
Convolutional Neural Networks Using Log
Mel-Spectrogram Separation for Audio

Event Classification with Unknown Devices

Soonshin Seo1, Changmin Kim2 and Ji-Hwan Kim1,∗

1Dept. of Computer Science and Engineering, Sogang University, Seoul, Republic
of Korea
2LG Electronics, Seoul, Republic of Korea
E-mail: ssseo@sogang.ac.kr; changmin0.kim@lge.com; kimjihwan@sogang.ac.kr
∗Corresponding Author

Received 12 April 2021; Accepted 05 November 2021;
Publication 07 January 2022

Abstract

Audio event classification refers to the detection and classification of non-
verbal signals, such as dog and horn sounds included in audio data, by a
computer. Recently, deep neural network technology has been applied to
audio event classification, exhibiting higher performance when compared to
existing models. Among them, a convolutional neural network (CNN)-based
training method that receives audio in the form of a spectrogram, which is
a two-dimensional image, has been widely used. However, audio event clas-
sification has poor performance on test data when it is recorded by a device
(unknown device) different from that used to record training data (known
device). This is because the frequency range emphasized is different for each
device used during recording, and the shapes of the resulting spectrograms
generated by known devices and those generated by unknown devices differ.
In this study, to improve the performance of the event classification system,
a CNN based on the log mel-spectrogram separation technique was applied
to the event classification system, and the performance of unknown devices
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was evaluated. The system can classify 16 types of audio signals. It receives
audio data at 0.4-s length, and measures the accuracy of test data generated
from unknown devices with a model trained via training data generated from
known devices. The experiment showed that the performance compared to
the baseline exhibited a relative improvement of up to 37.33%, from 63.63%
to 73.33% based on Google Pixel, and from 47.42% to 65.12% based on the
LG V50.

Keywords: Audio event classification, unknown device, log mel-
spectrogram, log mel-spectrogram separation, convolutional neural networks.

1 Introduction

The widespread application of multimedia has resulted in the increase of
the size of the solo creator market, and personal video media production
and distribution became easier. Although multimedia still relies on metadata
to interpret overflowing video media information, research to automatically
analyze the meaning of text, image, and audio information in video is being
actively conducted owing to advances in machine training. Audio information
analysis is largely divided into speech recognition, which analyzes the speech
signal from a person’s mouth and converts it into a character string, and audio
event classification, which detects and classifies non-verbal signals such as
dog and car horn sounds. In addition to analyzing video information, audio
event classification is a technology that can indicate what type of sound is
currently being produced by classifying various ambient sounds occurring
in daily life on behalf of the human ear. It is possible to assist people with
limited ambient sound information, such as modern people who usually wear
earphones or people with hearing impairments, to evaluate the situation and
have an immediate response in dangerous situations.

1.1 Acoustic Scene Classification

Deep neural networks (DNNs), which have recently attracted attention in
the field of machine training, have been applied to speech recognition and
image classification, showing excellent performance improvement [1, 2].
DNN-based algorithms have also been studied for audio event classifica-
tion problems [3]. Among them, a method of visualizing audio data as a
two-dimensional (2D) image, called a spectrogram, and training it with a
convolutional neural network (CNN) suitable for an image classification
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Figure 1 Spectrogram.

Figure 2 Structure of audio event classification system.

problem is widely used [4]. The spectrograms are expressed on the time and
frequency axes. To generate a spectrogram, the frequency energy must be
extracted using a Fourier transform, while a window of a certain length moves
with respect to the original data containing time and amplitude information.

Figure 1 shows a spectrogram. For clock alarm audio data with a sampling
rate of 16000 and a length of 0.4 s, a window size of 640 frames and a window
movement distance of 163 frames were used. The x-axis represents time, and
the y-axis represents the frequency. Each pixel contains a dB value for each
frequency. The strongest energy is set to 0 and expressed in white. As the
energy becomes weaker, the dB value decreases and becomes darker.

Figure 2 shows the structure of the audio event classification system, in
which the spectrogram is used as an input to the audio event classification
system. The input spectrogram starts with the input layer of the CNN, passes
through the convolutional layer, and becomes a plurality of filter images.
Finally, in the dense layer or the global average value pooling layer, a
spectrogram is classified using information on a plurality of filter images,
and a softmax value is output.
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1.2 Performance of Audio Event Classification on Unknown
Devices

There are various problems to be solved in the classification of audio events;
however, in this study, we focused on the result of poor performance when the
device recording data used for training and that used for testing are different.
For example, the American Institute of Electrical and Electronics Engineers
hosted a world-class Detection and Classification of Acoustic Scenes and
Events (DCASE) challenge to address various topics related to audio event
classification. The audio input device used to record the training data and that
used to record the test data were the same. As a result, for the problem of
classifying 10 scenes, the team that recorded 85.2% won the first place [5].

In the same year, in Task 1B: acoustic scene classification with mis-
matched recording devices, test data were recorded using a device other than
the audio input device used to record the training data. Similarly, for the
problem of classifying 10 scenes, the team with 75.3% won first place [6].
It was found that there is a large difference in performance when the same
device is used for training and recording and when different devices are used.
Here, the device used for training and recording is called a known device,
whereas the device only used for recording is called an unknown device.

To determine why the performance of an unknown device is poor, we first
analyzed the waveform of the data recorded with various input devices. As
a result of analyzing the frequency range emphasized by the device used for
recording, spectrograms were generated by the known and unknown devices,
and it was observed that the spectrograms made with the unknown devices
had different features.

Figure 3 shows spectrograms extracted after recording through various
devices for the same audio data input. Audio data with a sampling rate of
16000 and a length of 0.4 s were recorded on four devices: iPhone SE,
Google Pixel, Samsung Galaxy S9, and LG V50. The spectrogram of the
data recorded by the iPhone SE is shown in the upper left corner. Three lines
were highlighted around 2000 Hz, 4000 Hz, and 6000 Hz. Thus is the only
one of the four devices, in which the area around 3000 Hz is represented by
a black area. In the spectrogram of the Google Pixel located in the upper
right, strong energy is observed at approximately 2000 Hz, but at 4000 Hz,
the energy is weaker than that of the iPhone SE, and noise is mixed, hindering
visualization. The LG V50 at the bottom right had noise input between
6000 Hz and 8000 Hz, which is the high-frequency range. Even if the same
data are recorded, the shape of the spectrogram may be slightly different for
each device.
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Figure 3 Spectrograms recorded and extracted by various devices for the same input.

1.3 Contributions

When transplanted to an unknown device using the CNN-based audio event
classification model [4], the performance was very poor at 63.63% for Google
Pixel and 47.42% for LG V50. In this study, the difference in performance
between known and unknown devices was because the shape of the spec-
trogram for each device was partially different, and the spectrogram had
different characteristics from the image. As the frequency domain to be
emphasized is different for each audio input device, even in the case of an
image, a specific area may be more emphasized for each camera device that
converts an image into data.

However, the meaning of the image is not different, regardless of where
the object appears in the image. For example, when a dog appears at the
top or at the bottom of an image, the position in the image is different, but
the presence of the dog in the picture is a fixed characteristic. Therefore, in
image classification, even if a specific area of an image is erased, it is possible
to identify and classify the necessary information in another location.

However, because the spectrogram has a fixed frequency axis, high- and
low-pitched audio events are located at the top and bottom of the spectrogram,
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respectively. If a specific area of the spectrogram extracted from data recorded
by a device is not highlighted, information appearing only in that specific
area cannot be obtained through the recording device. Therefore, in this
study, we used a log mel-spectrogram, which can show the characteristics
in more detail than the mel-spectrogram in the low- and high-frequency
regions.

In addition, because spectrograms have different characteristics from
images, the CNN used for image classification should be used in accordance
with the characteristics of the spectrogram in the audio event classification
problem. McDonnell’s team, which won second place in the DCASE Task 1B
held in 2019, divided the log mel-spectrogram into high- and low-frequency
regions to reflect the characteristics of images and other spectrograms, which
has been applied to input CNNs [7]. Thus, in this study, the feature parameter
separated from the log mel-spectrogram was applied to the audio event
classification problem.

Furthermore, in the spectrogram, the meaning of the parameter used for
the x-axis and that used for the y-axis differ in the time and frequency bands,
respectively. Therefore, to determine whether time or frequency information
should be reflected in training, we experimented on strides in the pooling
layer to generate a better performance audio event classification CNN struc-
ture. As a result, the performance compared to the previous study [4] showed
a relative improvement of up to 37.33%, from 63.63% to 73.33% based on
Google Pixel, and from 47.42% to 65.12% based on LG V50.

1.4 Paper Organization

Section 2 introduces various feature parameters used in audio event classifi-
cation, feature parameter separation methods, and training models. Section 3
describes a CNN using the log mel-spectrogram separation applied in the
proposed audio event classification. In Section 4, the effect of the log mel-
spectrogram application, log mel-spectrogram separation, and the proposed
CNN model is tested on servers and embedded devices, and the degree of
performance improvement is evaluated through comparison with existing
studies. Section 5 provides the conclusions of this study.

2 Related Works

Section 2.1 describes various spectrograms used in the audio scene and audio
event classification problems. Section 2.2 describes the attempts to train by
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Figure 4 Constant-Q spectrogram.

separating the spectrogram, and Section 2.3 describes the existing research
on an audio event classification model based on CNNs.

2.1 Previous Methods on Feature Parameters in Audio Event
Classification

The spectrograms used in DCASE Task 1: Acoustic scene classification
challenge include Constant-Q spectrogram [8], mel frequency cepstral coef-
ficients (MFCCs) [9], and log mel-spectrogram [10]. This challenge focused
on an audio scene classification problem that was slightly different from the
definition previously discussed in this paper. The 10-s long data should be
classified, including continuous events such as department store, park, and
subway station environment sounds, and not input from short events such
as dog barking and car horn sounds. The Brno University of Technology
team using the Constant-Q spectrogram was ranked third among the 24 teams
participating in DCASE 2018 [8]. Figure 4 shows a visualization of the
Constant-Q spectrogram.

The MFCCs, which are often used in speech recognition, are also used
in audio scene classification problems. Dorfer et al. won second place in the
challenge of the same year using MFCCs [9]. For clock alarm audio data such
as Constant-Q, the moving distance of the window was set to 160. Figure 5
shows the spectrogram of the MFCCs.

The spectrogram used in the model that won first place was the log mel-
spectrogram. Sakashita et al. used an ensemble of nine CNN models using log
mel-spectrograms [10]. Figure 7 shows a picture of the log mel-spectrogram,
which is the same as the audio data used in Constant-Q and MFCCs, and
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Figure 5 MFCCs spectrogram.

Figure 6 Log mel-spectrogram.

the window size and moving distance are the same as those of the MFCCs.
Visually, the frequency ranges around 4500 Hz, 6500 Hz, and 7500 Hz are
emphasized, showing a remarkable effect.

Later, in the same challenge of DCASE 2019, Chen et al., who used the
rogue mel-spectrogram, won the first place. In DCASE 2020, all of the top
10 systems in Task 1A: acoustic scene classification with multiple devices
used log mel-spectrograms to reduce the performance gap between devices,
and were evaluated as a spectrogram suitable for audio scene classification
problems. A mel-spectrogram is used to classify audio events [4], and is
similar to the log mel-spectrogram, which has the best performance in the
current audio scene classification problem. When a log scale is applied to the
mel-spectrogram, it becomes a log-spectrogram.

Lee et al. addressed the issue of classifying 30 audio events using
mel-spectrogram and VGGNet in 2017. The authors obtained an accuracy
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Figure 7 Mel-spectrogram.

of 81.5% for the UrbanSound8k, BBCSoundFX, DCASE2016, and
FREESOUND datasets. Figure 7 shows the mel-spectrogram used in Lee’s
study extracted under the same conditions for the clock alarm audio data
previously mentioned. Similar to the log mel-spectrogram, it is heavily
emphasized around 4500 Hz and 6500 Hz, and other areas are darker.

2.2 Previous Methods on Feature Parameters Separation in
Audio Event Classification

Piczak et al. used a technique for separating MFCCs in the problem of
classifying datasets ESC-50 [11], ESC-10 [11], and UrbanSound8K [12]
in 2015. The effectiveness of the audio event classification problem has
been evaluated [13]. In 2017, they participated in the DCASE to evaluate
how the resolution of the separated spectrogram affects the classification of
audio events [14]. Phaye et al. proposed a CNN model with mel-spectrogram
separation for the first time in 2019 [15]. In the challenge for classifying audio
scenes using unknown devices, McDonnell et al. won second place at DCASE
2019 using a CNN model separated from a log mel-spectrogram [7]. Suh et al.
won the first place in DCASE 2020 by outputting a log mel-spectrogram in
256 orders and dividing the low-frequency band into three divisions into 64th,
64th, and 128th orders [16].

2.3 Previous Methods on Neural Networks in Audio Event
Classification

The first training model introduced in the field of audio event classification
was the hidden Markov model-support vector machine [17]. Later, with
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the advent of DNNs, a training model using feedforward neural networks
was proposed [3]. Recently, among DNNs, many studies have been con-
ducted using CNNs, which have excellent performance in image recognition.
Representative examples of CNNs include VGGNet [18], ResNet [19] and
GoogleNet [20]. In particular, an audio signal classification system with a
small model complexity of 81.5% using VGGNet [18] was proposed [4].

3 Convolutional Neural Networks Using Log
Mel-Spectrogram Separation

As mentioned in Section 2, the mel-spectrogram was used for the audio event
classification problem. However, in the audio scene classification problem of
the DCASE 2020 challenge, an increasing number of teams used log mel-
spectrograms, and their performance is improved every year. We extracted
and compared the mel- and log mel-spectrograms from the audio event.
Figure 8 shows the appearance of mel-spectrograms extracted from two
crying babies, indicating that the characteristics of the sounds mainly appear
between 5000 Hz and 7000 Hz.

Figure 9 shows a collection of log mel-spectrograms extracted from the
same two crying babies. In the log mel-spectrogram, the characteristics of the
sounds are evident even at frequencies between 5000 and 7000 Hz.

The method used to draw the log mel-spectrogram is as follows: the input
audio signal is sampled at 16 kHz, 2 bytes per sample, and consists of a mono
channel. A short time Fourier transform is performed while the Hamming
window of 640 frames moves in units of 160 frames with respect to the input
signal. One feature value is extracted for each triangle bin by multiplying
the weight for each frequency energy and covering all the windows with a

Figure 8 Mel-spectrograms extracted from two crying babies.
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Figure 9 Log mel-spectrograms extracted from two crying babies.

triangle bin that increases on the mel scale. A filter bank feature parameter is
generated by composing these feature values into one vector. The generated
filter banks are arranged on the time axis to generate a 2D image, which is a
mel-spectrogram.

Additionally, a log mel-spectrogram is generated by applying a log scale.
Log mel-spectrogram separation is a method of passing the decomposed
feature parameters through a CNN model and combining them in the final
global mean pooling layer step. The log mel-spectrogram separation algo-
rithm proposed in this study is based on the method of McDonnell et al.,
who won second place in the DCASE 2019 Task 1B [7]. The use of a CNN
algorithm by interpreting the spectrogram as an image is a good method
to improve performance in audio event classification. In image recognition,
objects are classified by the same image label that is at the top or bottom.
However, in the spectrogram, there is a difference in frequency between the
top and bottom, thus the meaning of the feature is different when the feature
is at the top and bottom. After passing the 40th order filter bank through the
CNN model for each 20th order, the log mel-spectrogram is separated. As a
result, information on the spectrogram of the low- and high-frequency bands
can be separately trained.

In addition to the audio scene and audio event classification problems, the
characteristics of images and other spectrograms should be considered. The
proposed CNN has three major changes from the VGGNet-based CNN [4],
which was used for audio event classification in the previous study by Lee et
al. Each dense layer was a global average value-pooling layer, and maximum
value pooling was used. With average value pooling, the time-axis stride was
changed from one to two. The global average value pooling layer uses the
average value pooling of the first layer instead of the dense layer of three
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layers used in the existing CNN classifier, and uses the abstracted features as
a classifier through the convolutional layer. This was first proposed by Line
et al. [21] and applied to Google’s Inception Net [22].

Compared to the dense layer, the number of parameters can be reduced,
and the location information is not removed. Based on the existing model,
approximately 15 million parameters can be reduced to 540,000. The average
value pooling layer takes the average of the values in the receptive field.
Compared to the maximum value pooling that takes the largest value, training
is not adequately performed when used with the ReLU activation function in
a deep CNN, but overfitting does not occur [23]. The CNN model used in this
study uses ReLU, but it is not deep, and is vulnerable to overfitting in solving
the performance difference between devices. Thus, the average value pooling
layer was used.

In addition, the stride of the time axis was set to two in the average value
pooling layer. As a result, the time axis length of the input spectrogram
feature decreased by half each time the average value pooling layer was
passed. In the case of this system, an image of (40,40) size consisting of 40
frequency information and 40 time information was input and had two strides
(1,2) in average value pooling layers, thus the image was reduced up to the
(40,10) dimension. We experimented with the (40,20) and (40,5) dimensions
by varying the number of strides in the average pooling layer, but the best
performance was in the (40,10) dimension.

The structure of a CNN using log mel-spectrogram separation is shown
in Figures 10 and 11. The (40,40)-dimensional spectrogram was divided into
two log mel-spectrograms of (40,20) dimension using a lambda function.
Two log mel-spectrograms of (40,20) dimensions were used as inputs for the
CNN. A 2D convolutional layer was used after batch normalization. In the
convolutional layer, the size of the kernel was (3,3), the stride was (1,1), and
zero padding was used to make the input and output dimensions the same. The
number of filters started at 18 and was doubled each time the convolutional
layer was repeated.

After the two convolutional layers, the average value in the kernel of
size (2,2) was extracted using the average value pooling layer. We used zero
padding, whereas the stride used (2,1), thus the dimension was cut in half for
an axis with a stride of 2. Two convolutional layers and one average value
pooling layer were repeated twice. Two convolutional layers and an average
value pooling layer were used. The average value pooling layer used strides
(1,1) to prevent dimension reduction. As a result, when passing through each
path, the dimension was from (40,20) to (10,20), and the number of filters
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Figure 10 Proposed CNN structure using log mel-spectrogram separation (1).

was 288. The two paths were merged into a (10,40) dimension, followed by
a convolutional layer, and finished with a global average pooling layer.

4 Experiments

Section 4 describes the experiments and their evaluation. Section 4.1
describes the construction of datasets used for training, testing, and veri-
fication. Section 4.2 describes the experimental configurations. Section 4.3
describes the experimental results on the server to verify the effect of the
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Figure 11 Proposed CNN structure using log mel-spectrogram separation (2).

log mel-spectrogram, the effect of the proposed CNN, and the effect of
the CNN using the log mel-spectrogram separation. Section 4.4 describes
the improvement the performance of an unknown device compared to pre-
vious research [4] by implementing an audio event classifier for real-time
embedding.
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4.1 Dataset Setup and Data Pre-processing

A total of 16 classes were selected: 13 dangerous signal classes, including
fire alarm, siren, dog barking, car horn, bicycle horn, glass cracking, water
boiling, water kettle whistle, human screaming, baby crying, jackhammer,
car passing, and whistling sounds; and 3 types of information signal classes,
including the sound of an electronic clock alarm, the sound of a door knock,
and the sound of human speech. These sounds can result in problems if
not recognized by a person with a hearing-related physical function is not
recognized.

According to Grice et al., the time taken for humans to respond to and
evaluate audio signals is an average of 0.386 s, with a standard deviation
of 0.052 s [24]. Because the response speed of the real-time audio event
classifier is influenced by the input length of the audio event, the input length
was set to 0.4 s in this study to implement a real-time audio event classifier
with a performance similar to that of humans.

Data collection sources included Google audio set [25], Urban-
Sound8k [12], BBC Sound FX [26], DCASE 2016 Task 1 data set [27], and
Freesound. Google audio sets are publicly available data such as to provide an
event sound database that can be used as a realistic evaluation index for audio
event search problems. Each data consisted of a 10-s long audio clip that was
directly separated by a human from a YouTube video. There was total of 632
types, 2,084,320 sheep. In this study, it was used as the main source of data
for the sound of bicycle horns and screams.

UrbanSound8K is audio event data collected and distributed by the New
York University, and audio data collected from www.freesound.org were cut
and tagged to fit the event section. One audio sample consisted of less than
4 s and was provided as a total of 8,732 files. The audio sample had 10 audio
event classes and a total length of 9 h. The UrbanSound8K dataset contains
10 types of audio events.

BBC Sound FX data is a collection of sound events used in cities/TV
broadcasts and consists of 40 CDs. For all tracks, manual tagging was freely
performed without limiting direct events, and 160 audio events existed as a
result of tagging. Among them, the top 10 audio events based on frequency
were selected and included in the training materials. BBC Sound FX has 10
audio events.

DCASE is a challenge to evaluate the audio classification performance for
four tasks. Among them, Task 1 contained many of the events selected in the
previous section for the classification of audio scenes. Like UrbanSound8K,



512 S. Seo et al.

Table 1 Information of collected data
Class Size (byte) Files Duration Source
Baby cry 115,475,918 54 60.14 Urbansound8k
Bicycle horn 21,320,874 91 11.10 Google audio set
Boiling 855,504,430 51 44.53 YouTube, Freesound
Car horn 45,356,560 369 23.61 Urbansound8k
Car passing 12,188,972 42 6.35 YouTube, Freesound
Clock alarm 13,770,660 43 7.17 YouTube, Freesound
Dog bark 44,382,322 362 23.11 Urbansound8k
Door knock 10,728,150 69 5.59 Urbansound8k
Fire alarm 8,594,532 20 4.48 YouTube, Freesound
Glass break 11,817,608 13 6.15 YouTube, Freesound
Jackhammer 116,567,496 1000 60.69 Urbansound8k
Kettle whistle 47,451,994 10 24.71 YouTube, Freesound
Scream 18,384,972 106 9.57 Google audio set
Siren 117,197,132 929 61.02 Urbansound8k
Whistle 26,095,484 40 13.59 YouTube, Freesound
Speech 57,551,044 196 29.97 Manually recordings

 

Figure 12 Waveform of sound source before data pre-processing.

it was used as training data as a refined dataset without the need for separate
tagging. It is a database in which random users share sounds with known
keywords on the cloud.

When constructing a class from the previous three datasets, duplicate
events exist; therefore, data were collected from freesound.org to compen-
sate. Because the collected data may contain errors, the section where the
actual sound exists was manually tagged. Data were collected directly from
freesound.org and YouTube for classes that were not included in the dataset
or were insufficient in quantity, such as the sound of a clock alarm, boiling
water, glass breaking, and whistling of a kettle. The amount of data collected
is listed in Table 1.

Data pre-processing was performed as follows: when the collected data
were cut by 0.4 s, there was a section where no audio event existed. Figure 12
shows the source of audio data for dog barking. It can be seen that the data
corresponding to the dog’s barking sound are not filled with the correspond-
ing audio event. To solve this problem, a section lower than a certain threshold
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Figure 13 Waveform of sound source after data pre-processing.

for the average energy value was removed. The threshold values were set
differently according to the characteristics of each class. As a result, silence
was removed, as shown in Figure 13.

As a result of data pre-processing, the length of the glass cracking sound,
which was the smallest class, was reduced from 6.15 min to 3 min. To balance
the amount of data between the classes, the other classes were also set to a
3-min length equal to the length of the glass breaking sound. As a result
of experimenting using this as training data, a low performance of 67.02%
was obtained based on LG V50. The training data were augmented by re-
recording the existing data for Samsung Galaxy S9, iPhone SE, LG V50, and
Google Pixel. With the addition of the devices, the performance significantly
increased.

4.2 Experimental Configurations

The training and experimental data were divided as follows: 412 data in
length of 0.4 s × 16 classes of audio data divided into 5 folds (82 data per
fold × 16 classes). 4 folds were re-recorded through Samsung Galaxy S9 and
iPhone SE devices (known devices) and used as training data for 3 devices ×
412 data × 16 classes. The other fold was re-recorded using Samsung Galaxy
S9, iPhone SE, Google Pixel, and LG V50 devices (55 devices × 82 data ×
16 classes). The data re-recorded on Samsung Galaxy S9 and iPhone SE is a
verification set (22 devices × 82 data × 16 classes), Google Pixel, LG V50
(unknown device) was used as a test set (2 devices × 82 data × 16 classes).

The accuracy of the test set was measured based on the model with the
highest accuracy for the verification sets of Samsung Galaxy S9 and iPhone
SE devices, and the performances of Google Pixel and LG V50 in the test
sets were evaluated. Librosa was used for the feature extraction. Librosa is
a Python package used to analyze audio signals and music. Spectrogram,
Constant-Q, mel-Spectrogram, and MFCCs can be easily extracted, thus they
are used in various auditory intelligence studies such as speech recognition,
music recognition, speaker recognition, and audio event classification. The
version of the Librosa used in this study was 0.7.1. The Python libraries
used for training included numpy 1.16.4, keras 2.2.4, and tensorflow 1.12.0.
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The Adam method was used as an optimizer. The loss function used sparse
categorical cross-entropy, and the metrics were accurate. The generation
(epoch) used was 15. The existing research model is an audio event classifier
based on the CNN proposed by Lim in 2018. A mel-spectrogram was used
as the feature parameter. The model uses a CNN based on VGGNet. Feature
parameter separation was not used, and (1,1) was used for the stride in the
pooling layer.

4.3 Experimental Results of CNNs Using Log Mel-spectrogram
Separation

The same training and test data were used to compare the performance of
the mel- and log mel-spectrograms, and the model was matched with the
CNN used in the previous study. As shown in Table 2, the average accuracy
compared to the mel-spectrogram increased to 4.46% for Google Pixel and
8.68% for LG V50.

To compare the performance of the conventional CNN and the proposed
CNN, the same training and test data were used, and the feature parameter
extraction method was a log mel-spectrogram. As shown in Table 3, the
average accuracy compared to the conventional CNN increased by 6.69%
for Google Pixel and 9.70% for LG V50.

To determine the degree of reduction in performance difference between
Google Pixel and LG V50 according to the application of log mel-
spectrogram separation, we used log mel-spectrogram as the feature param-
eter extraction method and the proposed CNN as the model. As shown in
Table 4, the accuracy difference between Google Pixel and LG V50 decreased
from 3.32% to 3.16%, as the accuracy decreased by 0.06% in Google Pixel,
but increased by 0.11% in LG V50.

Table 2 Experimental results of applying log mel-spectrogram (accuracy, %)
Mel-spectrogram Log mel-spectrogram

Baseline CNN Baseline CNN
w/o Spectrogram Separation w/o Spectrogram Separation

Conditions Google Pixel LG V50 Google Pixel LG V50
Fold 0 81.48 72.82 88.33 77.18
Fold 1 86.14 73.87 87.42 78.31
Fold 2 82.24 71.27 86.59 79.73
Fold 3 81.33 64.79 87.58 80.95
Fold 4 83.92 70.2 87.5 80.18
Average 83.02 70.59 87.48 79.27
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Table 3 Experimental result of the proposed convolutional neural network (accuracy, %)
Log mel-spectrogram Log mel-spectrogram

Baseline CNN Proposed CNN
w/o Spectrogram Separation w/o Spectrogram Separation

Conditions Google Pixel LG V50 Google Pixel LG V50
Fold 0 88.33 77.18 94.65 90.59
Fold 1 87.42 78.31 95.03 93.00
Fold 2 86.59 79.73 95.73 92.53
Fold 3 87.58 80.95 96.04 92.07
Fold 4 87.50 80.18 95.20 91.84
Average 87.48 79.27 95.33 92.01

Table 4 Experimental results of applying log mel-spectrogram separation (accuracy, %)
Log mel-spectrogram Log mel-spectrogram

Proposed CNN Proposed CNN
w/o Spectrogram Separation w/o Spectrogram Separation

Conditions Google Pixel LG V50 Google Pixel LG V50
Fold 0 94.65 90.59 95.86 91.57
Fold 1 95.03 93.00 93.90 91.64
Fold 2 95.73 92.53 95.43 91.77
Fold 3 96.04 92.07 95.43 91.84
Fold 4 95.20 91.84 95.73 93.75
Average 95.33 92.01 95.27 92.11

4.4 Experimental Results of Audio Event Classification in
Embedded Devices

When an untrained type of sound is given, if there is no unknown class,
the most similar sound among the 16 classes is output. Therefore, a state that
does not belong to any of the 16 classes defined in the server audio event
classifier must also be defined as one class. A total of 17 classes of audio
event classifiers were obtained by training the daily noise data that are
generally input for the four models. We used several methods for embedded
devices, as described below.

TarsosDSP. It is a Java library for Android designed to analyze audio signals.
It aims at easy-to-use and practical data processing. A fast Fourier transform
was performed using 16 kHz, 16 bits per sample, mono channel, and signed
big Indian audio signal using a window length of 40 ms, a window shift of 10
ms, and a window type using a Hamming window. Like Librosa, 40 triangular
bins that increase in mel scale are covered to extract one feature value from
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each triangular bin to create a 40th filter bank and a mel-spectrogram with 40
time bins as one input, and then log scale. TarsosDSP is a library that is no
longer under management since 2017. Thus, it could be a problem depending
on the installation environment, being necessary to call the center frequency
value that adjusts the mel scale when extracting the filter bank.

TensorflowLite. Extensions such as h5 and ckpt, which are model files used
in the server, cannot be used in Android, which is a Java environment.
TensorflowLite must be changed to a tflite extension. TensorflowLite is
an end-to-end open-source platform for machine training [28]. Until 2019,
debugging was difficult in the process of converting and applying the tflite
extension, but in 2020, Tensorflow was registered in the Keras built-in func-
tion, enabling to solve various problems that occur during the model porting
process. Converting the model reduces the file size and introduces optimiza-
tions that do not affect the accuracy. The TensorflowLite converter provides
options to reduce the file size and accelerate execution. TensorflowLite
provides a converter that converts the already trained Tensorflow model
to TensorflowLite format, that is, tflite, in the form of Python application
programming interface. The use of a TensorflowLite converter can reduce the
size of the model and the time required for inference by reducing the precision
of the values and operations in the model. Most models are converted in a
direction that minimizes the loss of accuracy. TensorflowLite supports the
reduction of the precision of values from the full floating point (float32)
to semi-float (float16) or 8-bit integer values, and this affects the size and
accuracy of the model, considering the computing power of the embedded
device to be used. It also minimizes the reduction in model accuracy.

When testing with embedded devices, we evaluated he improvement
in performance provided by the proposed system compared to the existing
system. Similar to the experiment on the server, we used 412 data of 0.4 s
in length for each class, 2636 s of audio data, 80% for training (2105 s), and
20% for testing (531 s). As shown in Table 5, the performance of Google
Pixel and LG V50, selected as unknown devices, improved from 63.63% on
Google Pixel to 73.33% compared to the previous study [4]. It also improved
from 47.42% based on LG V50 to 65.12%.

Table 5 Experimental results in embedded devices (accuracy, %)
Baseline System Proposed System

Google Pixel LG V50 Google Pixel LG V50

63.63 47.42 73.33 65.12
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5 Conclusions

There audio event classification performance was identified to deteriorate in
unknown devices. It was noted that the shape of the spectrogram was dif-
ferent for each device, and that the spectrogram had different characteristics
from the image. Therefore, we used a log mel-spectrogram that can evenly
show the characteristics in the low- and high-frequency regions. The feature
parameter separated from the log mel-spectrogram was used as the input for
the CNN. Because spectrograms have different characteristics from images,
the CNN used for image classification was improved to solve the audio event
classification problem. As a result, the performance compared to the previous
research improved from 83.02% to 95.27% based on Google Pixel and from
70.59% to 92.11% based on LG V50. In addition, the experiment result of
making an audio event classifier for embedded devices was improved from
63.63% to 73.33% based on Google Pixel and from 47.42% to 65.12% based
on LG V50.
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