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Abstract

Due to the recent COVID-19 outbreak the world has experienced many
challenges. Limit and control the virus spread rate is one of them. This
letter focuses on limiting the speed of virus spreading by monitoring the
use of facial mask in crowded public environments such as tourism places,
commercial centres, etc. The proposed method first accurately localizes faces
using a state-of-the-art approach and, segments facial mask in a second
step. The facial mask segmentation allows to distinguish whether the current
subject is wearing a facial mask or not but also if it is properly covering the
human face. Indeed, most recent face detection algorithms provide as output
a set of facial features such as nose tip and mouth corners. By combining
these facial features with facial mask segmentation, the proposed method
detects real-time subjects that indirectly encourage virus spread in crowded
environments. The proposed facial mask segmentation model is trained with
pairs of RGB images and its corresponding alpha image created by extending
the publicly available real-world masked face dataset. Further, the proposed

Journal of Web Engineering, Vol. 20 4, 1177–1188.
doi: 10.13052/jwe1540-9589.20414
© 2021 River Publishers



1178 D. Lefloch and J. Wang

model is pruned and optimized using the TensorRt library to be usable for
real-world applications.

Keywords: Mask segmentation, face detection, convolutional neural net-
works, deep learning.

1 Introduction

Face detection [1–3] has taken a lot of interest in the last decades. It spans
various applications from face reconstruction [4] to face recognition [5],
which requires precise face detection to operate properly. Furthermore, face
detection can be considered more relevant today since it is widely used on
smartphones via video. Due to the recent COVID-19 outbreak, the world
has experienced many challenges. This research aims to limit and control
the virus spread rate by first precisely localizing human faces and classifying
each of them by different risk levels. To this end, we propose a novel deep
convolution neural network (CNN) that precisely segments facial mask from
a single RGB image. The proposed network first relies on a robust face
detector and precise facial landmarks localizer. However, most face detection
methods suffered less accurate when the target persons are wearing a facial
mask [6].

In order to segment a facial mask from the human face, the previous
non-learning algorithms detected the object by matching similar patches. For
example, Park et al. [7] removed eyeglasses on the human faces using princi-
pal components analysis (PCA) reconstruction with an iterative approach that
compensates for error.

Recent advances in learning-based methods empowered image segmen-
tation algorithms significantly. Those methods usually outperformed the non-
learning methods but required large-scale datasets and/or data augmentation
mechanisms [8]. Lin et al. [9] used an improved version of Mask Region-
based CNN (Mask R-CNN), usually used to segment different object classes,
to segment multiple face instances. Whereas Saito et al. [8] used a popular
convolution network for object detection (VGG-16 [10]) coupled with a two-
stream deconvolution network (DeconvNet [11]) to robustly segment human
faces with strong occlusion.

In order to address the challenging COVID-19 outbreak, many methods
recently arise to improve the accuracy of face mask detection. Loey et al. [12]
proposed a hybrid method that combines a Resnet50 to localize face features
and an SVM classifier to determine whether the localized face is wearing
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a face mask or not. Lodh et al. [13] built a real-world application where a
MobileNet V2 was used for the face mask detection as well as their face
recognition module. Their system could identify whether a person is wearing
a mask or not and send a notification to all persons not wearing a face mask.
In [14], an automated system is proposed to limit COVID-19 by finding
people who are not wearing any facial mask in public places using monitoring
cameras. They use a standard CNN based deep neural network to detect
whether a person is wearing a facial mask or not. They have reported a 98.7%
accuracy for their face classification model.

The main contributions of this work are as follows:

(1) Train state-of-the-art neural network for face detection and face land-
marks localizer to be robust against faces wearing a facial mask with
real-time constraint.

(2) Design a novel deep convolutional network to precisely segment facial
masks with real-time constraint. The proposed model is able to segment
facial masks in real-time with a very high accuracy.

(3) Use the facial segmentation with the facial landmarks to detect whether
the facial mask is properly covering risk zone of the face (such as the
mouth and the nose regions). Limit and control the rate of virus spread
by classifying detected human faces with different risk levels.

2 Method

The proposed method consists of three parts: face localization, facial mask
segmentation, and risk classification.

The face localization used in this letter is fully based on the multi-
ple cascaded convolution neural networks (MTCNN) proposed by Zhang
et al. [3]. The face detector model was trained with two datasets: the WIDER
FACE dataset [15] and the CelebA dataset [16]. However, the state-of-the-art
MTCNN net did not perform reliably as a face and facial landmark detector
on the real-world masked face dataset (RMFD) [6]. The two datasets were
coupled with an extension of the RMFD dataset where five additional face
landmarks, including facial masks, were manually annotated with an addi-
tional binary image representing the facial mask segmentation (see Figure 1
for an overview of the extended dataset). Note that facial landmarks detection
is challenging for masked faces but can be deduced with enough precision
based on face characteristics (such as face orientation given by eyes and nose,
face size, and chin position).
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Figure 1 Overview of the RMFD dataset extended with binary images and landmarks. Each
RGB image is paired with its corresponding binary mask image, labeling all facial mask pixels
and five face features (eyes, nose tip, and mouth corners) precisely.

Like [3], the face and facial landmark detector were trained in three stages
with random image patches with the corresponding losses (cross-entropy loss
for the face classification, Euclidean loss for the bounding box regression and
the facial landmark localization). Once trained, the models were pruned and
optimized with half float precision using TensorRt without any quality loss
maintaining real-time face detection rate on 1080p resolution on a computer
equipped with a GeForce RTX 2080 GPU.

The proposed facial mask segmentation employs a variant of the popular
U-NET architecture [17] (See Figure 2). This model architecture provides
high-quality segmentation results via skip connections. Also, it consists of
standard layers (such as Convolution layers, Max pooling layer, Concatena-
tion layers, Deconvolution layers, and Activation layers) that can be easily
pruned and optimized. The modified architecture adopts a set of convo-
lutions and deconvolutions with a filter size of 3 × 3. Each convolution
and deconvolution are followed with a Relu activation function and a batch
normalization (BN) layer. Only the last convolution that predicts the facial
mask segmentation image does not require a BN layer and use a sigmoid
activation layer. Similar to [8], the input to the network is a 128 × 128 × 3
RGB image for training. However, the prediction is not a simple dense 2-class
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Figure 2 The modified U-NET architecture for facial mask segmentation.

binary image but a 128×128×1 alpha image to better model the mixed pixels
on the blurry region. Both the input and output of the network are storing
floating precision values between [0,1]. Each max-pooling layer uses a 2× 2
stride parameter leading to a down-sampled tensor of factor 2. In order to train
the facial mask segmentation model, the extended RMFD dataset was used
(face samples with mask and face samples without mask) and the annotated
binary image representing the facial mask. Note that 80% of the dataset was
used for training, and the rest was used for validation. Along training, image
patches were cropped randomly and

scaled to a 128 × 128 image size (bilinear interpolation). The learning
rate was halved each time the validation loss remained unchanged or larger
for three consecutive times.

The following perturbations were applied to augment the training data:

• Face images are converted to LAB colour space and perturbated uni-
formly channel A and B on pixels of the facial mask to slightly change
its colour. Finally, the image is converted back the image to the original
RGB colour space.

• A Gaussian blur with a random kernel size is applied to the face image
and the binary image to be more robust to blur due to defocus. Note
that the binary image of the facial mask segmentation becomes an alpha
image which, is used as ground-truth during training.

• A final gamma correction is applied to be more robust to change in
lighting conditions.
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The facial mask segmentation is formulated as a regression problem
where the following Euclidean loss is minimized:

Lalpha
i = |Ŷi

alpha
− Y alpha

i |
2

2, (1)

where Ŷi
alpha

is the facial mask alpha image obtained from the network and
Y alpha
i is the ground-truth alpha image. During inference, the input of the

model is an RGB image cropped and centred based on the bounding box
given by the face localization network enlarged by a factor of 1.25 and later
on scaled to an image resolution of 128 × 128. In this way, the facial mask
segmentation network only operates on a region of interest (improving the
performance) that contains a human face with high probability. Note that if
several faces are located during the first stage of face localizations, the second
stage inference is made with a maximum batch size of 32 faces.

Finally, the proposed processing pipeline classifies all detected faces as
possible risks using the output of both previous stages (face and landmark
detections and facial mask segmentation). Three different types of risk are
distinguished (high-risk, intermediate-risk, and low-risk). A human face is
classified as high-risk (no facial mask) if all pixels of the predicted facial
mask are smaller than 0.10 (classification: no facial mask). A human face is
classified as intermediate-risk if it is not classified as high-risk, and one of
the three face mask landmarks (i.e. nose tip, left and right mouth corners)
is classified has no facial mask (i.e., the value of the corresponding pixel of
the landmark in the facial mask segmentation is smaller than 0.10). Indeed,
a facial mask is functional with its maximum efficiency if wear correctly
(see the recommendation from the Centers for disease control and preven-
tion [18]). A human face is classified as low-risk if it is not classified as high-
and intermediate-risk, meaning that all three face landmarks belong to pixels
in the facial mask segmentation. Figure 3 gives an example of such three risk

 
Figure 3 Face risk classification examples (from left to right: low-risk, intermediate-risk and
high-risk). These human faces were extracted from the cruse image (source: maxpixel.net).
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levels. A face with a circle denotes a low-risk face, the one with a rectangle
denotes the intermediate-risk face, and the one with an octagon denotes the
high-risk face. For a complete visualization of facial landmarks and facial
mask segmentation, refer to the figures in the results section.

3 Results

The usability of the proposed method was evaluated in three different chal-
lenging situations. For all results, a full overview of the risk detection is
first shown on the complete image, and then each of the detected faces is
zoomed in to visualize better the quality of the face landmarks and the facial
mask segmentation. Each facial landmark is denoted with a bold circle (left
eye, right eye, nose tip and mouth corners). The facial mask segmentation is
overlayed as light and dark colour if the human face is classified as low-risk
and intermediate-risk, respectively.

The cruse image includes the problem of strong sunlight conditions. In
this use case, all human faces are approximately the same scale since each
human is approximately the same depth, and no face is occluded on this
image. All faces roughly span the full range of face poses (front face to
profile face) with different ages (kid to adult). All eleven human faces are
accurately detected, and the face risk is classified correctly. See Figure 4 for
a complete quality overview of the proposed method. Note how accurate the
face landmarks are even in the presence of the facial mask. All kid faces
are accurately labelled by our method; three of them are marked as high-
risk since they indeed do not wear any facial mask (face 3, face 6 and
face 7); note also how good is the facial detection for face 3 and face 6,
both having very challenging head-pose (extreme pan angle); the fourth kid
face (face 4) is recognized as an intermediate-risk since the facial mask is
placed on the chin. For the adult faces, face 10 and face 11 are correctly
detected as intermediate-risk since their facial mask are wrongly placed
(under nose).

The second use case (event-crowd image) includes a crowded environ-
ment with different depth defocus blur, face occlusions, and face scales (see
Figure 5). The proposed system can detect precisely three human faces in
total. As shown in Figure 5, the detection quality of the extremely blurry
human face and the quality of the face landmarks for facial mask are still
good. In this image, many other human faces are present, but the proposed
face localization is not able to perceive them due to either their strong
occlusion and/or amount of defocus blur. The adult face (face 3) is correctly
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Figure 4 Quality overview of the proposed framework on the cruse use case (source:
maxpixel.net).

 

Figure 5 Quality overview of the proposed framework on the event-crowd use case (source:
maxpixel.net).
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Figure 6 Quality overview of the proposed framework on the crowd use case (source:
REUTERS/Carlos Garcia Rawlins).

detected as an intermediate-risk since the facial mask is wrongly placed on
the chin. The detection quality of the defocus face (face 1) is also correctly
labelled as low-risk and the five facial landmarks are also correctly retrieved
despite of the extreme blur on that face. It clearly demonstrates the benefit
of our proposed model that includes during training many blurry samples to
simulate defocus effect.

The third and last use case (crowd image) includes a highly crowded
environment, which spans a variety of sharp and blurry human faces at
different scales with strong occlusions. In this use case, the proposed face
localization and landmarks are highly accurate (see Figure 6). The proposed
face risk classification is mostly accurate. Indeed, one female subject is
partially occluding her face mask by her hand, leading to misclassification.
This is one limitation of the proposed method, which cannot be avoided.
However, the proposed method is designed to be real-time and thus can
operate on image sequences. Thus, as soon as the female subject removes
her hand from the occlusion area, the facial mask segmentation will be
accurate again, leading to the appropriate risk classification. All other faces
are correctly classified as low-risk since all facial masks are correctly placed.
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In this example, one can clearly see the robustness of the proposed method
against different scales of faces caused by different level of depths leading to
different level of defocus blur for each of the faces.

4 Conclusion

In this work, we present a novel real-time method to accurately classified
each detected human face by risk levels. To mark human faces as risk levels
and thus monitor human behaviour in public areas can be highly valuable to
control and limit the rate of virus spread.

The proposed method is shown to be very performant to segment facial
mask and detect where it is covering the appropriate parts of the face (mouth
and nose). Few false positives were also discussed and are handle properly
by our real-time system. We show that our method can operate in real-time
constraint using a standard computer equipped with a GeForce RTX 2080
GPU. For future works, we would like to recognize facial mask types since
different facial masks have different efficiencies in terms of virus spread.
Furthermore, the current method could be extended to the detection of min-
imal social distancing (e.g., the distance of less than 1-meter radius between
persons can be considered as potential risk), which will greatly reduce the
rate of the virus spread. And finally, in order to refine the potential risk levels
of a person, it would be highly valuable to train our model to have a rough
estimation of the age of the person since elder people are persons with the
higher risk.
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