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Abstract

Recently, the demand for high-quality video content has rapidly been increas-
ing, led by the development of network technology and the growth in video
streaming platforms. In particular, displays with a high refresh rate, such as
120 Hz, have become popular. However, the visual quality is only enhanced
if the video stream is produced at the same high frame rate. For the high
quality, conventional videos with a low frame rate should be converted
into a high frame rate in real time. This paper introduces a bidirectional
intermediate flow estimation method for real-time video frame interpolation.
A bidirectional intermediate optical flow is directly estimated to predict an
accurate intermediate frame. For real-time processing, multiple frames are
interpolated with a single intermediate optical flow and parts of the network
are implemented in 16-bit floating-point precision. Perceptual loss is also
applied to improve the cognitive performance of the interpolated frames. The
experimental results showed a high prediction accuracy of 35.54 dB on the
Vimeo90K triplet benchmark dataset. The interpolation speed of 84 fps was
achieved for 480p resolution.

Keywords: Video frame interpolation, optical flow estimation, contextual
information, multiscale fusion.
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1 Introduction

As the influence of video streaming platforms has recently expanded, the
video streaming market is growing rapidly worldwide. This rapid growth of
the video streaming market has contributed to the demand for high-quality
video content. Demand for videos with a high frame rate has been increasing
significantly due to the spread of displays with a high refresh rate. Despite
this demand, as videos with a high frame rate can only be recorded using
expensive equipment, research on converting the existing videos with a low
refresh rate into a high refresh rate is actively underway.

Video frame interpolation (VFI) is a traditional temporal quality enhance-
ment technique that generates new frames between two frames using con-
secutive frames, a representative technique in slow-motion video generation.
Recently, as deep learning-based temporal quality improvement technology
has been researched, various benchmark datasets, such as Vimeo90K, Mid-
dlebury, and Adobe240fps, have been released in the VFI field, and various
algorithms have been proposed.

Sepconv [1] and Adaconv [2] are representative optical flow-based
algorithms, which predict convolutional kernels to interpolate intermedi-
ate frames. Guaranteeing real-time processing is a challenge because these
methods are designed based on the complex U-Net structure to calculate
the intermediate optical flow and transmit the contextual data of the previ-
ous convolutional layer. Real-time intermediate flow estimation (RIFE) for
VFI [3] has reduced computational complexity significantly by applying
a monodirectional intermediate optical flow prediction network. However,
the monodirectional intermediate optical flow prediction may have a dis-
advantage in that the prediction accuracy and inference performance are
degraded when interpolating more than one intermediate frame between two
consecutive frames.

This paper proposes a fast VFI method that predicts bidirectional inter-
mediate optical flow for accurate interpolation and includes strategies for
real time processing. The proposed method introduces three parts as follows.
First, it expands the monodirectional intermediate optical flow prediction of
RIFE to bidirectional prediction for high interpolation frame quality. The
intermediate optical flow estimation network is learned in both directions,
so it is possible to learn more elaborately than in one direction. Second,
it proposes a one-shot structure and a half-precision implementation for
fast inference. The runtime is significantly shortened by predicting mul-
tiple frames with one inference and implementing parts of network in a
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half-precision. Finally, it applies perceptual loss using the output of the
pretrained network feature map for the cognitive prediction accuracy.

2 Related Work

The VFI method has been extensively studied. In this section, the previously
proposed research on VFI are described. Early VFI algorithms used the
traditional block-level prediction method [4] due to operational limitations.
This method has limitations because it predicts the motion vector by dividing
the image into blocks.

In the early days when deep learning technology was proposed, kernel-
based algorithms were proposed instead of optical flow-based algorithms
[2, 5–8]. The motion of the object is not accurately predicted because the
occlusion is not considered. This method is relatively inaccurate because
the network does not predict the motion of an object and cannot handle the
occlusion of the background.

A method of predicting the optical flow and interpolated frames at
the pixel level is studied to improve accuracy. An additional structure is
proposed to directly predict the optical flow and handle occlusion using a
U-Net-shaped [9] network [5, 6, 10, 12]. This method can check the learning
progress of the optical flow [3]. Because the context information of the
previous layer is inherited, an optical flow with relatively high accuracy
can be obtained. However, the complexity is increased because numerous
convolutional layers must be stacked. As a result, it is difficult to achieve
real-time interpolation.

Quadratic Video Interpolaton (QVI) and Enhanced Quadratic Video Inter-
polation (EQVI) [13, 14] predicted the optical flow using a curve assuming
that the object does not move in a straight line. However, as the network
inputs four frames to predict the optical flow of curved objects, the network
cannot cope with using only two frames as input.

In addition, a simple and efficient method for predicting optical flow from
the U-Net structure has been proposed [3, 15]. The author of SoftSplat [15]
proposed a frame interpolation method using forward warping instead of
the existing backward warping. The performance does not decrease even if
multiple frames are interpolated simultaneously using the feature map of the
pyramid structure. Huang et al. proposed a method in that a simple optical
flow estimation network is directly learned with a semi-supervised learning.
It has a residual block [16, 17] and a coarse-to-fine structure. As a result,
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the inference network speed is increased, and the interpolation quality is also
improved.

Recently, a method of predicting the final intermediate frame directly
using the channel attention structure and Pixel-shuffle [2] without using the
optical flow directly was proposed [18]. Choi et al. demonstrated that the
attention structure can replace the optical flow network without using the
optical flow directly, and the interpolation performance is also sufficient
compared to other methods using the optical flow.

In addition, dataset acquisition method based on cycleGAN was proposed
to obtain more data in limited training datasets [19].

3 Proposed Architecture

The RIFE algorithm is assessed in Section 3.1. The enhanced bidirectional
intermediate optical flow to complement RIFE is proposed in Section 3.2.
The propose method to reduce the processing speed is introduced in Section
3.3. Finally, a strategy for learning the proposed network is addressed.

3.1 Reassessing Real-Time Intermediate Flow Estimation for
Video Frame Interpolation

(1) Indirect intermediate optical flow estimation

The main purpose of VFI is to generate intermediate frames at the position
of the time t ∈ [0, 1] between two consecutive frames I0 and I1 as input.
The traditional method is to find the bidirectional optical flow F0→1, F1→0

between I0 and I1 and then linearly combine them to produce an inter-
mediate optical flow Ft→0, Ft→1. Finally, the intermediate optical flow and
original videos I0 and I1 are used as input to the backward warping function
to generate the final intermediate frame It. This method has deteriorating
image quality by generating artifacts at the motion boundary when it gener-
ates an inaccurate intermediate optical flow. It is difficult to apply to real-time
applications because it passes through many convolutional layers. A network,
such as U-Net [9], which is efficient for capturing the context of input frames,
was used to create a bidirectional optical flow [10], but this is also difficult to
process in real time in a general environment.

(2) Direct intermediate optical flow estimation

The existing methods can predict bidirectional optical flow and obtain inter-
mediate optical flow. However, RIFE directly predicts the intermediate flow
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Figure 1 IFNet structure of RIFE, where K(K ∈ (4, 2, 1)) is the resizing variable for the
input frame and intermediate optical flow, I0 and I1 are converted from low to high resolution
according to K through a bilinear interpolation method, n denotes index of resized resolution
layer according to K, În represents the low-resolution image to be input to the intermediate
optical flow network, Fn is the coarse optical flow of the n-th resized resolution layer, and F ′

denotes the intermediate optical flow for final interpolation frame.

to reduce artifacts on the motion boundary and reduce computational com-
plexity. We proposed a coarse-to-fine network that considers the context of
the input frame using the residual block [16]:

Ft→0 = f(I0, I1), (1)

where f denotes the coarse-to-fine optical flow estimation network using the
residual block. For a simple structure, the intermediate optical flow in the
opposite direction was calculated as follows:

Ft→1 = −
1− t
t

Ft→0. (2)

In addition, the interpolation performance was improved by directly using
the optical flow ground truth FGT

t→0 and, FGT
t→1 predicted by the pretrained

optical flow network LiteFlowNet [11, 20]. However, because most objects
or backgrounds can have nonlinear motion, the prediction quality deteriorates
as the temporal interval between I0, I1 and It increases. When predicting
multiple frames within time t ∈ [0, 1], the computational complexity may
increase because RIFE has a recursive structure to be described in Section 3.3.
Therefore, we reduced this problem using the RIFE structure.

3.2 Enhanced Bidirectional Intermediate Optical Flow Prediction

The proposed method is based on Intermediate optical flow estimation net-
work (IFNet), an intermediate optical flow network of RIFE, and improves
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Figure 2 Details of the optical flow output of IFNet.

Figure 3 Visualized optical flow maps.

the interpolation accuracy through bidirectional intermediate optical flow
estimation. Figure 1 describes the network structure for intermediate optical
flow estimation. A residual block was used instead of the U-Net structure
for maintaining the context information of the previous layer, which was
primarily used for VFI optical flow estimation. In addition, by adopting a
coarse-to-fine structure to predict the intermediate optical flow, the optical
flow gradually improves to a higher resolution. The output of the last convo-
lutional layer was applied to Ft→0 and Ft→1 using the Pixel-shuffle method.
For fast optical flow estimation, instead of using two networks, the layer
output was doubled compared to RIFE as shown in Figure 2. This structure
has the advantage of more accurately predicting the intermediate optical flow
while minimizing the computational increase and providing more precise
supervised learning for the intermediate optical flow.

Figure 3 shows the visual comparison between the optical flow prediction
result of IFNet and RAFT [21], which exhibits the most improved optical
flow estimation score. As observed in Figure 3, the intermediate optical
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Table 1 Comparison on 16-bit floating-point precision
Method LiteFlowNet RAFT* RIFE Ours
Runtime 2× 137 ms 2× 122 ms 1× 122 ms 2× 72 ms
*Iterations are set to 20, using the normal size model.

flow result of the proposed method trained with Vimeo90K triplet dataset is
learned closer to RAFT than IFNet with RIFE. From the results, bidirectional
estimation is more suitable for expressing the flow of a curved object than
monodirectional estimation.

In Table 1, the results of the optical flow runtime of networks for one
interpolation are compared. The experiment was performed on Nvidia RTX
2080 TI using a 720p resolution image. The comparison results still have
a significantly shorter inference speed than other optical flow estimation
networks, and no significant difference in speed exists compared to IFNet
with RIFE.

3.3 Strategies to Improve the Intermediate Frame Inference Time

(1) Sixteen-bit floating-point operation for frame interpolation

Half-precision is an implementation technique to increase the inference speed
using the half-precision floating point (floating point 16 bit, FP16) instead of
a single floating-point 32 bit (FP32). In general, the FP16 precision is used
for mixed-precision training, which is a method to improve learning speed.
It can reduce interpolation speed and memory usage at a cost of inference
quality. Table 2 lists the results of FP32 precision and FP16 precision in the
Vimeo90K dataset. The Nvidia RTX series graphics card maximizes speed
improvement in FP16. Moreover, FP16 is the result of forcibly converting to
FP16 from the FP32 network without mixed-precision training. Although the
interpolation accuracy decreased, the inference speed is greatly improved.
From the above results, using FP16 precision in a limited environment, we
can access more real-time inference speed through the maximized inference
speed. Additionally, the result of training the FP16 network using mixed-
precision training indicates that more improved results can be expected with
relatively few resources.

(2) Multiple frame interpolation architecture without recursive structure

RIFE has the outline of network architecture like Figure 4. FusionNet
includes a context extractor network to which an intermediate optical flow
obtained by IFNet and warped frames are fed. The proposed method is based
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Figure 4 Outline of network architecture. Moc is occlusion map to fuse warped frames, Îr
denotes residual frame for the output frame refinement.

Figure 5 Multiple interpolations in the RIFE structure.

on the network architecture of RIFE. RIFE reuses the previously interpolated
frame and needs to produce each intermediate optical flow for multiple frame
interpolation using IFNet, which is noted as recursive structure, as illustrated
in Figure 5. For example, after interpolating the frame with t equal to 1/2,
the frames with t equal to 1/4 and 3/4 respectively are estimated using the
interpolated frame with t equal to 1/2. RIFE performs IFNet and FusionNet
multiple times, and it also has a delay waiting for interpolating the middle
frame. These works require a substantial execution time.
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Figure 6 Flowchart of the proposed method with one-shot structure.

To solve this problem, the propose method predicts an intermediate opti-
cal flow using IFNet only once and obtains each optical flow for the multiple
frame interpolation by a simple calculation with the intermediate optical flow,
which is noted as one-shot structure as shown in Figure 6.

[Ft→0, Ft→1] = NF (I0, I1), (3)

where NF denotes intermediate optical flow estimation network like IFNet.
With I0 and I1, the intermediate optical flow estimation network obtainsFt→0

and Ft→1 simultaneously. These Ft→0 and Ft→1 result in the bidirectional
intermediate optical flow. When interpolating M frames, tm ∈ [0, 1] denotes
time of them-th frame to be interpolated. Using the bidirectional intermediate
optical flow and tm, warped frames Itm→0 and Itm→1 are generated. Note
that the same bidirectional intermediate optical flow is used for interpolating
multiple frames, which solves the problem described above. With the warped
frames and the bidirectional intermediate optical flow, FusionNet makes
occlusion map and residual frame. The occlusion map represents occlusion of
objects and the residual frame is used for the output frame refinement. Finally,
interpolated frame is achieved with the occlusion map and the residual frame.

3.4 Proposed Training Loss Function

Given consecutive input frames I0 and I1 and the intermediate frame between
consecutive frames, where t = 1/2, the proposed overall loss function
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consists of four loss functions:

L = λrLr + λfLf + λcLc + λpLp. (4)

(1) Reconstruction loss

The reconstruction loss, Lr, evaluates the reconstruction quality of the
interpolated frame:

Lr = ‖It − IGT
t ‖1. (5)

Lr is a loss function commonly used when evaluating a VFI network, and
the final interpolated frame is compared with the original pixel by pixel. In
this paper, λf was set to 1.

(2) Optical flow loss

The optical flow loss, Lf , evaluates the intermediate optical flow:

Lf = ‖F T
t→0 − FS

t→0‖1 − ‖F
T
t→1 − FS

t→1‖1, (6)

where F T is an optical flow map from a well-trained optical flow estimation
network. RAFT [2] is used as a well-trained optical flow network. FS is the
estimated intermediate optical flow map used for frame interpolation. Lf is
a way of knowledge distillation. If a relatively tiny intermediate optical flow
network is learned by imitating a well-trained network, the tiny intermediate
optical flow network has performance similar to that of the well-trained
network with a small number of resources. λf is set to 0.01.

(3) Census loss

The census loss, Lc, is used to evaluate the illumination changes in the optical
flow estimation network [3, 22] and to maintain the brightness constancy. The
variable λc is set to 0.01.

(4) Perceptual loss

The perceptual loss, Lp, is a loss function for optimizing inference for learn-
ing through high-level features extracted from a pretrained network [10, 23]:

Lp = ‖φVGG(IGT )− φVGG(It)‖2, (7)

where φ denotes the part of the pretrained VGG-16 network trained for the
ImageNet dataset. Lp can suppress the blurring that is likely to occur when
utilizing the reconstruction loss. Thus, the detail of the predicted image is
preserved and a sharper result is obtained. The variable λp is set to 0.005.
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4 Experiments

4.1 Training Dataset and Benchmark Configuration

(1) Training Datasets

Previous studies on VFI [2, 6–8, 24] have adopted various training datasets.
Among them, we trained the proposed network with the Vimeo90K triplet
dataset, which is divided into training and testing sets. The Vimeo90K
triplet dataset has 55,094 triplets of 448 × 256 images, of which 51,312
triplets were used for training. For network learning of the intermediate
optical flow network, the optical flow dataset of the Vimeo90K triplet dataset
was newly constructed using RAFT, an optical flow estimation network.
The data augmentation technique used in [3] and the results of double-
folding the Vimeo90K triplet dataset image size using bilinear interpola-
tion were used to improve the learning of the intermediate optical flow
network.

(2) Benchmark Dataset

The proposed method is evaluated with benchmark datasets like Middlebury,
UCF101, Vimeo90K triplet, and Vimeo90K septuplet. UCF101 has been used
commonly for VFI. This dataset consists of 256 × 256 resolution sequences.
The Middlebury optical flow benchmark dataset has the motion of various
objects and consists of various resolution sequences smaller than or equal to
720p. In the Vimeo90K triplet, there are 3,782 triplet sets with 448 × 256
resolution. The Vimeo90K septuplet was used in Section 3.3 to evaluate how
to interpolate multiple frames with the one-shot structure, which has 7,824
sets consisting of 448 × 256 resolution sequences.

4.2 Comparisons with the State of the Art

We evaluated the inference speed and interpolation quality on various bench-
mark datasets in Table 2 and Figure 7. The methods listed below are typical
networks used in VFI. The proposed methods have several network param-
eters but have faster interpolation speed than any of the listed methods. In
addition, when loading a model to interpolate 720p resolution, only 2.2 giga-
bytes of graphics processing unit (GPU) memory are used, so the method has
the advantage of running on a GPU with a small amount of memory. The
overall interpolation quality exhibits higher performance than other proposed
methods, and the quality performance is maintained even when the half-
precision is applied. In addition, considering that the proposed method has
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Figure 7 Visual comparisons with multiple frames between ours (first and third rows) and
RIFE (second and forth rows) on the Vimeo90K triplet dataset.

higher accuracy than the RIFE learns under the same conditions, the predicted
intermediate bidirectional optical flow is more accurately learned than the
monodirectional flow.

4.3 Reduction of Inference Time

The half-precision implementation and one-shot structure to reduce inference
time are analyzed. They can be applied independently without changing the
network structure.

(1) Half-precision implementation

Table 2 presents the results of the half-precision implementation that cuts
out lower 16 bits of the learned weight nodes in the Nvidia RTX 2080 TI.
The FP16 precision results in a 21% faster speed than the FP32 precision,
whereas the quality is slightly degraded in the peak signal-to-noise ratio
(PSNR) by 0.04 dB on the Vimeo90K triplet dataset. For 480p sequence,
the inference time of the proposed method with FP16 implementation is 11.9
ms and it is equal to 84 fps. This result indicates that the lower 16 bits of the
32 bits of the learned weight node do not significantly affect the interpolation
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Table 2 Performance comparison on the UCF101, Vimeo90K triplet, and Middlebury
datasets. Inference times are measured on RTX 2080 TI for 480p resolution

Inference Parameters Vimeo90K triplet Middlebury UCF101
Method Time (ms) (Million) PSNR SSIM IE PSNR SSIM
Super-SloMo 34.1 19.8 33.15 0.966 2.28 34.75 0.968
SepConv 33.5 21.6 33.79 0.970 2.27 34.78 0.976
TOFlow 58.4 1.1 33.73 0.968 2.15 34.58 0.976
MEMC-Net 79.5 70.3 34.40 0.970 2.12 35.01 0.968
DAIN 82.1 24 34.71 0.976 2.04 35.00 0.968
CAIN 21.0 42.8 34.65 0.973 2.28 34.91 0.969
BMBC 505.9 11 35.01 0.976 2.04 35.15 0.969
RIFE 13.8 10.4 35.51 0.978 2.06 35.10 0.965
Ours (FP16) 11.9 14 35.54 0.978 2.09 35.11 0.966
Ours (FP32) 14.4 14 35.58 0.978 2.09 35.14 0.969

Table 3 Comparison of the one-shot structure
Inference Time Vimeo90K septuplet
(Three-Frame PSNR SSIM

Method Interpolation) I1/4 I2/4 I3/4 I1/4 I2/4 I3/4
FP32 43.2 30.63 29.17 30.63 0.910 0.889 0.910
FP16 35.7 30.62 29.17 30.62 0.909 0.889 0.910
FP32 + one-shot 28.3 29.42 29.17 29.36 0.902 0.889 0.902
FP16 + one-shot 23.4 29.42 29.17 29.35 0.902 0.889 0.902

quality and the proposed method can improve the inference speed
significantly.

(2) One-shot structure

Table 3 lists the results of applying the one-shot structure along with
the half-precision implementation on the Vimeo90K septuplet dataset. The
experimental results were taken from the first and fifth frames in the septuplet
dataset as input (I0, I1), and three frames of consecutive time (I1/4, I2/4, I3/4)
were interpolated and compared with the ground truth. As a result of the
experiment, the interpolation quality decreased by about 0.8 dB on average
compared to the recursive structure like RIFE, but the speed was reduced by
up to 52.6%. This result reveals that the proposed one-shot structure reduces
the computational complexity at a slight cost of the interpolation quality. As
a result, the inference works in real time through the trade-off of the speed
and interpolation quality.
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Table 4 Quality comparison of various loss functions
Vimeo90K triplet

Combination of Loss Functions PSNR SSIM
Lr + Lc 35.22 0.976
Lr + Lc + Lf 35.53 0.978
Lr + Lc + Lf + Lp 35.58 0.978

Table 5 Quality comparison of the IFNet convolutional depth
Vimeo90K triplet

Depth Parameters (Million) Inference Time PSNR SSIM
×1 10.4 13.8 35.52 0.978
×1.25 14.0 14.4 35.58 0.978
×1.5 18.3 16.3 35.57 0.978

4.4 Ablation Study

We changed the network hyperparameters and analyzed the parameters that
derive the optimal inference results. These experiments were trained [25–29]
and evaluated on the Vimeo90K triplet dataset.

Table 4 is the result of comparing the quality when each loss function was
applied. For comparison, the perceptual loss Lp and optical flow loss Lf were
applied and compared, based on the model trained by applying only the loss
functions Lr and Lc. As a result, when the optical flow was directly learned,
a large quality improvement of 0.31 dB occurred, and the perceptual loss also
affected the performance improvement.

Table 5 is the result according to the number of output channels of the
convolutional layer included in IFNet, an intermediate optical flow estimation
network. The number of initial channels is from RIFE. The results reveal that
increasing the depth improves the interpolation quality, but increasing the
depth over a certain level has no effect. The depth with optimal interpolation
quality was selected through a trade-off of about 5% interpolation speed.

Finally, Table 6 presents the results of the quality comparison according
to the ground truth and interpolation method used for learning the optical
flow network. Moreover, F×n is the result of learning with the optical flow
prediction output bilinearly interpolated at n times the size of the frame for
training for the Lf loss function and is used when interpolating the optical
flow for a coarse-to-fine structure. Thus, when learning by increasing the
optical flow, a more sophisticated optical flow and enhanced results were
obtained. The result of interpolation using pixel-area relation was higher than
the result of down-sampling using simple bilinear interpolation, confirming
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Table 6 Quality comparison of combination of two methods, the former is a ground truth
generation method of optical flow and the latter is a down-sampling method

Vimeo90K triplet
Method PSNR SSIM
F×1+ bilinear 35.44 0.977
F×2+ bilinear 35.55 0.978
F×1+ area 35.45 0.977
F×2+ area 35.58 0.978

high results. In general, the pixel-area relation best preserves the quality when
resizing at a lower resolution [30], and it has been confirmed that it is also
applied to the optical flow.

5 Conclusion

This paper proposes a fast VFI method. It improves interpolation frame
quality by replacing monodirectional optical flow prediction of RIFE with
the bidirectional optical flow prediction, and it reduces runtime using the
one-shot structure and the half-precision implementation. The cognitive pre-
diction accuracy is more improved by applying the perceptual loss function.
The experimental results showed the high interpolation quality of 35.54 dB on
the datasets Vimeo90K and the real-time speed of 84 fps for 480p resolution.
If optical flow is estimated more precisely, the interpolation quality can
increase. Therefore, optical flow prediction network like IFNet needs to be
researched further.
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