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Abstract

In this paper, we propose a novel neural network for named entity recognition,
which is improved in two aspects. On the one hand, our model uses a paral-
lel BiLSTM structure to generate character-level word representations. By
inputting character sequences of words into several independent and parallel
BiLSTMs, we can obtain word representations from different representation
subspaces, because the parameters of these BiLSTMs are randomly initial-
ized. This method can enhance the expression abilities of character-level
word representations. On the other hand, we use a two-layer BiLSTM with
gating mechanism to model sentences. Since the features extracted by each
layer in a multi-layer LSTM from texts contain different types of information,
we use the gating mechanism to assign appropriate weights to the outputs of
each layer, and take the weighted sum of these outputs as the final output
for named entity recognition. Our model only changes the structure, does
not need any feature engineering or external knowledge source, which is a
complete end-to-end NER model. We used the CoNLL-2003 English and
German datasets to evaluate our model and got better results compared with
baseline models.

Keywords: Named entity recognition, parallel BiLSTM, gating mechanism,
CoNLL-2003.
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1 Introduction

The main task of named entity recognition (NER) is to label each word
in sentences with correct entity types, which usually include person, place,
organization, etc. NER is a very important part of many natural language
processing tasks. A high quality recognition result is very important for
the following tasks such as information extraction and automatic question
answering.

NER is usually regarded as a sequence labelling task. There are two
main methods: traditional statistical machine learning models and neural
network models. The statistical models mainly include Hidden Markov Mod-
els (HHM) and Conditional Random Fields (CRF). Earlier researches were
mostly based on the CRF, and had achieved many good results by manually
extracting data features and combining with external knowledge sources in
specific fields [1–7]. Although these methods can achieve good results in
some specific fields, once it is applied in other languages, text data or named
entity types, the previous extracted features cannot be used any more, it needs
to manually re-extract data features, which will undoubtedly increase the
application cost of the model.

In recent years, neural network models have developed rapidly, and made
a lot of achievements in the field of natural language processing. It can
automatically extract features from texts and represent them in the form
of word embeddings [8, 9]. Therefore, more and more researchers begin
to use some powerful neural network models, such as convolutional neu-
ral networks (CNNs), recurrent neural networks (RNNs), long short term
memory (LSTM), gate recurrent unit (GRU) and so on, to study named
entity recognition [10–15]. From the experimental results, the performances
of these neural network models have gradually been better than the traditional
statistical machine learning models, and become the main research direction
in the future.

Therefore, we propose a novel neural network model for named entity
recognition. Our model does not need any feature engineering and domain
specific knowledge source, and can be applied to NER tasks in different
languages, which means our model is a end-to-end NER model. First of
all, we build a parallel BiLSTM structure to generate character-level word
representations. Then, we concatenate the obtained character-level word
representations and the pretrained word embeddings, and input them into a
two-layer BiLSTM with gating mechanism to model sentences. This gating
mechanism enables the model to learn how to select information from these
outputs of different layers for calculation. Finally, the weighted sum of these
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outputs is fed into a CRF layer for named entity recognition. We applied this
novel neural network model to the English and German datasets provided by
the shared task of CoNLL-2003 [16] and got better results compared with
baseline models.

2 Related Work

In recent years, many researchers have used various types of neural network
models to study named entity recognition. Huang et al. [11] took pretrained
word embeddings as inputs, used BiLSTM and CRF to jointly decode the
sequence labels and achieved good results. However, this method did not
use character-level word representations, so it cannot make good use of
some character-level features (such as prefixes and suffixes, uppercases and
lowercases, etc.) contained in words. At the same time, they combined some
manually extracted features to improve the final result, which made their
model not a truly end-to-end system. Santos and Guimarães [10] proposed
to use both character-level and word-level representations to improve the
performance. Chiu and Nichols [12] used CNNs to extract character-level
word features, and combine with pretrained word embeddings, input them
into BiLSTM for named entity recognition. They also used some external
knowledge sources. Ma and Hovy [15] adopted similar methods, they used
CNNs and BiLSTM to model character-level vectors and pretrained word
vectors, add a CRF layer for joint labelling, and achieve good results. Con-
sidering the characteristics of LSTM, it is easier to remember the contents
close to the current input. Therefore, Lample et al. [13] used BiLSTM
to generate character-level word representations. This method can better
represent prefixes and suffixes of words through a bi-directional LSTM. In
Peters et al.’s researches [17, 18], they used pretrained word embeddings as
the input of neural network models, at the same time, combined with the
outputs of a bi-directional language model, this method can get different
word representations in different contexts, and obtain state-of-the-art NER
performance.

In the above researches, for word-level embeddings, most researchers use
word vectors which are pretrained in large corpus to initialize the lookup
table. From Collobert et al.’s research [19], we can see that these pretrained
word embeddings contain potential context semantic information, which can
significantly improve the NER result compared with randomly initialized
word embeddings. For character-level word representations, they contain
more fine-grained morphological features of words, which can effectively
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solve the problem of insufficient training of rare words, and also have a signif-
icant impact on the final NER result. However, for character embeddings, the
usual approach is still to use random values for initialization. If we only use a
single CNNs or BiLSTM to generate character-level word representations, the
quality of the initial values may have an impact on the result. Therefore, we
refer to the parallel RNN structure proposed in previous researches [20, 21].
They split the data and input them into multiple independent small-scale
parallel RNNs, which can reduce the total amount of parameters and improve
the final performance. A little different from their methods, we do not split
the character sequences of words, but input the complete character sequences
into multiple parallel RNNs, that is, each small-scale RNN accepts the same
input, and then we use their outputs to generate the character-level word
representations, so as to enhance the expression abilities of the final word
representations.

In addition, Belinkov et al.’s research [22] shows that in part of speech
tagging tasks, the performance of text representations learned in the first
layer is better than that learned in the second layer of a two-layer LSTM
model. Peters et al.’s research [18] shows that the higher layers of LSTM
units mainly capture the context semantic information of words, while the
lower layers of LSTM units mainly learn the syntactic information in texts.
From the above researches, we can see that the information learned in each
layer of a multi-layer LSTM is different. However, most of the existing named
entity recognition researches use a single-layer BiLSTM to model sentences.
Therefore, the other research content of this paper is to build a two-layer
BiLSTM with gating mechanism for named entity recognition, which uses
the output of each layer to jointly model sentences, so as to improve the model
performance.

3 Model Structure

Before introducing the NER model proposed in this paper, we first review the
traditional BiLSTM-CRF model in Section 3.1, and then present the proposed
model in following sections and discuss its advantages.

3.1 BiLSTM-CRF

Recurrent neural networks (RNNs) are commonly used neural networks for
modeling sequence information, which can process sequence data iteratively
along the time dimension. This recurrent structure allows RNNs to effectively
use the information from earlier time to calculate the output of the current
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time. The information flow can be summarized as follows. The output of the
current state is calculated by combining the input of the current state with
the output of the previous state. Although RNNs can theoretically process
sequence data of arbitrary lengths, but as the data length grows, the impact
of the earliest input information on the subsequent output becomes less and
less. In order to solve this long-term dependence problem, Hochreiter and
Schmidhuber [23] proposed the Long Short-Term Memory network (LSTM).
The LSTM cell has three gate structures: an input gate, a forget gate and a
output gate. Through these three gate structures, the input information can
be selectively stored or discarded, which can be used to solve the long-term
dependence problem.

For most sequence labelling tasks, it is helpful to use both the information
on the left (past) and the information on the right (future) of words for the
final result. A single LSTM can model sentences from left to right according
to people’s normal reading habits, and use the past information to represent
the current content. Then, adding another LSTM according to the reverse
direction can use the future information to represent the current content.
Combining these two independent LSTMs is called bi-directional LSTM
(BiLSTM) [24]. In application, the forward and backward outputs are usually
concatenated as the final output of the model.

We can simply input word representations into BiLSTM to model sen-
tences, and then the extracted features are fed into a softmax layer, which
can be used to predict the label of each word in the sentences. This method
can succeed in some relatively simple sequence labelling tasks (such as
part of speech tagging). However, in the task of named entity recognition,
there are often strong dependencies between labels. For example, in the
IOBES labelling scheme, the label after I-LOC cannot be I-PER or B-
ORG, it can only be I-LOC or E-LOC. Using BiLSTM and softmax layer
can only model each word independently, and cannot use the dependency
information between labels. Therefore, while using BiLSTM to extract fea-
tures, we combine a conditional random field (CRF) [25] to decode sequence
labels, because the CRF encourages the model to predict label sequences that
conform to the dependencies between labels.

3.2 Generating Character-level Word Representations by
Parallel BiLSTM

Many previous researches used CNNs to extract morphological information
of words [12, 15, 26], but CNNs cannot make full use of the location informa-
tion in the input data. For some important character features of words, such
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Figure 1 The character sequence of “Word” is input into a parallel structure with two groups
of BiLSTM. Their outputs are concatenated and fed into a linear transformation layer to obtain
the final character-level word representation.

as prefixes and suffixes, the location information of characters is particularly
important. LSTM is very good at modeling sequence data, and the input close
to the current time step has a greater impact on the output. Therefore, we refer
to Lample et al.’s research [13], use BiLSTM to generate character-level word
representations.

At the same time, we also use parallel BiLSTM to enhance the character-
level word representations. Similar to previous researches [20, 21], the
parallel BiLSTM structure is composed of several independent small scale
BiLSTM, each BiLSTM receives the same character sequences of words and
is trained simultaneously. We concatenate the output of each BiLSTM and
feed them into a linear transformation layer. This layer is mainly to keep the
dimension of the final character-level word representations fixed. Figure 1
describes how to generate character-level word representations with parallel
BiLSTM.

Using this parallel BiLSTM structure to generate character-level word
representations has the following advantages:

1. Enhance the expression abilities of character-level word representa-
tions. It can be seen from most of the existing researches that adding
character-level word representations can significantly improve the final
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performances of NER models, but unlike pretrained word embeddings,
we cannot get ideal initial values for character embeddings through
pre-training. We can only use random values for initialization, which
will lead to the final results affected by the initial values. The paral-
lel BiLSTM structure is composed of several independent BiLSTM,
each BiLSTM has different initial parameters, so the input charac-
ter sequences can be mapped into multiple different representation
subspaces, so that a word can obtain multiple character-level word
representations with different information. Then we use a linear trans-
formation layer to combine these different outputs to get the final word
representations. The character-level word representations generated in
this way contains more information from different subspaces, so their
expression abilities are better than those generated by a single BiLSTM
or CNNs.

2. Compared with the same size BiLSTM, the parallel BiLSTM has better
performance and lower calculation cost. For a basic RNN cell with
n hidden units, we assume that the dimension of input x is m, The
calculation equation of RNN is,

ht = tanh(W [ht−1, xt] + b) (1)

Where W and b are the weight matrix and bias, tanh is the hyperbolic
tangent function, then the dimension of W is [n, n + m], the total number
of parameters need to be calculated is equal to n ∗ (n + m) (the bias is not
considered here). If we adopt the parallel structure composed of k groups
of RNN with n/k hidden units, we can reduce the number of parameters to
n ∗ (n/k +m) while keeping the output dimension unchanged. In addition,
Zhu et al.’s research [20] shows that the parallel RNN can reduce the negative
effects from unrelated features in recurrent connections, thus improving the
model performance.

3.3 Modeling Sentences by BiLSTM with Gating Mechanism

We get final word representations by concatenating character-level word rep-
resentations and pretrained word embeddings, and feed them into BiLSTM
to model sentences.

Firstly, we concatenate the bi-directional outputs of the first layer to
obtain the output layer1. Then, we feed the output layer1 into the second
layer, with the same operation, we can get the output layer2. Finally, in order
to make better use of these outputs, we use gating mechanism to obtain the
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Figure 2 The structure of our two-layer BiLSTM with gating mechanism.

final outputs. The equations are as follows.

output concat = concat(output l1, output l2) (2)

gate = sigmoid(W ∗ output concat + b) (3)

output final = gate � output l1 + (1− gate)� output l2 (4)

We concatenate the output layer1 and the output layer2 to get the out-
put concat, Equation (2). Then feed it into a fully connected layer with
sigmoid activation function to calculate the vector gate, Equation (3). Finally,
we use the gate and (1-gate) to calculate the output final, Equation (4).
Similarly, we also add a CRF layer for decoding, as shown in Figure 2.

Compared with the previous researches, our model has the following
improvements:

1. Most of the previous researches use single-layer BiLSTM, or stacked
BiLSTM similar to that used in Chiu and Nichols’s research [12]. In their
stacked BiLSTM, the forward and backward LSTM are independent
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Figure 3 Difference between the stacked BiLSTM (left) and our two-layer BiLSTM used in
this paper (right).

when transmitting information, and the bi-directional outputs of the top
layer are concatenated as the final output. In our model, the forward and
backward outputs of the first layer are concatenated as the input of the
second layer for calculation. The difference between these two structures
is shown in Fig. 3. From the experiment results, our two-layer BiLSTM
structure used in this paper is better than the stacked BiLSTM.

2. In previous researches, when using BiLSTM to model sentences, most
of them only use the output of single-layer or top-layer for sequence
labelling. In this paper, we use all the output of each layer in the two-
layer BiLSTM, and the added gating mechanism enables the model to
learn how to select information from these outputs to generate the final
text representations. According to the pervious researches [18, 22], the
features extracted from texts in different layer of LSTM contain different
types of information. The lower layer mainly contains the syntactic
information in text, while the higher layer mainly contains semantic
information of the word contexts. Therefore, our model will make use of
all the output of each layer, so that we can combine different information
to improve the result of named entity recognition.

4 Experiments

4.1 Parameter Setting and Training Algorithm

In this paper, we use TensorFlow [27] deep learning framework to build
our models. Because we also use BiLSTM to generate character-level word
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representations, the parameter settings used in this paper refer to most of the
settings in Lample et al.’s [13] research.

In order to obtain a fair comparison, we use the same data preprocess-
ing method and English pretrained word embeddings published by Lample
(since Lample did not publish the German pretrained word embeddings they
used, so we use Gensim to train German corpus to obtain the pretrained
word embeddings). The character-level embeddings are randomly initialized
according to the uniform distribution of [−0.5, 0.5], the dimension is 25.
These initialized word-level and character-level embeddings will be continu-
ously updated during the training process. The rest parameters are initialized
by the method of Glorot and Bengio [28].

We use the stochastic gradient descent (SGD) as the parameter optimiza-
tion algorithm, the initial learning rate is set to 0.1, and it decays at a rate of
0.97 per epoch. The gradient clipping parameter is set to 5.0, and we apply
50% dropout on the output of each layer (The locations are shown in the
dotted line of Figure 2). We train our model for 60 epochs, during the training
process, we monitor the model performance in the development dataset, and
save the model with the best performance in the development dataset for the
final test.

In the final model, the parallel structure used to generate character-level
word representations consists of 6 groups of BiLSTM with the same size (see
Section 5.2 for this parameter setting), and the hidden units of each forward
and backward LSTM is 25. In the following linear transformation layer, the
concatenated output dimension is reshaped to 50, that is, the dimension of the
final character-level word representations is 50. The BiLSTM for modeling
sentences has two layers, each LSTM has 100 hidden units.

4.2 Experiment Data Set

In order to verify the effectiveness of our model, we use the English and
German datasets provided in the shared task of CoNLL-2003 for experiments.
These datasets contain four different types of named entities: person (PER),
organization (ORG), location (LOC) and miscellaneous (MISC), which are
labelled in the IOB (Inside, Outside, Beginning) format. According to the
previous researches [3, 13], the IOBES format has a stronger expression
ability and can improve the final performance. Therefore, we use the IOBES
format to re-label the datasets. For each model configuration, we conduct five
experiments with different random seed and report the mean and standard
deviation of the test dataset results.
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5 Results and Discussion

5.1 Effectiveness of Each Part in our Model

Our model is improved in two aspects: generating character-level word rep-
resentations and modeling sentences. In this section, we verify the impact
of these two parts on our model performance. We select the BiLSTM-CRF
model used in Lample et al.’s research [13] as the baseline model, on this
basis, we gradually add the improved method proposed in this paper, report
the F1 score in the test dataset to measure the model performance. The exper-
iment results are shown in Tables 1 and 2, we use P-BiLSTM(k) to represent
the parallel structure with k groups of BiLSTM and use BiLSTM(GM) to
represent the BiLSTM with gating mechanism.

From the results in Table 1, when we use the same structure as the
baseline model, the English test dataset F1 score is 90.95. On this basis,
we first replace the original BiLSTM which generates character-level word
representations in the baseline model with the parallel BiLSTM structure,
and we can see that the performance of our model on the test dataset is
significantly improved, the F1 score is 91.24. Then, we replace the single-
layer BiLSTM used for modeling sentences in the baseline model with the
two-layer BiLSTM with gating mechanism. Our model also outperforms the
baseline model, and the F1 score reaches 91.23. Finally, we add all these
two improvements mentioned above to the baseline model, it gets the best
result in the English test dataset, the F1 score is 91.27. Table 2 shows the

Table 1 English NER results (CoNLL-2003 test dataset)

Model Precision Recall F1 score

BiLSTM-CRF 91.03 (±0.27) 90.87 (±0.14) 90.95 (±0.11)

BiLSTM-CRF + P-BiLSTM(6) 91.11 (±0.21) 91.37 (±0.09) 91.24 (±0.12)

BiLSTM(GM)-CRF 91.08 (±0.19) 91.37 (±0.22) 91.23 (±0.20)

BiLSTM(GM)-CRF + P-BiLSTM(6) 91.18 (±0.15) 91.36 (±0.02) 91.27(±0.08)

Table 2 German NER results (CoNLL-2003 test dataset)

Model Precision Recall F1 score

BiLSTM-CRF 79.50 (±0.25) 69.60 (±0.10) 74.22 (±0.17)

BiLSTM-CRF + P-BiLSTM(6) 79.65 (±0.24) 72.29 (±0.29) 75.79 (±0.18)

BiLSTM(GM)-CRF 79.49 (±0.34) 69.97 (±0.17) 74.42 (±0.16)

BiLSTM(GM)-CRF + P-BiLSTM(6) 80.26 (±0.36) 72.52 (±0.24) 76.18(±0.39)
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Table 3 Comparison of character features between the CoNLL-2003 English and German
datasets

Average Number of Characters Per Word Total Number of Characters

English 7.20 79

German 10.33 89

performances of different models in the German test dataset. Similarly, our
models also outperform the baseline model, and the degree of performance
improvement is higher than that of the English dataset.

As we can see from the results, these two methods proposed in this
paper can improve the Recall scores of the model without reducing the
Precision, so as to obtain better NER results. Further observation shows
that our method is more effective for the German dataset, especially when
the parallel BiLSTM is added to the baseline model to generate character-
level word representations. The F1 score of English dataset is increased by
0.29 and that of German dataset is increased by 1.57. The main reason may
be that the complexity of character features in German dataset is higher
than that in English dataset, as shown in Table 3. Therefore, the traditional
methods will face more challenges in generating German character-level
word representations, while our method can better extract character features
and improve the expression abilities of character-level word representations.

5.2 Best Group Number of the Parallel BiLSTM

In this paper, we use the parallel BiLSTM structure to generate character-
level word representations, so the best group number of BiLSTM in the
parallel structure also needs to be further discussed. Tables 4 and 5 show the
impacts on the NER results when using the parallel BiLSTM structure with
different group numbers to generate character-level word representations. It
can be seen that when the group number increases, the performances of our
models gradually improve. When the group number is 6, the models obtain
the best results in the test dataset, the F1 score of the English dataset is 91.24
and the F1 score of the German dataset is 75.79. When the group number
increase to 8, the performances of the models decrease. Therefore, the group
number of parallel BiLSTM is not the more the better. Too many groups may
have a negative impact on the model performance due to the information
redundancy. We need to find an optimal group number to achieve the best
performance.
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Table 4 English NER results of the parallel BiLSTM structure with different group numbers

Model Precision Recall F1 score

BiLSTM-CRF 91.03 (±0.27) 90.87 (±0.14) 90.95 (±0.11)

BiLSTM-CRF + P-BiLSTM(2) 91.05 (±0.13) 91.07 (±0.15) 91.06 (±0.13)

BiLSTM-CRF + P-BiLSTM(4) 91.05 (±0.29) 91.30 (±0.22) 91.18 (±0.17)

BiLSTM-CRF + P-BiLSTM(6) 91.11 (±0.21) 91.37 (±0.09) 91.24(±0.12)

BiLSTM-CRF + P-BiLSTM(8) 91.01 (±0.11) 91.37 (±0.18) 91.19 (±0.07)

Table 5 German NER results of the parallel BiLSTM structure with different group numbers

Model Precision Recall F1 score

BiLSTM-CRF 79.50 (±0.25) 69.60 (±0.10) 74.22 (±0.17)

BiLSTM-CRF + P-BiLSTM(2) 80.32 (±0.25) 70.32 (±0.42) 74.99 (±0.13)

BiLSTM-CRF + P-BiLSTM(4) 79.31 (±0.22) 71.56 (±0.18) 75.24 (±0.15)

BiLSTM-CRF + P-BiLSTM(6) 79.65 (±0.24) 72.29 (±0.29) 75.79(±0.18)

BiLSTM-CRF + P-BiLSTM(8) 80.08 (±0.37) 71.48 (±0.45) 75.54 (±0.28)

Figure 4 shows the total number of parameters in the parallel BiLSTM
structure with different group numbers (the size of hidden units is set to 200)
and the training time of 1 epoch (CoNLL-2003 English dataset). It can be
seen that when the group number increases, the total number of parameters
in the parallel BiLSTM structure decreases, as discussed in Section 3.2. At
the same time, the model takes less time to train in one epoch. Therefore, the
parallel BiLSTM used in this paper can reduce the computational cost and
improve the training speed.

5.3 Comparison with Previous Researches

In order to compare with the previous researches, Table 6 lists the F1 scores
of the previous researches on the English test dataset of CoNLL-2003. Due
to the small size of the dataset, we refer to the method used in researches
[12, 17], combine the training dataset and development dataset for training.
From the results in Table 6, it can be seen that the F1 score of our model is
91.66 in the test dataset. Compared with some other models which obtained
high F1 scores, Chiu and Nichols [12] used some external knowledge sources
(We define that the external knowledge source does not include the pretrained
word embeddings), Peters et al. [17, 18] used extra large corpus to train the bi-
directional language model, which is used to enhance the effect of pretrained
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Figure 4 The number of parameters and the training time of 1 epoch with different group
numbers.

Table 6 F1 scores of previous researches, where ‡ indicates that the research uses the neural
network model, * indicates that the research uses the external knowledge source

Model F1 score

Lample et al. [13] ‡ 90.94

Luo et al. [6] 91.20

Ma and Hovy [15]‡ 91.21

Sano et al. [29] 91.28

Žukov-Gregorič et al. [30]‡ 91.48

Chiu and Nichols [12] ‡∗ 91.62

Peters et al. [17]‡∗ 91.93

Peters et al. [18]‡∗ 92.22

Our model 91.66 (±0.15)

word embeddings and improve the final performance. However, our method
only changes the model structure and does not use any external resources. It
is a complete end-to-end named entity recognition model.

6 Conclusion

This paper proposes a novel neural network model for named entity recog-
nition. The model is improved from two aspects. One is to use the parallel
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BiLSTM structure to generate character-level word representations. This
method can combine the information from multiple representation subspaces
to generate character-level word representations, so as to improve the expres-
sion abilities of word representations. The other is to use the BiLSTM with
gating mechanism to model sentences. The outputs of different layers of
LSTM contain different types of useful information, this gating mechanism
enables the model to learn how to select information from these outputs to
calculate, so as to improve the final performance. The experimental results on
CoNLL-2003 English and German datasets show that our model is effective
and its performance is significantly improved compared with the baseline
model. Future research can start from the following aspects: how to improve
the diversity of each BiLSTM in the parallel structure to further enhance
the expression abilities of word representations, how to find the best group
number more effectively and try to use the multi-layer outputs of the model
in a more efficient way. In addition, using pretrained models, such as BERT, is
currently a very prevalent trend, it is necessary to add them to the subsequent
model research to further discuss the improvement of model performance.
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