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Abstract

Existing machine learning methods for classification and recognition of EEG
motor imagery usually suffer from reduced accuracy for limited training
data. To address this problem, this paper proposes a multi-rhythm capsule
network (FBCapsNet) that uses as little EEG information as possible with
key features to classify motor imagery and further improves the classification
efficiency. The network conforms to a small recognition model with only 3
acquisition channels but it can effectively use the limited data for feature
learning. Based on the BCI Competition IV 2b data set, experimental results
show that the proposed network can achieve 2.41% better performance than
existing cutting-edge methods.

Keywords: Capsule network, deep learning, brain machine interface, motor
imagery, classification.

1 Introduction

At present, the research of brain-computer interaction in machine learn-
ing focus on Convolutional Neural Network (CNN) [1–6] and deep belief
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network (DBN) [7, 8]. As for Steady-State Visual Evoked Potentials
(SSVEP), Kwak et al. [4] explored a CNN with a spatial convolutional layer
and a temporal layer, which uses the frequency band power features from two
EEG channels. There have been many studies exploring deep belief networks
(DBN) for the classification of motor imagery (MI) [3, 5]. In addition, Lu Na
et al. [9] used a restricted Boltzmann machine for classification, with FFT
and wavelet packet decomposition for pre-training [10]. The Correlation-
based Feature Selection (CFS) and K-Nearest-Neighbor (KNN) data mining
algorithms proposed the recognition of attention in the learning process [11].
For the relevance of each feature, the greedy chase algorithm is used to search
for the features, and all the features are sorted according to the relevance.
These algorithms were tested with the KNN classifier to find the subset with
the highest classification rate.

Representative achievements in recent years are Deep ConvNet [3] and
EEGNet [12], which use a compact convolutional neural network (Shallow
ConvNet) for EEG. The former is designed as a general architecture and not
limited to specific functional types, while the latter is as parameterized as
possible. Both of these models can be applied to classification tasks conform-
ing to different brain-computer interface paradigms. FBCNet [13] performs
heuristic convolutional neural networks in rhythm segments based on the
neurophysiology of motor imagery. The traditional CNN network is usually
one or more groups of network layers consisting of a convolutional layer
and an aggregation layer. Take ERD and ERS recognition as an example,
the low-level CNN is able to detect features such as wave amplitude, and
the high-level CNN can detect features such as waveform. The max pooling
layer can reduce the size of the feature vector, obtain the maximum value
in its convolution window, and keep the window for a certain time. However,
the max pooling layer does not care about spatial features and some important
features may be discarded by this function. The capsule network aim to solve
this problem and it is a rough method to obtain maximum information [14].

For classification and recognition of EEG motor imagery, the feature
extraction by rhythm segment or machine learning methods has achieved
remarkable results. The representative algorithms for feature extraction by
rhythm include SBCSP [15], FBCSP [16–18], DFBCSP [19, 20], and WPD
CSP [21]. The learning strategy of rhythm segment capturing the EEG
characteristics is utilized with the capsule network for EEG movement.
During the training process, the output route of each capsule (i.e., feature
attribute) receives the distribution coefficient of the previous layer, and iter-
atively outputs the distribution coefficient of each frequency band through
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EM (Expectation-Maximization). Compared with the previous sub-band
recognition method, this method has distinguishing advantages.

In 2017, Sabour et al. [22] mentioned that CNN would lose the spa-
tial information between objects and lead to incorrect classification results,
through the use of pooling operations. Therefore, the dynamic routing capsule
network was proposed. Based on this, Zhang Quanshi et al. [23] used the
storage filter representation method in the capsule network to improve the
interpretation ability. In 2018, Hinton et al. [14] proposed a new type of
capsule network, which uses the EM algorithm to update a set of neurons
for the feature map of each iteration training, and performs backpropagation
on adjacent capsule layers. EM iteration finally achieved higher recognition
accuracy with 45% less error for 3D object data set, Smal lNORB. In 2019,
Kwon-Woo and Jin-Woo applied the capsule network to distinguish the left
and right hand moving images on the BCI Competition IV 2b dataset [23].
In 2020, Liu Yu et al. [24] proposed a multi-level feature-guided capsule
network (MLFCapsNet) for EEG emotion recognition to overcome CNN’s
inability to describe the internal connections between different channels of
EEG signals. This paper focuses on the core algorithm and network archi-
tecture design of the multi-rhythm capsule network for performing motor
imagery classification tasks. The data structure of the multi-rhythm segment
for preprocessing the motor imagery EEG signal is first introduced. Then,
the clustering algorithm of the multi-rhythm capsule network is elaborated.
Finally the entire network architecture is introduced.

2 Data Center Infrastructure and Power Consumption

The disadvantage of CNNs is that they cannot model spatial relationships
well and rely heavily on hyperparameters to grasp the data structure. In
contrast, for image recognition performed on the brain, a reverse graphics
solution can be achieved. The recognition in real environment is a hierarchical
representation of the world around us, and the visual information received by
the eyes are deconstructed conforming to the learning model stored in the
brain. The key idea is that the representation of objects in the brain does
not depend on perspective and internal representation needs to be performed
in the neural network. Capsule network is a variant of CNN with a group
of neurons in a learning network, and researchers are trying to overcome
the defects of CNN through this network. The activity vector in capsule
network represents various parameters of a specific entity. The length of
the activity vector represents the probability of the existence of the object,
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Figure 1 Schematic diagram of capsule algorithm process.

and the direction of the activity vector represents the instantiation parameter.
Therefore, various attributes including position, size, and rotation can be
represented by the activity vectors in capsule network architecture.

In the capsule network, each capsule has a logical unit that represents
the existence of an object, and a 2D matrix is usually used to represent
the value of the data attribute of each object. The core of the network is
the dynamic routing, which introduces a new iteration process between the
capsule layers. After each iteration, the new capsule receives a set of weights
for each entity attribute. It is equivalent to “softening” (convolution) K-means
which directly divides points into the nearest clusters, while dynamic routing
obtains similarity through softmax, assigning corresponding weights to each
point and dividing it into each cluster.

The dynamic routing of the capsule network is an iterative algorithm that
can encapsulate and output the given information to a data structure (see
Figure 1). Each capsule has a logical unit that represents the existence of
an entity, and its output represents different attributes of the same entity. In
addition to the convolutional layer for clustering information, each capsule
also has a self-rescue mechanism, which realizes the characteristics and
information of the upper layer by multiplying its own feature matrix by the
weight of the learnable relationship coefficient. In order to route the output
of each capsule to the upper capsule that receives similar voting clusters,
the expectation-maximization algorithm is used to back-propagate feature
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information between layers and the capsule is formed to obtain a feature
matrix that can distinguish information.

3 Proposed Multi-filter Bank Capsule Network Method

In this paper, the spatial feature learning is integrated with the primary
capsule of the capsule network,Mq = {mijk} ∈ Rp×s1×s2 , where P is the
primary channel (PC for short) and s1×s2 is the primary capsule neuron (Pri-
mary Shape, PS for short). This paper targets a binary classification problem,
and the network would be a 4D structure if the main capsule layer includes
batch size. So the number of capsules output is 16. The advantage of the main
capsule network designed in this work is to replace the clustering algorithm
with a self-attention mechanism algorithm for better convolution calculation.
The vector length of each capsule in the main capsule layer indicates the
feature classification. In this case, a feature recognition mechanism named
protocol dynamic routing mechanism [22] exists between the main capsule
and the digital capsule, connecting these two capsules.

3.1 Multi-rhythm Capsule Algorithm

An iterative algorithm is applied between the main capsule layer and the
digital capsule layer to establish a dynamic routing mechanism. This process
can not only capture the spatial relationship of each capsule through the
transformation matrix, but also connect the information between each capsule
through routing. Dynamic routing can capture the information allocated in
different layers, which overcomes the limitation of spatial convolution calcu-
lation to obtain the consistency of the capsule layer. The specific process of
the multi-rhythm dynamic routing algorithm (MulFB Capsule) is as follows:

1. The main capsule Mq = {mijk} ∈ Rp×s1×s2 is input to the digital
capsule layer, where P is the number of capsules and S1S2 is the capsule
matrix structure. First, through a matrix conversion with µ0 = T (M) ∈
Rp×s1×s2 , T (M) converts the capsule of [P×S1×S2] structure to [S2×
S1 × P ], which is convenient for subsequent routing calculation. µ0 =

[µ
(0)
1 , µ

(0)
2 . . . µ

(0)
p ]

T
, for µ(0)m , where m ∈ N[1, P ], the cycle calculation

of steps 2 to 6 is performed according to the number of routing cycles.
2. The dynamic routing is introduced to learn advanced features of MI

category,µt,1m = Wk · µt,0m , where t ∈ N [1, R], R is routing calculation
degree;Wk is the conversion matrix between µt,0m and µt,1m ; k ∈ N [1, C],
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C is the number of digital capsules; Wk ∈ R1×S2×(C∗D), D is the
capsule dimension. Each rhythm segment has an independent dynamic
route to extract a certain aspect of the feature, and capture the projection
of different features µt,1m .

3. Construct new eigenvalues, assuming that the digital capsule layer has
C categories. The distribution probability of µt,1m after Softmax calcula-
tion is (P1|m, P2|m . . . Pc|m),and the new feature can be represented as

µt,2m = (P1|m · µ
t,1
m , P2|m · µ

t,1
m . . . Pc|m · µ

t,1
m ).

4. To calculate the characteristics of each capsule, µt,2m is first added with
different weights to obtain si, as shown in Equation (1). Then data
squashed squeeze is performed on si. Moreover, the squash calculation
is normalized to ensure that the output value of each capsule is between
0 and 1, which is helpful for convergence. The process of normalization
is shown in Equation (2) with µm ∈ RC×D.

Sm =
C∑

n=1

pn|m · µ1m (1)

µm = squash(Sm) =
||Sm||2

1 + ||Sm||2
Sm
||Sm||

(2)

5. According to the similarity of the vm, the soft division is performed,
and the feature value is obtained by calculating the distance of each
dimension mean v̄m as shown in Equation (3). Finally, the feature
weight learned by each capsule is exhibited as follows.

µt,3m =

{
µt,3mn|µt,3mn =

D∑
n=1

√
(µmn − µ−m)

2

}
εRC×1 (3)

6. µt+1
m = µt,3m , and return to the second step to enter the next round of

routing feature training, and finally output.

3.2 FBCapsNet

The processing of the whole multi-rhythm MI by encoders and decoders of
the capsule network is shown in Figure 2. First, the EEG information in
rhythm segment is extracted at 4 to 40Hz, and the N segments are of equal
bandwidth. In the experiment, N = [3, 6, 9]. Then, the EEG information of
each rhythm segment uses the same data segmentation method introduced in
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Figure 2 Schematic diagram of multi-rhythm capsule network structure.

Chapter 4. The Encoder is performed for feature learning on the dual input,
including the time domain and the space domain, to obtain the main capsule
featureM q, q ∈ N [1, N ]. Finally, the Decoder of the EEG features is divided
into two stages. First, the capsule network is used in each rhythm segment to
realize the different attributes of the same information source and different
feature domains. Then, the soft attention mechanism is used and the clas-
sification attributes of each rhythm segment are adaptively re-weighted and
aggregated. Soft attention can isolate the characteristic attributes of important
frequency bands, and increase their classification weights to avoid interfer-
ence with unimportant information. Thus, the accuracy of classification is
improved.

4 Experimental Result and Discussions

4.1 Data

The experimental data in this paper comes from the BCI2008IV2b data set
[20], which contains 9 subjects, divided into training and validation data sets.
Also, there is 6480 times, 23760S of MI data in the dataset. The following
preprocessing strategy for the input data is adopted:

1. Band-pass filtering is used to filter the EEG signals of 9 iso-rhythmic
segments from 4 to 40 Hz, and train the three collection points of C3,
Cz, and C4.

2. According to the experimental paradigm of BCI2008IV2b, the data from
1.25 s to 5.25 s after the evoked event was intercepted without visual
feedback, and the data from 2 s to 5.5 s after the evoked event was
intercepted with visual feedback.
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Table 1 Classification accuracy of each Parameter of BCI 2008 IV-2B Data set in FBCap-
sNet Network.

 

3. Based on double input, the time window is set to 1 s and step length is
100 ms, with the latter input delayed by 100ms than the previous one.

4.2 Hyper Parameters Selection

The training set data of the FBCapsNet network comes from the training
set of BCI2008IV2b, which contains two sessions without visual feedback
and one session with visual feedback. Then, the influence of the number of
channels in the main capsule layer, the structure of the capsule layer and
the number of routing iterations on the network performance is investigated.
The experimental results are shown in Table 1. It can be seen that when the
number of main capsules is 128, the classification accuracy is relatively high.
For the same number of main capsules, larger primary capsules are needed to
capture features. Moreover, the number of routing iterations is set to 2, which
is more suitable than iterations of 1 or 3, as shown in Figure 3.

4.3 Result

According to the above experimental results, the FBCapsNet model is a
main capsule with 128 channels, 16 capsules and a dimension of 8. Also,
the number of iterative routing is 2. The comparison with four existing
representative methods in shown in Table 2. It can be seen that the classi-
fication accuracy of this model is higher than other methods, showing 2.41%
better performance than the latest method CapsNet [25]. After learning the
characteristics of each rhythmic segment, the capsule network is used to
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Figure 3 Classification of FBCapsNet network routing iteration times in different models.

Table 2 Classification accuracy (%) of five End-to-End Algorithms in BCI 2008 IV-2B data

Subject Shallow Net [3] Deep Net [3] EEG Net [12] Caps Net [25] FBCaps Net

No.1 71.56 67.25 67.18 78.75 79.47

No.2 53.57 56.10 58.21 55.71 58.34

No.3 53.12 54.87 55.62 55 59.59

No.4 95.93 94.52 95.31 95.93 96.40

No.5 85 84.59 86.87 83.12 84.06

No.6 76.87 74.46 77.5 83.43 88.09

No.7 76.56 77.03 76.87 75.62 82.12

No.8 85.93 87.75 89.68 91.25 90.47

No.9 82.18 79.25 80 87.18 89.12

Average 75.63 75.10 76.36 78.44 80.85

learn more distinguishing attributes, which effectively improves the model’s
ability to recognize the target task. This also shows that the capsule network
is effective in distinguishing the characteristics of brain electrical MI.

4.4 Discussion

Our analysis indicates that the capsule layer output category of 16 is the
most suitable for the two-class 4D structure capsule. For network with 2
iterations in the capsule layer and 128 main capsule layers, the result is
shown in Table 3. It can be seen that when the classification attribute of
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Table 3 The Classification Accuracy in the FBCapsNet Model with different capsule layer
structures when routing = 2

Primary Channel Primary Shape Capsule Number Capsule Dimenison Accuracy (%)

128 8 × 2 8 4 64.08

8 69.59

16 4 68.46

8 74.66

32 4 60.01

8 71.15

4 × 4 8 4 63.52

8 70.59

16 4 78.54

8 80.85

32 4 68.47

8 76.35

2 × 8 8 4 70.09

8 70.65

16 4 74.66

8 79.41

32 4 69.19

8 76.78

the capsule layer is 16, the classification accuracy is higher than that of
the case with 8 and 32 capsules. Also, under the same capsule structure,
the accuracy is 4% higher, showing that the capsule layer pairs output
sensitivity of dimensions. For the output category of the capsule layer, the
number of classifications to the power of the capsule dimension can be set,
namely ClassNumberDmension, where Dmension refers to the dimension of
the capsule structure matrix.

Compared with the traditional CNN, the capsule network has achieved
better results in classification accuracy, but the training process is much
slower. On the other hand, for more complex data sets containing many
classification categories, the capsule network is not recommended, as the
network may fall off and the classification effect is not good. However, the
capsule network has risen from the neuron level to the routing level, bringing
great significance to the machine learning applications.
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5 Conclusion

Based on the dataset of MI, the experimental results show that the method
proposed in this work is significantly better than some of the latest methods in
literature. The source of the superior performance is summarized as follows.

1. Compared with handwritten digital images in the MINIST dataset used
to evaluate the performance of the original capsule network [22], EEG
signals have more complex internal representations related to MI. The
proposed framework combines different levels of multi-layer feature
maps before forming the main capsule, thus the ability of feature
representation is enhanced. This makes our method based on multi-
rhythm segment EEG more powerful than other capsule networks for
MI classification.

2. In addition to the strong correlation between the MI task and the EEG
brain function, the method conforms to a spontaneous and rhythmic
EEG. The methods in this work divides the targeted features in different
sub-rhythm segments under the same task, and classify the features
in the rhythm segments first to avoid the loss of some characteristic
attributes. Specifically, the main capsule encodes the features, and the
capsule layer encodes the special attributes in each rhythm segment.
The neurons in the capsule layer contain all the important information
of the characteristic state, which is beneficial to extract the distinguish-
ing characteristics of EEG movement and imagination. Moreover, the
vector weights used in the network have contributed to the recognition
efficiency and robustness.
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