
An Efficient Method for Automatic
Antipatterns Detection of REST

Web Services

Sobhan Mohammadnia, Rasool Esmaeilyfard∗ and Reza Akbari

Department of Computer Engineering and Information Technology, Shiraz
University of Technology, Shiraz, Iran
E-mail: esmaeily@sutech.ac.ir
∗Corresponding Author

Received 21 April 2021; Accepted 17 July 2021;
Publication 21 September 2021

Abstract

REST Web Services is a lightweight, maintainable, and scalable service
accelerating client application development. The antipatterns of these ser-
vices are inadequate and counter-productive design solutions. They have
caused many qualitative problems in the maintenance and evolution of REST
web services. This paper proposes an automated approach toward antipattern
detection of the REST web services using Genetic Programming (GP). Three
sets of generic, REST-specific and code-level metrics are considered. Twelve
types of antipatterns are examined. The results are compared with the man-
ual rule-based approach. The statistical analysis indicates that the proposed
method has an average precision and recall scores of 98% (95% CI, 92.8%
to 100%) and 82% (95% CI, 79.3% to 84.7%) and effectively detects REST
antipatterns.

Keywords: REST, web services, anti-patterns detection, service-oriented
architecture (SOA), quality of service (QoS).

Journal of Web Engineering, Vol. 20 6, 1761–1780.
doi: 10.13052/jwe1540-9589.2063
© 2021 River Publishers

1762 S. Mohammadnia et al.

1 Introduction

Service-Oriented Architecture (SOA) has been presented as a paradigmatic
shift for designing flexible and distributed software solutions [1]. A service-
oriented architecture is mainly implemented using web service technologies
based on two well-known standards, so-called REST and SOAP. REST is
a simpler and more efficient technology than the SOAP web services [2].
RESTful services have attracted more attention over the last decade.

However, the RESTful service design is influenced by the environment,
context and designer’s decisions. It may not consider qualitative principles.
Koenig [3], for the first time, documented these common and repeated
mistakes under the name of antipatterns.

For example, breaking self-descriptiveness is an instance of REST
antipattern where developers tend to ignore the standardized headers, for-
mats, or protocols and use their customized ones. This antipattern limits
the reusability and adaptability of REST resources. Ignoring MIME types
is another antipattern that developers tend to have a single representation of
resources such as XML and JSON. This antipattern limits service accessibil-
ity and reusability in diverse languages. Some of the antipatterns are also
related to both primary web service technologies, i.e., REST and SOAP.
Chatty service is an instance of these antipatterns in which a large number
of simple operators are required to complete an activity. The list of REST
antipatterns is presented by Palma, et al. [4].

Automatic detection of these antipatterns can help service designers to
make the best choice. However, recent studies on this issue are dependent on
implementation technologies, mainly SOAP [5]. They cannot be generalized
to RESTful services [6]. In short, extracting metrics in SOAP web services
is based on their standard interface (WSDL). SOAP is operations-centric,
whereas REST is resource-centric and is based on web standards. RESTful
web services are on top of JSON or XML over HTTP, whereas SOAP Web
services are on top of SOAP over HTTP. Therefore, SOAP methods cannot be
used to identify REST-specific anti-patterns. Despite the fruitful application
of REST services, no automated approach has been proposed to detect REST-
Specific antipattern.

This paper presents an automated approach to identify REST antipatterns.
The proposed approach is based on Genetic Programming (GP) that detects
both REST-specific and generic SOA antipatterns. This approach is a search-
based method that automatically generates detection rules based on real
REST antipatterns. The approach specified generic, REST-specific metrics

An Efficient Method for Automatic Antipatterns Detection of REST Web Services 1763

and code-level metrics for this purpose. The main issue is to find the best
metrics and their appropriate threshold values for detecting the antipatterns.
Accordingly, antipattern detection is described as an optimization problem.
This problem finds the best combinations of metrics and their appropriate
threshold value among REST metrics and antipattern types. The experimental
results show the effectiveness and accuracy of this approach.

The main contributions of this paper are:

• Automatic antipatterns detection of RESTful services. To the best of our
knowledge, the proposed approach is one of the first attempts to detect
such antipatterns in RESTful services.

• The structural characteristics of REST API are described based on
Swagger documents to derive the anti-patterns metrics. For this purpose,
a dataset has been collected from REST web services and Swagger
documents.

• Both SOA and REST-specific anti-patterns are considered. Previous
works used a rule-based approach that was manual and only considered
REST-specific anti-patterns.

The remainder of the paper is organized as follows. The related work
is presented in Section 2. In the third section, the genetic programming
approach is proposed to detect REST antipatterns. The evaluation and exper-
imental results are presented in Section 4, and finally, the conclusion is
presented in Section 5.

2 Related Work

The initial studies on web services antipatterns focused on providing prac-
tical guidelines and best practices for web services—for example, Král and
Zemlicka [7, 8] and Tripathi, et al. [9] introduced some service antipatterns
and their symptoms. Mateos, et al. [10] considered refactoring as a practical
approach to design better API. Rodriguez, et al. [11] and [12] presented
a set of guidelines and best practices for developing the service-oriented
application. Torkamani and Bagheri [13] proposed a checklist of forty-five
antipatterns to identify web services’ antipatterns. Zheng and Krause [14]
introduced a new web service interaction antipatterns. However, these studies
do not consider systematic approaches toward antipattern detection.

The recent studies on antipattern detection in web services considered
systematic or automatic solutions. These studies were mainly dependent
on implementation technologies such as SOAP antipattern. Due to SOAP’s

1764 S. Mohammadnia et al.

more extended history, this technology has received the most attention.
For example, Palma, et al. [4] and [6] developed a rule-based approach
called SODA-W. In this approach, service antipatterns’ characteristics are
determined using a Domain Specific Language (DSL). They described the
properties of antipatterns using a set of WSDL interface metrics. Also, Ouni
et al. presented a series of studies to detect SOAP antipatterns automatically.
These studies include various optimization techniques such as multi-objective
approaches as well as evolutionary algorithms. Ouni, et al. [15] presented a
search-based approach using GA to detect web service antipattern. Then he
extended his work in [16] and presented it as an automatic approach using
the PEA algorithm to detect SOAP antipattern. In the following, they also
considered antipattern detection as a bi-level optimization problem [17] and
a hybrid approach to improve the design quality of Web service interfaces
as a combination of both deterministic and heuristic-based approaches [18].
Wang, et al. [19] proposed a multi-objective approach using NSGA II to
detect web service defects. In addition to interface/code-level metrics, they
added QoS metrics in their method. Saluja and Batra [20] also proposed an
approach using optimized algorithms.

On the other hand, the REST antipatterns studies were limited; most of
them, such as Tilkov [21], Pautasso [22] and Fredrich [23] considered a high-
level view of this technology antipatterns and provided the best practices for
developers. Rodriguez, et al. [24] were detected antipatterns by analyzing
REST APIs HTTP request compliance with theoretical web engineering prin-
ciples. Recently, Palma, et al. [4] and [6] presented manual rules for REST
antipattern detection in his approach SODA-R. Alshraiedeh and Katuk [25]
proposed a technique and an algorithm for detecting anti-patterns in RESTful
Web services. based on the URIs parsing process. But their focus has been on
the URL in particular and many quality metrics have not been considered.

A new set of studies has addressed the issue of predicting antipatterns
in the early stages of development or improving the antipattern dataset. For
example, Abid, et al. [26] considered the hypothesis that the quality of the
source code and interface design can be used as indicators to predict the
quality of service attributes of SOAP services without deploying the services.
Rebai, et al. [27] designed a bi-level multi-objective optimization approach to
enable the generation of antipattern examples that can improve the efficiency
of detection rules on SOAP services.

Table 1 highlights a comparison of antipattern types and the detection
technique of these studies. These studies are either manual and time-
consuming or due to SOAP-specific metrics. These implementations could

An Efficient Method for Automatic Antipatterns Detection of REST Web Services 1765

Table 1 Taxonomy of related work

Contributions Types of Anti-patterns Detection Techniques Technology

Král and
Zemlicka [7]
Král and
Žemlicka [8]

Design-related anti-patterns ,
SOA anti-patterns

n/a SOAP

Tripathi, et al.
[9]

Design-related anti-patterns,
SOA anti-patterns

n/a SOAP

Torkamani and
Bagheri [13]

Design-related anti-patterns,
SOA anti-patterns

n/a SOAP

Zheng and
Krause [14]

Interaction-related
anti-patterns

n/a SOAP

Rodriguez, et al.
[28]

Service discoverability
anti-patterns

Information retrieval SOAP

Mateos, et al.
[10]

WSDL writing anti-patterns Information retrieval SOAP

Rodriguez, et al.
[12]

WSDL writing anti-patterns Rule-based technique SOAP

Moha, et al. [29] Service design and
documentation

Rule cards, MDE SOAP

Ouni, et al. [16] Service design Rule-based,
evolutionary, GA

SOAP

Wang, et al. [17] Service design Bi-level optimization,
rule-based,

SOAP

Ouni, et al. [18] Service design deterministic and
heuristic-based
approaches

SOAP

Ouni, et al. [15] Service design GA, rule-based SOAP

Palma, et al. [6] Syntactic design of
requests/responses

Heuristics-based SOAP

Saluja and Batra
[20]

Service design Optimized Algorithms SOAP

Rodriguez, et al.
[24]

HTTP requests Heuristics-based REST

Palma, et al. [4] Service design and
documentation and syntactic
design of requests/responses

Rule cards,
heuristics-based

REST

Alshraiedeh and
Katuk [25]

URL Anti-patterns Design science
research process

REST

(Continued)

1766 S. Mohammadnia et al.

Table 1 Continued

Contributions Types of Anti-patterns Detection Techniques Technology

Abid, et al. [26] Source code and interface
design

Hypothesis testing SOAP

Rebai, et al. [27] Structural and performance
metrics

Bi-level
multi-objective
optimization

SOAP

not be generalized to RESTful services [4]. Therefore, an automatic approach
toward REST antipattern detection is considered using GP.

3 The Proposed Method

In this section, the proposed approach for REST antipatterns detection is
described. Figure 1 shows the schematic diagram of this method. Briefly,

Figure 1 Schematic diagram of the proposed method.

An Efficient Method for Automatic Antipatterns Detection of REST Web Services 1767

Figure 2 An instance of tiny service antipattern in swagger.

first, a dataset of REST services is gathered. Then swagger1 is used to
derive a set of REST metrics and their thresholds. Swagger is one of the
RESTful API description languages for automated documentation, code gen-
eration, and test-case generation. The REST-related metrics was extracted
from [16, 19, 30] and [4]. Then, random antipattern rules are generated for
each type of antipattern using GP. These rules were used among the specified
set of metrics and thresholds. As a result, the best rules find the highest
number of antipatterns types over the dataset.

3.1 REST Services Dataset

A dataset of REST services is collected from various domains to prevent
bias in results. The swagger API description was prepared for this dataset.
The antipattern metrics are manually inspected over this dataset to determine
the dataset of antipatterns. Figure 2 shows a REST service described in the
swagger format and contains a tiny service antipattern. Tiny service is an
antipattern that occurs in a service that comprises of few methods. Such

1swagger.io

1768 S. Mohammadnia et al.

services depend on other services to complete their functions and cannot
work in isolation. This antipattern is the root cause of the failure of many
service-oriented systems.

3.2 Swagger Metrics Extraction

In this work, three sets of metrics are considered for antipattern detection.
The specification of the metrics is given below:

General interface-level metrics: These metrics exist in the web service
interface (Table 2). In this study, the swagger interface is used to derive these
metrics. These metrics (NMD-RPT) are derived from [4, 16].

REST-Specific metrics: These metrics are specific to the REST request and
response headers (Table 3). Twelve metrics are used specifically for the REST
architecture (AC-VRU). The first nine ones are defined in the literature [4].
The remaining three metrics are derived from the REST request and response
header.

Code-level metrics: Code-level metrics are based on Chidamber and
Kemerer Metrics [31]. These metrics are well-known object-oriented metrics
(Table 4) used to evaluate service design quality [31]. To extract these met-
rics, the swagger interface is used to generate their java code structure using
swagger-codejen. Then ckjm tool2 is used to extract the metrics. As a result,
code-level metrics are successfully extracted without access to the source

Table 2 General interface-level metrics

Metric Description

NMD Number of methods declared

NPH Number of paths

NMPH The average number of methods in paths

NPM Number of parameters in methods

NCTP Number of complex type parameters

COUP Coupling

COH Cohesion

NST Number of primitive types

NOP Number of parameters

RPT The ratio of primitive types overall defined types

2www.spinellis.gr/sw/ckjm

An Efficient Method for Automatic Antipatterns Detection of REST Web Services 1769

Table 3 REST-Specific metrics

Metric Description

AC Authentication Cookie

AK Action Keywords

CC Client Cookie

CCV Client Caching Value

ET Entity Tag

HL Header Link

HM Http Method

LF Location Field

RRF Resource Representation Format

SC Server Cookie

SCV Server Caching Value

TLB Total Links in response Body

VRB Verbs in Request Body

VRU Verbs in Request URI

code of these services, while their documentation was the only available
resources. For all code-level metrics, the average value for all classes of the
service was considered.

3.3 Adaptation of GP

In this section, the adaptation of the GP for antipattern detection is described.
GP optimizes problems where the final solution may have a dynamic size.
First, in the presented solution, the candidate solutions are modelled as a tree.
Then, the anti-pattern detection is defined as an optimization problem using
a fitness (objective) function.

Solution Representation: The key idea in adapting GP to the problem of
antipattern detection is to provide candidate solutions and matching them
to the dataset. Candidate solutions for this problem are rules that identify
antipatterns. The solution to creating these anti-pattern detection rules is to
consider the following structure:

if a logical combination of metrics and their permissible range is established,
then an anti-pattern is identified.

To create this logical structure, a combination of criteria is used as a tree.
This tree is shown in Figure 3. In this tree, the leaves represent the criteria

1770 S. Mohammadnia et al.

Table 4 Code-level metrics

Metric Description

WMC Weighted methods per class

(NOM: Number of Methods in the QMOOD metric suite)

DIT Depth of Inheritance Tree

NOC Number of Children

CBO Coupling between object classes

RFC Response for a Class

LCOM Lack of cohesion in methods

Ca Afferent coupling (not a C&K metric)

Ce Efferent coupling (not a C&K metric)

NPM Number of Public Methods for a class

(not a C&K metric; CIS: Class Interface Size in the QMOOD metric suite)

LCOM3 Lack of cohesion in methods Henderson-Sellers version

LCO Lines of Code (not a C&K metric)

DAM Data Access Metric (QMOOD metric suite)

MOA The measure of Aggregation (QMOOD metric suite)

MFA A measure of Functional Abstraction (QMOOD metric suite)

CAM Cohesion Among Methods of Class (QMOOD metric suite)

IC Inheritance Coupling (quality-oriented extension to C&K metric suite)

CBM Coupling Between Methods (quality-oriented extension to C&K metric suite)

AMC Average Method Complexity (quality-oriented extension to C&K metric suite)

(The metrics described in Tables 2–4) and logical rules (OR, AND) were
used to combine these criteria in the internal nodes of the tree. Finally, this
tree represented a candidate solution for use in the GP. Algorithm 1 describes
a high-level overview of the detection algorithm. This algorithm follows the
general structure of GP. However, in the first part, the described solution
is used to create candidate rules (RandomlyGeneratedRules procedure) and
then by extracting metrics from the dataset, the generated rules are matched
with these candidate solutions (RuleMatchingWithDataset procedure)

Input and Output: GP takes the mentioned metrics and antipattern dataset
as the input and provides a set of detection rules as an optimal solution. These
rules are used to detect antipatterns.

Initialization: In the first steps of this algorithm (line 2), the initial population
of detection rules is randomly constructed in a tree structure as described

An Efficient Method for Automatic Antipatterns Detection of REST Web Services 1771

earlier. Each node of the solution has two parts: the metric and the value. The
value is assigned to the metric in a specified interval according to the metric
type in the initiation.

Algorithm 1 Pseudo Code of Anti-Pattern Detection
Input: M: A set of REST-related quality metrics

D: A dataset of REST antipatterns
Output: R: Best rules for REST antipatterns detection
1: procedure Anti-patternDetection
2: R = RandomlyGeneratedRules(M)
3: while iteration < MaxOfIteration do
4: for j = 1 to NumberOfCombinations do
5: Select rule1, rule2 from R
6: Co = CrossOver(rule1, rule2)
7: RuleMatchingWithDataset(Co, D)
8: Stack.Push(Co)
9: end for
10: for j = 1 to NumberOfMutation do
11: Select rule from R
12: Mu = Mutation(rule)
13: RuleMatchingWithDataset(Mu, D)
14: Stack.Push(Mu)
15: end for
16: R.Merge(Stack)
17: R.Sort()
18: R = R.Pop(NumberOfPopulation)
19: iteration = iteration + 1
20: end while
21: end procedure

Figure 3 An instance of the antipattern rule tree.

1772 S. Mohammadnia et al.

Update: After initialization, the body of the algorithm starts. The main
loops of GP, including crossover and mutation, are performed in lines 3–
15. The crossover and mutation operators are used to generate new solutions.
The crossover operator was random and single-point. In other words, two
candidate solutions are selected, and a subtree is picked on each one. Then,
the nodes and their subtrees are swapped from one parent to the other one.
The mutation operator is applied to all nodes, including leaf nodes (metrics)
and internal nodes (operators). If the selected node is a leaf node, it is replaced
by another leaf node. The same is done for internal nodes, and a new internal
node replaces the internal nodes.

Accordingly, the search space is explored, and new rules are generated
by combining metrics. These rules evaluate the testing antipatterns itera-
tively using the following fitness function. This function aims to cover the
maximum number of initial antipatterns samples:

Fitness =
1

2

(∑n
i=1CDi

InitialAntipatterns
+

∑n
i=1CDi

DetectedAntipatterns

)
ε[0, 1] (1)

where InitialAntipatterns is the number of antipatterns in the REST services
dataset, DetectedAntipatterns is the number of detected antipatterns. If the
i-th detected service exists in the dataset with the same antipattern type, then
CDi is 1 and 0 otherwise.

This fitness function (RuleMatchingWithDataset function) assesses the
quality of each candidate’s rules for detection. This assessment compares the
detected antipatterns with the predetermined list of antipatterns in the dataset.
This comparison takes into account the deviation from the generated rules.
The best detection rules are saved (line 8, 14) and merged into the initial
population (line 16). Subsequently, this population is sorted based on the cost
of each member. Finally, a new population is selected for the next iteration
(line 18).

Termination: The algorithm terminates after the maximum number of itera-
tions and returns the best set of antipatterns detection rules. These rules can
be used to detect potential antipatterns on any new REST web service.

4 Performance Evaluation

The empirical study to evaluate the performance of the proposed method is
presented in this section. Precision and recall are used to assess the quality
of the proposed method. These metrics are widely recognized as reasonable

An Efficient Method for Automatic Antipatterns Detection of REST Web Services 1773

proxies for the quality of antipattern detection solutions [4, 16]. The precision
specifies the fraction of true antipatterns detected to the total number of
detected antipatterns. At the same time, recall indicates the fraction of true
antipatterns detected to the total number of existing antipatterns. To evaluate
the automatic approach, an application using .NET/C#3 was developed.

First, this section looks at how the automatic method is compared to
manual methods. This section examined to what extent the proposed method
can efficiently detect REST antipatterns. Hence, the precision and recall of
antipatterns detection in REST services were considered. Second, this section
looks for whether there is a bias towards the detection of any specific antipat-
tern types. Therefore, the precision and recall of antipatterns detection are
considered in different service categories and different types of antipatterns.

4.1 Dataset Preparation

A dataset of 35 REST services was collected from different web ser-
vice search engines, including ServiceXplorer,4 ProgrammableWeb.com,
AnyApi.5 Some of the services in the dataset and inspected antipatterns are
summarized in Table 5.

4.2 Experimental Settings

The population size of GP was set to 100 with 1000 generations. The initial
population was generated randomly. The crossover rate was set to 0.9, and

Table 5 A Sample of the dataset

Category REST Services Type of Anti-patterns

Travel AviationData.Systems Airports API Multi-Service

Sport Baseball History API Multi-Service

Sport cbb-v3-stats Multi-Service

Energy Rebate Bus Multi-Service

Mobile 1LINK.IO API Tiny Service

API APIs.guru Tiny Service

Music VocaDB Multi-Service

Drugs OtreebaOpenCannabis Multi-Service

Sport CFBv3Odds Tiny Service

3https://visualstudio.microsoft.com/vs/features/net-development/
4eil.cs.txstate.edu/ServiceXplorer
5https://any-api.com/

https://visualstudio.microsoft.com/vs/features/net-development/
https://any-api.com/

1774 S. Mohammadnia et al.

the mutation probability was set to 0.4. The reported results of this algorithm
were the median of 40 runs. These parameter values are specified empirically
using the recommended methods in the literature [16].

4.3 Experimental Design and Results

The results are compared with the SODA-R approach [4] as a manual
approach. Twelve antipatterns mentioned by SODA-R, including Chatty Ser-
vice (CS), Multi-Service (MS), Tiny Service (TS), and Data Service (DS),
Breaking Self-descriptiveness (BSD), Forgetting Hypermedia (FH), Ignoring
Caching (IC), Ignoring MIME (IM), Ignoring Code Status (ICS), Tunneling
Everything through POST (TEP), Tunneling Everything through GET (TEG),
Misusing Cookies (MC) was considered.

The bootstrapping method was also used for both the SODA-R and the
proposed approach results to estimate the average and standard deviation of
their sampling distribution. Thousand bootstrap simulations were performed
with a 95% confidence interval.

The results of each of the approaches are presented in Figure 4. Interest-
ingly, this study discovered that the automatic approach detects antipatterns
with an average precision and recall scores of 98% (95% CI, 92.8% to 100%)
and 82% (95% CI, 79.3% to 84.7%). The obtained results were also compared
using the Mann-Whitney test to detect significant differences. α was set at
0.05 to analyze the results statistically. The effect size was evaluated using
Cohen’s d statistic. The effect size is considered as follows: (1) small if
0.2 = d = 0.5 (2) medium if between 0.5 = d < 0.8 or (3) high if
d ≥ 0.8. The results reveal that the precision in GP differs significantly from

Figure 4 The precision and recall of manual vs automatic approach.

An Efficient Method for Automatic Antipatterns Detection of REST Web Services 1775

Figure 5 Detection results for common service antipattern types.

Figure 6 Detection results for REST-Specific antipattern types.

the SODA-R (p < 0.05 and d = 0.5 – Medium). The recall also differs
significantly from SODA-R (p < 0.05 and d = 0.55 – Medium).

The detection results for each antipattern type for common service anti-
patterns and REST-specific antipattern are depicted in Figures 5 and 6.
The most promising results are shown in Tiny Service (TS) and Tunneling
Everything through POST (TEP). These results indicate that the approach
does not have a bias toward a specific type.

The scalability of the proposed method has been also evaluated by varying
the population size in the GP from 50 to 550 and the items that may appear in
the dataset from 5 to 35. Figure 7 reports the average execution time to per-
form the anti-pattern detection algorithm. The graphs show these execution
times are fitted to a cubic function.

1776 S. Mohammadnia et al.

Figure 7 Detection results for REST-Specific antipattern types.

5 Conclusions

The existing manual approach for REST antipattern detection is based on
the definition of detection rules. These rules largely depend on the designer’s
knowledge and expertise. In other words, if the designer does not have enough
expertise, the defined rules may not be comprehensive and complete.

In this paper, an automated approach is introduced for antipatterns detec-
tion of RESTful services. In the proposed approach, the detection rules
were generated in an optimization process and automatically combined with
the metric/value threshold. Statistical analysis of the results reveals that the
proposed approach has a promising average precision and recall scores of
98% (95% CI, 92.8% to 100%) and 82% (95% CI, 79.3% to 84.7%). The
results indicated that the proposed approach performs better than the manual
approach and there is a significant difference compared to this method.

References

[1] N. Niknejad, W. Ismail, I. Ghani, B. Nazari, M. Bahari, and A. R.
B. C. Hussin, ‘Understanding Service-Oriented Architecture (SOA): A
systematic literature review and directions for further investigation,”
Information Systems, vol. 91, p. 101491, 2020/07/01/2020, doi: https:
//doi.org/10.1016/j.is.2020.101491.

[2] A. Huf and F. Siqueira, “Composition of heterogeneous web services:
A systematic review,” J. Netw. Comput. Appl., Review vol. 143, pp. 89–
110, Oct 2019, doi: 10.1016/j.jnca.2019.06.008.

https://doi.org/10.1016/j.is.2020.101491
https://doi.org/10.1016/j.is.2020.101491

An Efficient Method for Automatic Antipatterns Detection of REST Web Services 1777

[3] A. Koenig, “Patterns and antipatterns,” The patterns handbook: tech-
niques, strategies, and applications, vol. 13, p. 383, 1998.

[4] F. Palma, N. Moha, Y. Gu, x00E, x00E, and neuc, “UniDoSA:
The Unified Specification and Detection of Service Antipatterns,”
IEEE Transactions on Software Engineering, pp. 1–1, 2018, doi:
10.1109/TSE.2018.2819180.

[5] J. M. Roriguez, C. Mateos, and A. Zunino, “Assisting Developers
to Build High-quality Code-first Web Service APIS,” Journal of Web
Engineering, vol. 14, no. 3–4, pp. 251–285, Jul 2015.

[6] F. Palma, J. Dubois, N. Moha, and Y.-G. Guéhéneuc, “Detection of
REST Patterns and Antipatterns: A Heuristics-Based Approach,” in
Service-Oriented Computing, Berlin, Heidelberg, X. Franch, A. K.
Ghose, G. A. Lewis, and S. Bhiri, Eds., 2014// 2014: Springer Berlin
Heidelberg, pp. 230–244.

[7] J. Král and M. Zemlicka, “Crucial Service-Oriented Antipatterns,
vol. 2,” International Academy, Research and Industry Association,
IARIA, pp. 160–171, 2008.

[8] J. Král and M. Žemlicka, “Popular SOA Antipatterns,” in 2009 Com-
putation World: Future Computing, Service Computation, Cognitive,
Adaptive, Content, Patterns, 15–20 Nov. 2009 2009, pp. 271–276, doi:
10.1109/ComputationWorld.2009.80.

[9] D. Tripathi, U. Suman, M. Ingle, and S. Tanwani, “Towards Introduc-
ing and Implementation of SOA Design Antipatterns,” International
Journal of Computer Theory and Engineering, vol. 6, no. 1, p. 20, 2014.

[10] C. Mateos, M. Crasso, A. Zunino, and J. Coscia, “Detecting WSDL bad
practices in code-first Web Services,” IJWGS, vol. 7, pp. 357–387, 01/01
2011, doi: 10.1504/IJWGS.2011.044710.

[11] J. M. Rodriguez, M. Crasso, A. Zunino, and M. Campo, “Automatically
Detecting Opportunities for Web Service Descriptions Improvement,”
ed, 2010, pp. 139–150.

[12] J. M. Rodriguez, M. Crasso, C. Mateos, and A. Zunino, “Best practices
for describing, consuming, and discovering web services: a compre-
hensive toolset,” Software: Practice and Experience, vol. 6, no. 43,
pp. 613–639, 2013.

[13] M. A. Torkamani and H. Bagheri, “A Systematic Method for Identifica-
tion of Anti-patterns in Service Oriented System Development,” Inter-
national Journal of Electrical & Computer Engineering (2088-8708),
vol. 4, no. 1, 2014.

1778 S. Mohammadnia et al.

[14] Y. Zheng and P. Krause, “Asynchronous Semantics and Anti-patterns
for Interacting Web Services,” in 2006 Sixth International Conference
on Quality Software (QSIC’06), 27–28 Oct. 2006 2006, pp. 74–84, doi:
10.1109/QSIC.2006.14.

[15] A. Ouni, R. G. Kula, M. Kessentini, and K. Inoue, “Web Service
Antipatterns Detection Using Genetic Programming,” presented at the
Proceedings of the 2015 Annual Conference on Genetic and Evolution-
ary Computation, Madrid, Spain, 2015.

[16] A. Ouni, M. Kessentini, K. Inoue, and M. Ó. Cinnéide, “Search-
Based Web Service Antipatterns Detection,” IEEE Transactions
on Services Computing, vol. 10, no. 4, pp. 603–617, 2017, doi:
10.1109/TSC.2015.2502595.

[17] H. Wang, M. Kessentini, and A. Ouni, “Bi-level Identification of
Web Service Defects,” in Service-Oriented Computing, Cham, Q. Z.
Sheng, E. Stroulia, S. Tata, and S. Bhiri, Eds., 2016// 2016: Springer
International Publishing, pp. 352–368.

[18] A. Ouni, H. Z. Wang, M. Kessentini, S. Bouktif, and K. Inoue, “A Hybrid
Approach for Improving the Design Quality of Web Service Interfaces,”
(in English), ACM Trans. Internet. Technol., Article vol. 19, no. 1, p. 24,
Mar 2019, Art no. 4, doi: 10.1145/3226593.

[19] H. Wang, M. Kessentini, T. Hassouna, and A. Ouni, “On the Value of
Quality of Service Attributes for Detecting Bad Design Practices,” in
2017 IEEE International Conference on Web Services (ICWS), 25–30
June 2017 2017, pp. 341–348, doi: 10.1109/ICWS.2017.126.

[20] S. Saluja and U. Batra, “Optimized approach for antipattern detection
in service computing architecture,” Journal of Information Optimization
Sciences, vol. 40, no. 5, pp. 1069–1080, 2019.

[21] S. Tilkov, “REST Anti-Patterns,” InfoQ Article (July 2008), 2008.
[22] C. Pautasso, “Some REST Design Patterns (and Anti-Patterns),” ed,

2009.
[23] T. Fredrich, “Restful service best practices,” [Online]. http://www.rest

apitutorial.com/media/RESTfulBestPractices-v1, vol. 1, 2012.
[24] C. Rodriguez et al., REST APIs: A Large-Scale Analysis of Compliance

with Principles and Best Practices. 2016, pp. 21–39.
[25] F. S. Alshraiedeh and N. Katuk, “A URI parsing technique and algo-

rithm for anti-pattern detection in RESTful Web services,” International
Journal of Web Information Systems, vol. 17, no. 1, pp. 1–17, 2021, doi:
10.1108/IJWIS-08-2020-0052.

http://www.restapitutorial.com/media/RESTfulBestPractices-v1
http://www.restapitutorial.com/media/RESTfulBestPractices-v1

An Efficient Method for Automatic Antipatterns Detection of REST Web Services 1779

[26] C. Abid, M. Kessentini, and H. Wang, “Early prediction of quality of
service using interface-level metrics, code-level metrics, and antipat-
terns,” Information and Software Technology, vol. 126, p. 106313,
2020/10/01/2020, doi: https://doi.org/10.1016/j.infsof.2020.106313.

[27] S. Rebai, M. Kessentini, H. Wang, and B. Maxim, “Web service design
defects detection: A bi-level multi-objective approach,” Information and
Software Technology, vol. 121, p. 106255, 2020/05/01/2020, doi: https:
//doi.org/10.1016/j.infsof.2019.106255.

[28] J. M. Rodriguez, M. Crasso, A. Zunino, and M. Campo, “Improving
Web Service descriptions for effective service discovery,” Science of
Computer Programming, vol. 75, no. 11, pp. 1001–1021, 2010/11/01/
2010, doi: https://doi.org/10.1016/j.scico.2010.01.002.

[29] N. Moha et al., “Specification and Detection of SOA Antipatterns,” in
Service-Oriented Computing, Berlin, Heidelberg, C. Liu, H. Ludwig,
F. Toumani, and Q. Yu, Eds., 2012//2012: Springer Berlin Heidelberg,
pp. 1–16.

[30] F. Palma, N. Moha, G. Tremblay, and Y.-G. Guéhéneuc, “Specification
and Detection of SOA Antipatterns in Web Services,” in Software Archi-
tecture, Cham, P. Avgeriou and U. Zdun, Eds., 2014//2014: Springer
International Publishing, pp. 58–73.

[31] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on software engineering, vol. 20, no. 6,
pp. 476–493, 1994.

Biographies

Sobhan Mohammadnia received the MSc degree from the Shiraz University
of Technology, Iran, in 2019 under the supervision of Dr. Rasool Esmaeily-
fard and Dr. Reza Akbari. He is currently a system analyst. His main research
interests include analyzing service-oriented and process-oriented systems,

https://doi.org/10.1016/j.infsof.2020.106313
https://doi.org/10.1016/j.infsof.2019.106255
https://doi.org/10.1016/j.infsof.2019.106255
https://doi.org/10.1016/j.scico.2010.01.002

1780 S. Mohammadnia et al.

information systems, and business process management., in particular, he
is interested in detecting service and process antipatterns in systems and
evaluating the QoS of APIs.

Rasool Esmaeilyfard received his Ph.D. from the Isfahan University of
Technology, Isfahan, Iran in 2017. Since 2018, he has been with the Faculty of
the Department of Computer Engineering and Information Technology at the
Shiraz University of Technology where he currently holds an assistant pro-
fessor position. He is also a consultant, specializing in software architecture
and distributed systems in the last ten years. His general research interests are
in the areas of software architecture and crowd management.

Reza Akbari has a PhD in software engineering from Shiraz University. Cur-
rently, he is an associate professor at department of Computer Engineering
and Information Technology of Shiraz University of Technology. His special
fields of interest include software engineering, machine and deep learning,
and optimization algorithms.

	Introduction
	Related Work
	The Proposed Method
	REST Services Dataset
	Swagger Metrics Extraction
	Adaptation of GP

	Performance Evaluation
	Dataset Preparation
	Experimental Settings
	Experimental Design and Results

	Conclusions

