of the word embedding ability of deep neural networks. In the fol-
lowing subsections, the proposed deep neural network models are described.
The proposed models were implemented using Keras [28], which is a Python
library and acts as a wrapper for various backends. TensorFlow [29], an open-
source machine learning library developed by Google, was employed as the
backend of Keras since it is the recommended one [30] by the developer
of Keras, who also works as a software engineer at Google. The proposed
models were experimentally designed as there are no clear rules that can be
applied to any kind of deep neural networks except the best practices, which
were strictly followed. An overview of the proposed model is presented in
Figure 1. The pseudocode of the proposed model is listed in Table 2.

Figure 1 An overview of the proposed model.
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Table 2 The pseudocode of the proposed model
Preprocess data
Load all tokens into a list and assign to t
Calculate maximum sequence length of t and assign to max len
Construct word embeddings according to max len
Construct deep neural network model
Define patience and monitored criterion as p, and crit
Train deep neural network
Set learning rate to 0.001 and assign to lr
Factor lr by 0.1 when crit is not improved
Stop training when crit is not improved for p
Evaluate deep neural network

3.2.1 Proposed CNN model
The proposed CNN model consisted of 6 layers. The model starts with
an Embedding layer to utilize or construct the word embeddings for the
given comments. The input length of the Embedding layer (denoted with
max len), 22, was determined by the sum of the mean of the length of
each tweet (denoted with doc len) with the standard deviation (denoted with
std) of the doc len as the corresponding equation is given in Equation (1).
A plot of the distribution of the lengths of tweets (doc len) is presented in
Figure 2. It is worth mentioning that each Embedding layer in the proposed
benchmark models was configured similarly.

max len = mean(doc len) + std(doc len) (1)

Figure 2 A plot of the distribution of the lengths of the tweets (doc len).
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After the Embedding layer, a convolutional layer (denoted with Conv)
was employed to perform convolution operations on the input. After that, a
MaxPooling layer, which is responsible for reducing the dimensionality of
the input by applying the maximum function on it, was employed. After the
Conv layer, a GlobalMaxPooling layer was employed which sets the pool
size to the input size to apply the maximum function to the entire input. Fol-
lowing this, a Dropout layer, which is a widely used regularization technique
that randomly drops neurons from the neural network to prevent the ‘overfit-
ting’ problem [31], one of the biggest challenges of deep neural networks as
a result of increased depth and complexity of deep neural networks [32, 33],
was employed. Finally, a Dense layer, which is a fully-connected neural
network component that is responsible for classification, was employed. This
Dense layer was configured with 3 outputs units since the aim of the model
is a trinary classification. The Rectified Linear Unit (ReLU) [34] was
employed as the activation function of the Conv layer. The activation func-
tion of the Dense layer was set to the softmax since the aim of the model
is to make a trinary prediction for each given tweet. L2 regularization was
employed with this CNN layer to the kernel weights matrix, bias vector, and
the output of the layer to further prevent the overfitting problem in addition to
the employed Dropout layer [35]. The layers of the proposed CNN model
with their configuration parameters are listed in Table 3.

Table 3 The layers of the proposed CNN model with their configuration parameters
Layer Configuration Parameters
Embedding – input dimension: Total number of words in the vocabulary

– output dimension: 200
– input length: Maximum length of the comments

Dropout – dropout rate: 0.8

Conv – number of filters: 64
– kernelsize: 5
– activation function: ReLU
– padding: ‘same′

GlobalMaxPooling −
Dropout – dropout rate: 0.5

Dense – number of units: 3
– activation function: softmax
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3.2.2 Proposed LSTM Model
An LSTM network is a special type of Recurrent Neural Network (RNN)
that is capable of learning long-term dependencies thanks to having a long-
term memory, and forget gates which lets the model overcome the general
problem of gradient descent [36]. The proposed LSTM model consisted of
5 layers. Similar to the proposed CNN model, the LSTM model starts with
an Embedding layer to utilize the word embeddings for the given comments.
After that, a Dropout layer was employed to prevent the overfitting. Then,
an LSTM layer with 50 output units was employed. After the LSTM layer,
another Dropout layer was employed. Finally, a Dense layer was employed
for the classification. Similar to the proposed CNN model, the final Dense
layer was configured with 3 output units. The layers of the proposed LSTM
model with their configuration parameters are listed in Table 4.

Table 4 The layers of the proposed LSTM model with their configuration parameters
Layer Configuration Parameters
Embedding – input dimension: Total number of words in the vocabulary

– output dimension: 200
– input length: Maximum length of the comments

Dropout – dropout rate: 0.25

LSTM – number of units: 50

Dropout – dropout rate: 0.5

Dense – number of units: 3
– activation function: softmax

3.2.3 Proposed GRU model
A GRU is also another special type of RNN . The key difference between
a GRU and an LSTM is that while an LSTM has three gates, namely,
(i) input, (ii) output, and (iii) forget gates, a GRU has two gates, namely,
(i) reset, and (ii) update gates. This architectural difference makes GRU
simpler, faster to train, and better on generalization on small data compared
to LSTM [16]. So, a new benchmark model was constructed solely based on
this architectural difference from the constructed LSTM model. Therefore,
the LSTM layer in the previous LSTM model was replaced with a GRU
layer for this new benchmark model. The layers of the proposed GRU model
with their configuration parameters are listed in Table 5.
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Table 5 The layers of the proposed GRU model with their configuration parameters
Layer Configuration Parameters
Embedding – input dimension: Total number of words in the vocabulary

– output dimension: 200
– input length: Maximum length of the comments

Dropout – dropout rate: 0.25

GRU – number of units: 50

Dropout – dropout rate: 0.5

Dense – number of units: 3
– activation function: softmax

3.2.4 Proposed BiLSTM model
The proposed Bidirectional LSTM (BiLSTM) model is very similar to
the proposed LSTM model as it consisted of 5 layers. The only difference
between these two models is that, unlike the proposed LSTM model, the
LSTM layers in the BiLSTM model are bidirectional which comes from
the idea of presenting each training sequence forward and backward to two
separate RNNs, both of which are connected to the same output layer [37].
In theory, this architectural modification lets capturing richer contextual
information instead of using high-order factorization [38]. The layers of the
proposed BiLSTM model with their configuration parameters are listed in
Table 6.

Table 6 The layers of the proposed BiLSTM model with their configuration parameters
Layer Configuration Parameters
Embedding – input dimension: Total number of words in the vocabulary

– output dimension: 200
– input length: Maximum length of the comments

Dropout – dropout rate: 0.25

BiLSTM – number of units: 50

Dropout – dropout rate: 0.5

Dense – number of units: 3
– activation function: softmax

3.2.5 Proposed CNN+BiLSTM model
The proposed CNN + BiLSTM model is a sequential model that consists
of a CNN and a BiLSTM for encoding, and decoding, respectively. This
model is a typical ‘encoder-decoder’ network. The layers of the proposed
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CNN + BiLSTM model with their configuration parameters are listed in
Table 7.

Table 7 The layers of the proposed CNN + BiLSTM model with their configuration
parameters

Layer Configuration Parameters
Embedding – input dimension: Total number of words in the vocabulary

– output dimension: 200
– input length: Maximum length of the comments

Dropout – dropout rate: 0.8

Conv – number of filters: 64
– kernel size: 5
– activation function: ReLU
– padding: ‘same′

BiLSTM – number of units: 50

Dropout – dropout rate: 0.5

Dense – number of units: 3
– activation function: softmax

3.3 Training Configuration

Since one of the aims of the proposed study is to shed light on the perfor-
mance differences between the types of widely-used deep neural networks,
all of the proposed deep neural network models were trained under the same
configuration as follows: The Adaptive Moment Estimation (Adam) [39],
which was proposed as an extension to the Stochastic Gradient Descent
(SGD) [40], was employed as the optimization algorithm, which is respon-
sible for updating the weights of the layers on the basis of the calculated
loss. Another optimization algorithm, the Root Mean Square Propagation
(RMSprop) has achieved a slightly worse performance than Adam. The
Categorical Cross-Entropy function was employed as the loss function since
our task is a multi-class classification problem. A loss function in a deep
neural network is responsible for calculating the loss of the model for each
iteration to let the model reduce the loss on the next iteration. The metric
that was evaluated by the model was defined as accuracy. 20% of the
training set was used as the validation set. The batch size, which is the
number of samples utilized in one iteration, was set to 128. The training
was started with the Early Stopping callback, which is responsible for
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stopping the training when the model’s monitored metric has stopped improv-
ing for the pre-defined number of epochs (a.k.a. patience). As a result of
this mechanism, the Early Stopping callback helps to prevent the overfit-
ting problem [41–43]. The monitored metric and patience of the employed
Early Stopping callback were defined as the validation loss (the loss
calculated for the validation set), and 5, respectively. Another callback that
was employed is the callback of reducing the learning rate of the model when
the monitored metric has stopped improving. For this callback, similar to
the Early Stopping callback, the validation loss was monitored and the
learning rate of the model was factored by 0.1 when the validation loss
has not decreased for 2 epochs. The lower bound of the learning rate was
defined as e−6. To the best of our knowledge, this is the first study in the
toxic comment detection literature that employs these callbacks during the
training of the deep neural network. The hyper-parameters of the employed
Adam algorithm were set after the model optimization (described in Section
3.6) and are listed in Table 8.

Table 8 The hyper-parameters of the employed Adam algorithm
Hyper-parameter Value
Learning rate 0.001

Beta 1 0.9

Beta 2 0.999

Epsilon e−8

Decay rate 0.00001

3.4 Data Preparation

The proposed models were both trained and evaluated on a gold standard
toxic tweets dataset which was proposed by Waseem and Hovy [18] and
consisted of 16K tweets. The dataset contains a label that defines the toxicity
type alongside the Id (Identifier) of the tweet defined by Twitter for each
tweet. Since the Twitter terms prohibit sharing the texts of tweets, the dataset
contains the Ids of tweets instead of their texts. Thanks to the Tweepy [44],
an open-source Python library for accessing the Twitter API, the texts of
the tweets were retrieved through their Ids. This dataset was annotated by
crowd-sourcing the tweets of more than 600 Twitter users. The labels that
were defined for the tweets in the dataset are “racism”, “sexism”, and
“neither”. The proposed model within this study is a multi-class model that
aims to classify the given samples into the given three labels, namely, (i)
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“racism”, (ii) “sexism”, and (iii) the “neither”. The preprocessing phase,
whose effect on the performance of neural networks is proven [45], contains
the following operations to prepare data to be ready to yield into the proposed
deep neural network:

• The tweets were lowercased to regard any forms of a word in terms of
the case (e.g., uppercase, lowercase, sentence case, etc.) the same.

• The meaningless parts of tweets in terms of toxicity detection, namely,
weblinks, usernames, and mentions were cleared from the tweets.

• The punctuation marks and whitespace characters were cleared from the
tweets.

• The prefix of declaring that a tweet is a retweet of another one, the “RT ”,
was cleared from the tweets.

• The stop words, which are the most common words in a language,
were cleared from the tweets in order to focus on more important,
meaningful words for the aim of the model. The stop words of English
were obtained through a widely used Python library for NLP, namely,
Natural Language Toolkit (NLTK) [46].

• The 173 tweets, whose texts were completely removed (became
empty Strings) after the aforementioned preprocessing operations, were
dropped from the dataset.

The utilized Twitter dataset (D) does not provide separated training and
test sets. Therefore, the dataset was split into subsets as follows: 70% of it
(11, 834 tweets), and 30% of it (5, 073 tweets) were utilized as the training
set, and the test set, respectively. An overview of the utilized dataset is given
in Table 9.

Table 9 An overview of the utilized Twitter dataset

Dataset

Number of Samples
Labeled with

“Racism”
Number of Samples

Labeled with “Sexism”

Number of Samples
Labeled with

“Neither”
Twitter (D) 1, 976 3, 430 11, 501

3.5 Model Optimization

There are no standard guidelines for the construction of deep neural networks.
Deep neural networks contain many hyper-parameters, which are parameters
whose optimal values are revealed empirically based on the performance
evaluation of deep neural networks. This process is known as the ‘hyper-
parameter optimization’ task and is very determinative on the performance
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of the trained network since hyper-parameters of deep neural networks
significantly affect the training process. Therefore, a wide range of hyper-
parameters was empirically experimented with in an automated manner to
reveal their optimal values as they are listed in Table 10. To this end, an
open-source Python library that was specifically designed for Keras and was
recommended by the developer of Keras [30] for the hyper-parameter opti-
mization task, namely, Hyperas [47], was employed. The proposed models,
which are described in the previous subsections, were optimized according to
the experimental result of hyper-parameter optimization.

Table 10 The experimented values of hyper-parameters during the hyper-parameter opti-
mization of the proposed models
Hyper-parameter Experimented Values/Algorithms
Activation function ReLU , tanh, sigmoid, softmax

Optimization algorithm Adam, SGD, RMSprop, Adadelta

Loss function Binary Cross− Entropy,
Categorical Cross− Entropy,
Sparse Categorical Cross− Entropy,
Poisson, KLDivergence

Learning rate e−6, e−5, e−4, e−3, e−2

Momentum 0.0, 0.9, 0.99
Decay rate 0.00001, 0.0001, 0.001, 0.01, 0.1
Dropout rate 0.25, 0.5, 0.6, 0.7, 0.8
Kernel size 3, 5, 7
Number of filters 8, 16, 32, 64, 128, 256
Number of units in LSTM layers 8, 16, 32, 50, 64, 100, 128, 256
Number of units in the Dense layers
(except for the last Dense layer which
was fixed to 3)

32, 64, 128, 256

Batch size 64, 128, 256
Number of Conv layers 1, 2, 3
Number of LSTM /GRU /BiLSTM
layers

1, 2, 3

4 Experimental Result and Discussion

All the experiments that were conducted within this study were carried out on
the Colaboratory (a.k.a. Google Colab) [48], which is a platform maintained
by Google that provides free powerful GPUs alongside permanent (through
the provided integration with the Google Drive service) and temporary
storages. Google Colab comes with many useful Python data science libraries



Towards the Importance of the Type of Deep Neural Network 2259

including but not limited to TensorFlow, Keras, scikit-learn, NumPy, and
Pandas on a Linux server operating system. NLTK is one of these built-in
libraries of Google Colab and it was utilized during the data preprocessing
phase as is described in detail in the previous section. In addition to these
advantages, it is possible to execute the Linux Command-Line Interface (CLI)
commands on the provided machine which lets us download the necessary
resources (e.g., the pre-trained word vectors for the utilized word embedding
methods, the utilized dataset, the NLTK resources for English, etc.).

The motivations behind the conducted experiments were twofold: First,
we shed light on the performance differences between the types of the most
commonly used deep neural networks. Second, we shed light on the perfor-
mance differences between various widely-used word embedding methods.
To this end, a total of twenty benchmark models were constructed. The
proposed models were both trained and evaluated on the utilized Twitter
dataset (D), which is described in the previous section. The confusion matrix
is the de facto standard of measuring the efficiency of classifiers and defines
the accuracy, precision, recall, and F1 − score evaluation metrics. Since
the detection of the toxicity level is a classification problem, the confusion
matrix was employed to measure the efficiency of the proposed model. While
‘Positive′ (P ) corresponds to the target class of classifiers, ‘Negative′ (N)
corresponds to the opposite class of the P . Precision is the ratio of correctly
classified positives (TP ) to all positive predictions (P ). Recall (a.k.a.
True Positive Rate) is the ratio of correctly classified positives (TP ) to all
(actual) positive samples. Accuracy is the ratio of correct predictions to all
predictions. Precision and recall are often in tension since the improvement
of precision typically reduces the recall. F1 − score is the harmonic
mean of precision and recall and takes both False Positive (FP ) and
False Negative (FN) scores into account. The higher the F1− score, the
better is the result. ‘True′ (T ), and ‘False′ (F ) correspond to correctly clas-
sified samples, and incorrectly classified samples, respectively. The formulas
of these evaluation metrics are given in the following equations:

Accuracy = (TP + TN )/(T + F ) (2)

Precision = TP/(TP + FP) (3)

Recall = TP/(TP + FN ) (4)

F1 − score = (2 ∗ Precision ∗ Recall)/(Precision + Recall) (5)
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Each experiment within this study was repeated 10 times and the final
scores are the averages of the scores obtained in these 10 trials. According
to the experimental result of the evaluation of the constructed benchmark
models on the Twitter dataset (D) as it is listed in Table 11, the benchmark
model M4, which was based on the proposed CNN model without utilizing
pre-trained word vectors, achieved a weighted F1−score of 84.844%, which
was the highest weighted F1 − score achieved amongst the constructed
twenty benchmark models and an accuracy of 84.861%. The most mis-
matched predictions were observed as follows: 24.42% of the tweets labeled
as “sexism” were predicted as “none”, and 21.84% of the tweets labeled
as “racism” were predicted as “none”. The most accurately predicted class
was found as “none′′ as the precision of this class was calculated as high
as 89.05%. The confusion matrix of this evaluation is presented in Figure 3.
Other key findings obtained through the conducted experiments are that the
models, that constructed word embeddings through the Embedding layers,
obtained higher F1− scores and converged much faster than the models that
utilized pre-trained word vectors.

Figure 3 The confusion matrix of the evaluation of the best benchmark model, namely, M4.
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Table 11 The performance comparison of the constructed benchmark models on the
Twitter dataset (D) (best in bold)

Type of Deep Pre-trained Number Weighted

Model Neural Network Word Vectors of Epochs F1-score (%)

M1 CNN E1 84 71.742

M2 CNN E2 76 72.755

M3 CNN E3 49 66.717

M4 CNN − 50 84.844

M5 LSTM E1 153 71.109

M6 LSTM E2 285 68.289

M7 LSTM E3 89 68.883

M8 LSTM − 17 83.121

M9 GRU E1 104 74.140

M10 GRU E2 108 75.413

M11 GRU E3 145 75.230

M12 GRU − 18 81.295

M13 BiLSTM E1 68 73.204

M14 BiLSTM E2 389 71.347

M15 BiLSTM E3 162 74.035

M16 BiLSTM − 14 82.621

M17 CNN +BiLSTM E1 31 59.271

M18 CNN +BiLSTM E2 11 55.312

M19 CNN +BiLSTM E3 33 58.693

M20 CNN +BiLSTM − 24 83.984

As some of them are described in Section 2, there exist various toxic
detection studies that utilize different datasets based on different platforms.
To benchmark the performance of the proposed model, the related works,
that utilized the same dataset as the proposed model, were included in the
comparison. As the comparison is listed in Table 12, the proposed model
outperformed the related state-of-the-art studies. The plot of the comparison
of the related work in terms of obtained classification score is presented in
Figure 4.
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Table 12 The comparison of the proposed work with the related work that utilized the same
dataset (D) as the proposed model
Related
Work

Target Classes Evaluation Metric Metric Score

Badjatiya
et al. [17]

racism, sexism, and
none

Macro averaged F1− score 0.73102

Park and
Fung [21]

racism, sexism, and
none

F1− score 0.8270

A combination of
abusive− none, and
racism− sexism

0.8240

Zhang and
Luo [49]

racism, sexism, and
none

F1− score 0.8300

Waseem and
Hovy [18]

racism, sexism, and
none

F1− score 0.7393

Agrawal and
Awekar [6]

racism, sexism, and
none

Macro averaged F1− score 0.79602

Proposed
model

racism, sexism,
andnone

Weighted F1−score 0.8484

Figure 4 The plot of the comparison of the related work in terms of obtained classification
score.

5 Conclusion

In this study, a novel toxic detection approach based on DNNs was proposed
and its efficiency was proven thanks to the conducted experiments. To reveal

2According to the paper of Arango et al. [19] which takes the methodological issue of this
study into account as is briefly discussed in Section 2. Please refer to their paper for more
detail regarding this issue.
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the most efficient deep neural network model, five widely-used DNNs archi-
tectures, namely, (i) CNN , (ii) LSTM , (iii) GRU , (iv) BiLSTM , and (v)
a combination of CNN and BiLSTM , were investigated. Word embeddings
play a critical role in the performance of machine learning models. Therefore,
in addition to these DNNs, three widely-used word embedding methods,
namely, (i) Word2V ec, (ii) fastText, and (iii) GloVe, were integrated
into the proposed DNNs. As a result of this experimental setup, a total of
twenty benchmark models were constructed. These models were evaluated
on a gold standard dataset to reveal their efficiency in terms of the detection
of toxic posts on social media. According to the experimental result, the
proposed CNN model without employing pre-trained word vectors obtained
an F1 − score of 84.844%, which outperformed the related state-of-the-art
studies. Other key findings obtained through the conducted experiments are
that the models, that constructed word embeddings through the Embedding
layers, obtained higher F1 − scores and converged much faster than the
models that utilized pre-trained word vectors. As future work, we would like
to cover fine-grained toxicity categories. Also, the proposed novel toxic post
detection approach can be applied to posts in other languages. Finally, the
networks of the senders of the posts in social media can be investigated to
reveal its effect on toxicity detection.

Acknowledgment

The author would like to thank Waseem and Hovy for sharing their valuable
dataset, and Google for providing free resources through the Colab platform.

Funding Information

This research did not receive any specific grant from funding agencies in the
public, commercial, or not-for-profit sectors.

References

[1] S. Kemp, “Digital 2020,” We Are Social & Hootsuite, 2020. https://wear
esocial.com/digital-2020 (accessed Jan. 29, 2021).

[2] E. Whittaker and R. M. Kowalski, “Cyberbullying Via Social
Media,” J. Sch. Violence, vol. 14, no. 1, pp. 11–29, 2015, doi:
10.1080/15388220.2014.949377.

https://wearesocial.com/digital-2020
https://wearesocial.com/digital-2020


2264 A. T. Kabakus

[3] S. Hinduja and J. W. Patchin, “Bullying, Cyberbullying, and Suicide,”
Arch. Suicide Res., vol. 14, no. 3, pp. 206–221, 2010, doi: 10.1080/
13811118.2010.494133.

[4] K. Khieu and N. Narwal, “CS224N: Detecting and Classifying Toxic
Comments.”

[5] J. Risch and R. Krestel, “Toxic Comment Detection in Online Dis-
cussions,” in Deep Learning-Based Approaches for Sentiment Analysis,
Springer, 2020, pp. 1–27.

[6] S. Agrawal and A. Awekar, “Deep Learning for Detecting Cyberbul-
lying Across Multiple Social Media Platforms,” in Proceedings of the
Advances in Information Retrieval – 40th European Conference on IR
Research (ECIR 2018), 2018, pp. 141–153, doi: 10.1007/978-3-319-
76941-7 11.

[7] N. Nandakumar, B. Salehi, and T. Baldwin, “A Comparative Study of
Embedding Models in Predicting the Compositionality of Multiword
Expressions,” in Proceedings of the Australasian Language Technology
Association Workshop 2018 (ALTA 2018), 2018, pp. 71–76.

[8] S. Liu, N. Yang, M. Li, and M. Zhou, “A Recursive Recurrent Neural
Network for Statistical Machine Translation,” in Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics
(ACL 2014), 2014, pp. 1491–1500, doi: 10.3115/v1/p14-1140.

[9] D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin, “Learning
Sentiment-Specific Word Embedding for Twitter Sentiment Classifica-
tion,” in Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (ACL 2014), 2014, pp. 1555–1565, doi:
10.3115/v1/p14-1146.

[10] H. Li, X. Li, D. Caragea, and C. Caragea, “Comparison of Word
Embeddings and Sentence Encodings as Generalized Representations
for Crisis Tweet Classification Tasks,” in Proceedings of the ISCRAM
Asian Pacific 2018 Conference, 2018, pp. 1–13.

[11] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
Representations of Words and Phrases and their Compositionality,” in
Advances in Neural Information Processing Systems 26: 27th Annual
Conference on Neural Information Processing Systems 2013, 2013,
pp. 3111–3119.

[12] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation
ofWord Representations in Vector Space,” in Proceedings of the Inter-
national Conference on Learning Representations (ICLR 2013), 2013,
pp. 1–12.



Towards the Importance of the Type of Deep Neural Network 2265

[13] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin,
“Advances in Pre-Training Distributed Word Representations,” in
Proceedings of the 11th International Conference on Language
Resources and Evaluation (LREC 2018), 2018, pp. 52–55.

[14] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global Vectors
for Word Representation,” in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP 2014),
2014, pp. 1532–1543.

[15] T. Davidson, D. Warmsley, M. Macy, and I. Weber, “Automated Hate
Speech Detection and the Problem of Offensive Language,” in Proceed-
ings of the 11th International Conference on Web and Social Media
(ICWSM 2017), 2017, pp. 1–4.

[16] Z. Zhang, D. Robinson, and J. Tepper, “Detecting Hate Speech on
Twitter Using a Convolution-GRU Based Deep Neural Network,” in
Proceedings of the 15th International Conference (ESWC 2018), 2018,
pp. 1–15, doi: 10.1007/978-3-319-93417-4 48.

[17] P. Badjatiya, S. Gupta, M. Gupta, and V. Varma, “Deep Learning for
Hate Speech Detection in Tweets,” in Proceedings of the 26th Interna-
tional World Wide Web Conference 2017 (WWW ’17 Companion), 2017,
pp. 759–760, doi: 10.1145/3041021.3054223.

[18] Z. Waseem and D. Hovy, “Hateful Symbols or Hateful People? Pre-
dictive Features for Hate Speech Detection on Twitter,” in Proceedings
of the 2016 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies
(NAACL-HLT 2016), 2016, pp. 88–93, doi: 10.18653/v1/n16-2013.
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