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Abstract

Machine learning and deep learning methods have been widely used in
network intrusion detection, most of which are supervised intrusion detection
methods, which need to train a lot of marked data. However, in some cases,
a small amount of exception data is hidden in a large amount of exception
data, making methods that require a large amount of the same markup data
to learn features invalid. In order to solve this problem, this paper proposes
an innovative method of small sample network intrusion detection. The inno-
vation point is that network data is modeled as graph structure to effectively
mine the correlation features between data samples, and by comparing the
distance similarity, the triplet network structure is used to detect anomalies.
The triplet network is composed of triplet graph convolutional neural network
which shares the same parameters and is trained by providing triplet samples
to the network. Experiments on network traffic datasets CSE-CIC-IDS2018
and UNSW-NB15 as well as system status monitoring datasets verify the
effectiveness of the proposed method in network intrusion detection of small
samples.
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1 Introduction

With the deepening integration of the Internet and society, the Internet is
changing the way people live, study and work. At the same time, various
security threats have become more and more serious, and the security of
cyberspace has aroused widespread concern. Intrusion Detection System
(IDS) is an important research achievement in the field of information
security, which is used to effectively detect various malicious attacks on
the network. In fact, network intrusion detection is usually equated to a
classification problem, and a simple model is a binary model, that is, to
identify whether network traffic behavior is normal or abnormal. Machine
learning (ML) methods have been widely used to identify various types of
attacks and can help network administrators take appropriate measures to
prevent intrusions. Many studies have shown that it is feasible to design
ML algorithms for implementing IDS, which include two main steps: feature
selection and classification [1]. These algorithms are often no longer rules-
based, but aim to take advantage of various characteristics of network traffic.
After Professor Hinton [2] proposed the theory of deep learning (DL) in
2006, the theory and technology of deep learning have developed rapidly in
the field of machine learning, and provided a new way for the development
of intelligent intrusion detection technology. Relevant studies have shown
that for specific types of attacks, ML and DL algorithms can run effectively
as long as there is enough sample size, and automatic detection can be
achieved without excessive expert knowledge [3, 4]. It can be assumed that
ML or DL based IDS can detect different types of attacks as long as the
number of samples participating in training is large enough. However, in
many application scenarios in the real world, the constant changes in network
behavior and the rapid development of attacks make it difficult for security
agencies to obtain enough attack samples in a short time. For example, zero-
day attacks [5] are launched on the day when vulnerabilities are discovered,
and timely combination and release of datasets are faced with challenges.

Few-shot learning aims to learn the target model by training a small
number of samples. Small sample problem in network intrusion detection can
be regarded as detection based on only a small number of attack samples [6].
Small sample learning has made great progress in recent years and is mostly
applied in the field of image recognition. Most methods are focused on
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improving the neural network model with the best classification effect in
this field [7–11]. In network security, the study of small sample learning is
still scarce. Because the types of emerging network attacks are constantly
expanding, the intrusion detection model designed for specific attack types is
not flexible and universal, and it is unrealistic to cover every type of network
and possible threats.

In addition, the deep neural network models [12, 13] in the existing liter-
ature have limitations. These methods usually only focus on the independent
attributes of samples and ignore the structural information between sample
entities, resulting in the loss of part of important detection information.
Structural information can provide useful information for the detection of
samples. Graph Convolutional Network promotes convolutional operation
from traditional data to graph data, which is a method capable of deep learn-
ing graph data. Therefore, this paper applies Graph Convolutional Network
to network data classification and intrusion detection of small sample.

To solve the above problems, a detection method of small sample based
on triple graph network is proposed, which can identify the intrusion based
on only a small number of samples.

The main contributions of this paper are as follows:

1>The original system monitoring data used for network intrusion detection
usually has great redundancy, and it is difficult to analyze the correlation
between different types of state information. This paper proposes to use
graph structure to model state data, and capture the important correlation
information among states by virtue of powerful learning ability of relation
features of graph convolutional network.

2>Considering both the network traffic data and the system internal state
data, the Graph Convolutional Network (GCN) is modeled and the deep
metric learning triple network is introduced to form the Graph Convolutional
Network (GCN) model to realize the efficient small sample learning. The
effectiveness of the proposed method was evaluated on internal state datasets
and public benchmark datasets CSE-CIC-IDS2018 and UNSW-NB15.

2 Related Studies Methods

The existing network intrusion detection methods include network data-
based methods and host data-based methods. Supervised end-to-end deep
learning has achieved great success in network intrusion detection tasks due
to improved optimization techniques, larger data sets, and the streamlined
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design of deep convolution or loop architectures. Among them, detection
based on network traffic [14–16] can ensure high data information cover-
age; detection based on host data [17–19] can make detected content more
accurate and directional, but it is easy to affect the local business. Both
the network-based intrusion detection system and the host-based intrusion
detection system have their advantages and disadvantages and complement
each other on the data coverage level.

Existing deep learning methods have solved the problem well in the above
scenarios with large amounts of annotated data. Despite these successes,
these learning models do not cover all possible application scenarios. One
example of this is the ability to learn from a small sample, a small sample
learning task. While humans can easily learn a concept from a single picture,
machine learning algorithms typically require large numbers of samples to
achieve similar goals. The concept of small sample learning is inspired by the
view of human learning. Researchers expect machine learning to be closer to
human thinking and have been exploring its small sample learning ability
[12, 13]. It is difficult to obtain label data in real application scenarios,
especially in network intrusion detection where abnormal data samples are
much smaller than normal data, which aggravates the difficulty of obtaining
abnormal labeled data. Thus, in most practical application scenarios, network
intrusion detection is a natural small sample learning problem, namely Few-
shot learning. Classical solutions to small sample learning problems include
meta-learning [20, 21], Fine tuning [22, 23], metric learning [24–26] and
graph neural networks [27–29]. At present, small sample studies in the field
of network intrusion detection are still scarce. In this paper, the idea based
on graph neural network is adopted to detect and classify, and deep metric
learning is adopted to optimize the parameters.

3 Algorithm Design

3.1 Intrusion Detection Method tGCN-KNN Based on Triple
Graph Convolutional Network

Graph is a data structure composed of nodes and edges, which has the
advantages of intuition and strong expressiveness. Convolutional Neural Net-
work (CNN) has achieved great success in many fields, but it cannot deal
with non-Euclidean structure data represented by graphs, because translation
invariance cannot be used in non-Euclidean structure data. To deal with non-
Euclidean structure data, GCN is proposed. The graph used in GCN is defined
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in Equation (1), where V represents nodes set in the graph and E represents
edge Settings.

G = (V,E) (1)

The graph in GCN model has two basic attributes to represent domain
information. The core idea of GCN is to combine the eigenmatrix and the
adjacency matrix of nodes to generate a new node representation. First, each
node in the graph has its own characteristics; Second, each node contains
structural information, such as the communication patterns between nodes.
After transforming spatial domain into graph domain, GCN model can learn
some characteristic and structural information of graph, such as applied to
social network and communication network [30].

The input data of the graph convolutional network contains two parts.
One is the feature set of the nodes in the graph, which is represented by
the matrix F of the size of N×L, where N is the number of nodes and L
is the number of features of each node. The other is the adjacency matrix
A, which represents the size of the graph information of N×N. The output
of graph neural network is an N×M matrix. Similar to the convolutional
model, the input and output of the Graphic Convolutional Neural Network
pass through multiple convolutional hiding layers. The convolution hidden
layer is expressed as:

H(l+1) = σ(F̄
1
2 Ā

1
2H(l)W (l)) (2)

In this expression, Ā = A + 1, I is the identity matrix. F̄ is the degree matrix
of Ā. The formula is F̄ii =

∑
i Āii. H is the characteristic of each layer, and

σ is the nonlinear activation function.
In 2015, Koch et al. [24] proposed the use of Siamese Neural Network

for small sample learning. The Siamese Neural Network has two networks
with the same structure and sharing weight and parameters. The sample input
is mapped to the target space and the distance similarity is calculated. The
unknown samples to be tested are matched by the similarity measurement
learned. The purpose of Siamese Neural Network training is to maximize
the distance between different samples and minimize the distance between
similar samples. Siamese Neural Network learned representation is not as
effective as many other deep learning models when used as Siamese Neural
Network classification feature. On this basis, Elad et al. [31] proposed a deep
metric learning triple network model, which used three convolutional neural
networks with shared parameters and network structure for training, and
proved to have better representation ability than Siamese Neural Network.
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In this paper, we use the good performance of depth metric learning for
small sample learning, and combine three graph convolutional networks
horizontally to form a triple graph convolutional neural network. The inputs
of the triple graph convolutional networks are positive, positive or nega-
tive and negative examples. The loss function of the proposed triple graph
convolutional network is described as follows:

loss1 = abs(y pred1 − y pred2)

loss2 = abs(y pred3 − y pred2), (3)

loss = [loss1, loss2]

Assume the output predicted values of the three subgraphs convolu-
tional network to be y pred1, y pred2 and y pred3. The corresponding
true labeled values are y true1, y true2, and y true3. c1=——y true1-
y ture2——,c2=——y true3-y true2——. Then the true labeled value cor-
responding to loss1 is c1, which corresponding to loss2 is c2.

In the training process, the neighborhood number K is adjusted to achieve
the best detection accuracy, and the online prediction of the KNN model after
training is completed. The TGCN-KNN model is shown in Figure 1. The
detailed process is shown in Figure 1. Finally, in order to further improve
the accuracy of anomaly detection, the distance feature output of the ternary
graph neural network is used as the input of the KNN classifier for retraining.
KNN is a non-parametric classification model, which judges the category of
the point to be measured according to the category of the nearest K points to
the sample point to be measured, and has been successfully applied in a large
number of network security cases [32].

3.2 Apply tGCN-KNN Method to Intrusion Detection Scenarios
Based on Multi-Source Internal State Data of Small Samples

System monitoring data can be used to detect host-based anomalies [33], but
it is difficult for a single data source to comprehensively describe the attack,
which leading to low detection accuracy. For example, the detection of DoS
attack is generally based on the traffic information of a period of history, but
DoS attack can also be described by the memory, CPU, network bandwidth
and other dimensions of the resource occupation. In addition, the traditional
anomaly detection model extracts features separately from the sample data
information and ignores the connection between sample entities, which is
crucial for the detection of associated threat groups. Multidimensional system
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Figure 1 Our proposed tGCN+KNN model.

state data are considered synthetically in this paper. After transforming the
internal state monitoring process and the correlation between processes into
graphs, the graph is used as input for anomaly detection. Combined with the
attributes of sample data and the correlation information between samples,
the GCN framework is used to combine the state information and structural
information to make the classification model more accurate.
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3.2.1 Data collection
The host to be detected sends the collected status data to the data acquisition
server at regular intervals, and these data are stored in the MongoDB database
for further analysis and processing. During the acquisition interval, the data
acquisition agent is responsible for internal state monitoring of its host and
sends the state information to the anomaly detection model in accordance
with the specified protocol or format. The internal state send message con-
tains the timestamp, message ID, state type (such as memory state, disk state,
port state), and message body. The message body in different state types can
contain multiple fields (for example, a memory state message can include
the process ID and memory utilization of each process, etc.). The status
information is sent in JSON format data. Internal state includes CPU, hard
disk, memory state, process state, file state, port state and network state.

State monitoring is implemented by calling various state monitoring
Shell commands using Python and reading the results. The common status
monitoring Shell commands are shown in Table 1.

The data collection process is implemented in Python, and the Linux
shell is interacted with the Popen class of Python subprocess when the shell
monitoring command is needed. The data collected by the status monitoring
command will be sent to the HTTP server of the master control unit after
preprocessing, such as formatting key information. Considering that different
monitoring Shell commands often come from different development teams or
individuals and thus operate in different data output formats, the purpose of
formatting operations is to unify the data format of all commands. Other data
preprocessing operations mainly include data summarization. For example,
the dstat command will conduct continuous multiple sampling within a

Table 1 State detection commands and functions

No. Shell command Function

1 top -c -b -n 1 -bw 500 Read the process CPU, memory utilization, and so on

2 Dstat Reports statistics on kernel threads, virtual memory,
disks, traps, and CPU activity.

3 Lsof Displays a list of all open files and processes.

4 Strace It is used to track system calls when a process is
executing

5 pidstat It is used to monitor the occupation of CPU, memory,
thread, device IO and other system resources of
specified processes
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Table 2 Attack information

Name Implementation Remote/Local

SSH Brute force attack Hydra command-line tool Remote

TCP flood attack tcp flood bin file Remote

OSPF routing protocol Attack t50 command-line tool Remote

Telnet backdoor Python sniff library Local

Dirtycow attack Dirtycow script Local

Memory and hard disk DoS attack Python script Local

collection period, and the data summarization operation will take the average
value and variance of the multiple sampling results and then report them to
reduce the overall data volume.

The attack information is summarized in Table 2.

3.2.2 Data preprocessing
(1) Digital operation
The data collected from the internal state data include the access files
and system calls of the process. These data are text data with semantic
characteristics, so they cannot be trained directly. Here, we consider to
process these data from the perspective of natural language processing by
expressing them into sentences and paragraphs containing semantics. The
number of files and system calls is limited and the features can be enu-
merated, so digitizing this data first reduces the data size. For example, the
file name “/usr/local/lib/python3/toSampleData.py” digital after can use two
bytes, which greatly reduce the storage space and improve the computational
efficiency of subsequent processing.

The idea of digitization is to read the file name or the line number of the
system call in the file as the ID, but if the file name or system call is not found
in the file, the file name or system call will be put on the last line and its ID
will be considered to be the maximum line number.

(2) Feature extraction of sequence of unequal length
For digitized processes, the difficulty of accessing files and system calls is
that the sequence of files and system calls accessed by different processes
is not long and the length is very different. Equal-length sequences can
be used to “fill the zero” for shorter sequences, but this will cause the
problem of sparse data to be processed, which will bring great burden to
the computational efficiency. The solution is to carry out feature extraction
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for these different sequences of unequal length, and the data after feature
extraction is of equal length. It greatly reduces the data scale and improves
the computing efficiency. The extracted feature data can be used in anomaly
detection together with other state data.

Feature extraction calls the feature extraction function in Tsfresh
library [34], the main function is to input a digital operation after the access
file or system call sequence, and then output a fixed number of features.

Tsfresh is a feature engineering tool for processing time series, which can
automatically extract more than 100 features from time series. The software
package includes several feature extraction methods and a stable feature
selection algorithm. TsFresh can automatically calculate a large number of
time series features that describe the basic characteristics of time series, such
as peak number, average or maximum value, or more complex features such
as time reversal symmetry statistics. At the same time, the feature is reduced
to the feature that can best explain the trend through hypothesis testing, which
is called de-correlation. These feature sets can then be used to construct
statistical or machine learning models on time series, often used in regression
or classification tasks.

3.2.3 Construction of input matrix F and A
In an intrusion detection scenario based on multi-source internal state data,
a process is represented as each node in the graph. Thereinto, the various
resource utilization rates of each process, as well as the system calls and
features extracted from the accessed files constitute a row in the F matrix.
In particular, the entire computer system described by the total resource
utilization of CPU, memory, and so on, is represented as node 0, whose
resource utilization is the first row of F. L, the number of columns in F, is
equal to 60. The rows with less than 60 columns are supplemented by 0, and
the overall resource characteristics of the system are represented by N0.

Matrix A represents the relationship between nodes, and the core task
of construction is to mine the relationship between processes. In particular,
the edge value of node 0 and other nodes is 1, indicating that there is a
dependency between the characteristics of total resource utilization of the
system and the processes.

The mining method of connecting edges between nodes adopted in this
paper is given below:

1. Public files and sockets accessed through the process;
2. Through the call tree of the process;
3. Through the public system call pattern of the process.
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For the above three methods, when it is determined that there is a rela-
tionship between any two processes, the weight value of the edge between
these two processes is increased by one, and the initial value is zero.

3.2.4 Detection process
Offline training steps are as follows:

1>Detect the status data that need to be analyzed by unit reading, digitize the
file data accessed by each process in the status data and the system calls for
each process that needs to be monitored.

2>For the file data visited by each process to be monitored and the system of
each process to be monitored, the digitized data is called for feature extraction
to solve the problem of uncertain length of data.

3>Write the data processed in 2> to a separate table in the database.

4>The data set is read from the database in 3> at intervals of T, and a
vector sequence is obtained according to the data features of various types
of resource utilization, system investigation of active process, access file of
active process, etc., and the data set is divided into training set and test set.

5>After the training data set is transformed into graph G (V,E) data repre-
sented by adjacency matrix A and data feature matrix D, the graph structure
training data sets of each host are input into their respective graph convolu-
tional neural network model respectively, and the learning is carried out based
on multi-source data relations.

6>The distance feature obtained in step 5 is used as the input of KNN
classifier and then trained to obtain the KNN optimal classifier.

The model trained in 6> was tested with the test data set. The distance
features were output through the triple graph neural network and then input to
the KNN classifier. Finally, the classification label represented by the graph
relationship features was obtained.

7>Adjust the number of graph convolution layers in the deep learning model.
Graph convolution outputs size. The parameters such as the number of
neurons in the Dense layer and the network structure were repeated in steps
1 to 6 to obtain a deep learning model with high detection accuracy.

Online detection steps are as follows:

1>The state data of the master control unit to be predicted is read from the
database, and digitize the monitored file data and the system call of each
process.
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Figure 2 The detection process of tGCN-KNN.

2>For the file data visited by each process to be monitored and the system of
each process to be monitored, the digitized data is called for feature extraction
to solve the problem of uncertain length of data by the master control unit.

3>After the training data set is transformed into graph G (V,E) data repre-
sented by adjacency matrix A and data feature matrix D, input the trained
triple convolution deep learning model finally obtained in the offline training
stage to make the prediction.

4>The distance features obtained in 3> were input into the KNN classifier
trained in the offline stage to obtain the final classification label.

5>Report the prediction results obtained in 4>.

The detection process of tGCN-KNN method applied to the intrusion
detection scenario based on multi-source internal state data of small samples
is shown in Figure 2.

3.3 Apply tGCN-KNN Method to the Intrusion Detection
Scenarios Based on Traffic Data of Small Samples

3.3.1 Introduction of traffic datasets
CSE-CIC-IDS2018 Dataset: CSE-CIC-IDS2018 [35] is a dataset mixed with
a large number of network traffic and system logs, consisting of 10 days
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Table 3 Data subset of CSE-CIC-IDS2018

Data Subset Collection Time Attack Types The Total Number of Samples

Sub DS1 Wednesday-14-02-2018 Positive 663,808

FTP-BruteForce 193,354

SSH-Bruteforce 187,589

Sub DS2 Thursday-15-02-2018 Positive 988,050

DoS-GoldenEye 41,508

DoS-Slowloris 10,990

Sub DS3 Thursday-01-03-2018 Positive 235,778

Infiltration attack 92,403

of data, each day of data constitutes a subset of data, with a total size
of over 400G. The dataset includes 7 attack types and 16 attack subtypes,
including brute force attacks, DoS attacks, surveillance network attacks,
and penetration attacks. However, there are few deep learning intrusion
detection methods for this dataset [36]. By using the feature generation tool
CICFLOWMETER-V3 [37] to analyze the data set of CSE-CIC-IDS2018,
about 80 types of feature data can be generated, representing the network
traffic and the activity behavior of packets. Table 3 is an overall introduction
to the partial data subset of CSE-CIC-IDS2018.

UNSW-NB15 Dataset: The Cyber Security Research Group at the
Australian Cyber Security Centre (ACSC) built a dataset called UNSW-
NB15 [38]. These data is generated in a hybrid manner, using the Ixia Perfect
Storm tool (the database that includes CVE) to control the normal and attack
behavior of network traffic. A CVE is a database that contains public security
vulnerabilities. Two servers are used in the IXIA generator tool, one of which
generates normal events and the other generates attack events in the network.
Capturing network packets with the TCPdump tool took several hours to
generate 100GB of traffic data. Use TCPdump to divide it into approximately
1000MB PACAP files. In LinuxUbuntu14.0.4, Argus and BRO-IDS were
used to extract features from the PCAP file. The data can be divided into
the following two forms:

(1) Full connection records composed of 2 million connection records;
(2) A partial record of full connection records, consisting of 82,332 training

connection records and 175,341 test connection records, which contains
10 types of data. The partial record dataset consists of 42 features
and their parallel tags, which are normal and 9 different attacks. The
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Table 4 UNSW-NB15 dataset

Category Description Train Test

Normal Normal connection record 56,000 37,000

blur attack Attacks related to spams, html files penetrations
and port scans

18,184 6,062

Analysis Attacks related to port scan,html file penetrations
and spam

2,000 677

Backdoor Backdoors is a mechanism used to access a
computer by evading the background existing
security.

1,746 583

DoS Intruder aims at making network resources down
and consequently, resources are inaccessible to
authorized users

12,264 4,089

Exploits The security hole of operating system or the
application software is understand by an attacker
with the aim to exploit vulnerability

33,393 11,132

Generic Attacks are related to block-cipher 40,000 18,871

Reconnaissance Atarget system is observe by an attacker to gather
information for vulnerability

10,491 3,496

Shell code A small part of program termed as payload used
in exploitation of software

1,133 378

The worm Replicate themselves and distributed to other
system through the computer network

130 44

Total 93,500 28,481

information about the attack categories and their detailed statistics are
described in Table 4.

3.3.2 Construction of input samples F and A
Set a window with the size of W, get all traffic packets in the window to
construct A sample data corresponding to F and A matrix. Each node in the
graph is represented by source IP + port number, and the number of packets
corresponding to each source node + IP is sorted. Then select the first g
nodes and consider all subsequent nodes to be the same node. According
to experimental tests, the typical value of g is 46. The number of packages
for each node contained in a window represents the characteristics of the
corresponding node, which means F is a one-dimensional feature. The sample
data in each window corresponds to an A matrix. If packets corresponding to
two nodes appear successively, the weight of the edge is increased by 1. In
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addition, if the data corresponding to two nodes is similar, the edge weight
will be added to the similarity value. The similarity value is expressed by the
cosine distance of the word frequency vector A and B corresponding to the
values of two nodes, i.e:

similar = cos θ =

∑n
i=1(Ai ×Bi)√∑n

i=1(Ai)2 ×
√∑n

i=1(Bi)2
(4)

Where n represents the length of the word frequency vectors A and B. In
this way, a lot of graph structure information is added and the dimension
of input data is reduced by the similarity representation of the data, thus
improving the computational efficiency.

In addition, the detection procedure is the same as in Section 3.3.2 and
will not be described here.

4 Experimental Evaluation

4.1 Evaluation Indicators

In order to evaluate the detection performance of the model, Accuracy,
Precision and Recall were selected as evaluation metrics in this paper. The
definition of confusion matrix is shown in Table 5, then the definition of other
metrics is given.

Accuracy: The percentage of the number of correctly classified samples
relative to the total number of samples.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision: The percentage of the number of samples that are correctly
identified as anomalies relative to the number of samples that are identified
as anomalies.

Precision =
TP

TP + FP
(6)

Table 5 Confusion matrix
hhhhhhhhhhhhhhTrue value

Predictive value
Normal data Abnormal data

Normal data TN (True Negative) FN (False Negative)

Abnormal data FP (False Positive) TP (True Positive)
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Recall: The probability that abnormal sample data can be correctly identified.

Recall =
TP

TP + FN
(7)

4.2 Experimental Settings

The experimental hardware environment includes: Intel Xeon (Cascade Lake)
Platinum 8269 2.5GHz/3.2GHz 4-core CPU, 8GB memory. The proposed
tGCN is compared with tCNN and CNN, which have good performance, on
public network datasets CSE-CIC-IDS2018 and UNSW-NB15 and internal
state datasets collected by ourselves. The structure and parameters of all deep
learning models are optimized for fair comparison.

4.3 Experimental Comparison

First of all, when the number of training samples is small, as the training
samples change from 10 to 50, the accuracies of the two metric learning
models tGCN and tCNN on the three data sets are compared (as shown in
Table 6, where Acc-s represents the accuracy when the number of training
samples is s). In order to conduct a comprehensive test, the number of positive
and negative samples to be tested is 1000. Average the results of 50 repeated
experiments to get the final results. It can be seen from the table that when the
number of samples is very small, the accuracy of the tGCN model proposed
in this article is still very high, but the accuracy of the tCNN model is
poor. As the number of samples gradually increases, the accuracy of tCNN
increases rapidly, while the accuracy of tGCN models slowly increases, and
tCNN begins to approach tGCN. But tGCN has always outperformed tCNN.

Table 6 The relationship between model detection accuracy and the number of training
samples

Accuracy of Different Number of Samples

Dataset Model 10 20 30 40 50

CSE-CIC-IDS2018 tGCN 93.7% 94.8% 95.3% 95.8% 96.3%

CSE-CIC-IDS2018 tCNN 65.1% 68.1% 75.7% 81.3% 88.6%

UNSW-NB15 tGCN 92.9% 93.2% 94.4% 95.0% 95.5%

UNSW-NB15 tCNN 63.7% 66.2% 74.3% 80.9% 87.8%

Internal state dataset tGCN 92.8% 94.6% 95.5% 95.9% 96.6%

Internal state dataset tCNN 62.2% 63.4% 71.9% 78.3% 87.8%
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Table 7 Performance comparison of three models with fixed number of training samples

Accuracy (%) Precision (%) Recall (%)

tGCN tCNN CNN tGCN tCNN CNN tGCN tCNN CNN

CSE-CIC-IDS2018 99.3 92.7 86.0 98.7 93.2 85.5 100.0 92.0 86.7

UNSW-NB15 98.0 91.3 84.7 98.6 90.8 83.3 97.3 92.0 86.7

Internal state dataset 98.7 92.0 86.0 98.7 90.9 86.5 98.7 93.3 85.3

Table 8 Performance comparison of the three models when the test data class contains some
new attack classes

Accuracy (%) Precision (%) Recall (%)

tGCN tCNN CNN tGCN tCNN CNN tGCN tCNN CNN

CSE-CIC-IDS2018 98.0 88.7 80.6 97.4 89.2 80.2 98.7 88.0 81.3

UNSW-NB15 96.7 87.3 81.3 96.0 86.8 81.3 97.3 88.0 81.3

Internal state dataset 97.3 90.0 79.3 97.3 90.5 78.9 97.3 89.3 80.0

Compared with tCNN, tGCN improves accuracy by 49.2%. The reason is that
tGCN uses graph structure data to make up for a large amount of information
lost in Euclidean structure data.

Table 7 shows the performance comparison of Accuracy, Precision and
Recall of the three models on different data sets when the number of samples
participating in the training is 150. It can be seen from the table that the
Accuracy, Precision and Recall of tGCN are all higher than the other two
methods in the three datasets. Compared with tCNN and CNN, the Accuracy
of tGCN is improved by 7.1% and 15.5% respectively in the CSE-CIC-
IDS2018 dataset. In the other two datasets, tGCN also shows great advantages
in Accuracy, Precision and Recall. The reason is that tGCN can utilize the
advantages of graph neural network and metric learning method to maximize
its advantages in small sample detection scenarios.

Table 8 shows the performance comparison of Accuracy, Precision and
Recall of the three models on different data sets when the number of samples
participating in the training is 150 and some new attack classes are included in
the test data class. It can be seen from the table that the Accuracy, Precision
and Recall of tGCN in the three datasets are all higher than the other two
methods. Compared with tCNN and CNN, the Accuracy of tGCN is improved
by 10.5% and 21.6% respectively in the CSE-CIC-IDS2018 dataset. In the
other two datasets, tGCN also shows great advantages in Accuracy, Precision
and Recall. By comparing Tables 7 and 8, it can be seen that tGCN has
a more prominent advantage in detecting new attack classes than the other
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Table 9 Performance comparison of three models with random disturbance

Accuracy (%) Precision (%) Recall (%)

tGCN tCNN CNN tGCN tCNN CNN tGCN tCNN CNN

CSE-CIC-IDS2018 96.7 79.3 75.3 97.2 79.7 75.0 96.0 78.6 76.0

UNSW-NB15 95.3 78.7 74.6 95.9 77.9 74.0 94.7 80.0 76.0

Internal state dataset 96.0 79.3 77.3 94.8 78.9 77.3 97.3 80.0 77.3

two methods. The main reason may be that the graph convolutional network
extracts the main key information, so as to ensure the obvious distinction
between anchor samples and attack samples to be detected.

Table 9 shows the performance comparison of Accuracy, Precision and
Recall of the three models on different data sets when the number of samples
participating in the training is 150 and random perturbation is added to the
test data. It can be seen from the table that the Accuracy, Precision and Recall
of tGCN in the three data sets are all higher than the other two methods.
Compared with tCNN and CNN, the Accuracy of tGCN is improved by
21.9% and 28.4% respectively in the CSE-CIC-IDS2018 dataset. In the other
two datasets, tGCN also shows great advantages in Accuracy, Precision and
Recall. By comparing Table 7 with Table 9, it can be seen that tGCN has
a more prominent advantage in dealing with random disturbances, namely
robustness, than the other two methods. The main reason is that the ran-
dom disturbance in the graph convolutional network is only affected by the
similarity measure between the valid data packets corresponding to the two
nodes in the A matrix, while such disturbance will not have much change
on the similarity measure and has no effect on other data information in the
input sample. The other two methods are mainly based on the data subject to
random disturbance, which will have a great impact on the detection results.

Figures 3–5 respectively shows the variation curve of Accuracy of the
three methods with the number of training samples on the three datasets. It
can be seen that the Accuracy of the three methods is gradually improved
with the increasing number of samples participating in the training. However,
when the number of samples participating in training is small, the advantage
of tGCN method is more obvious. When the number of samples partici-
pating in the training is 50, compared with tCNN and CNN methods, the
Accuracy of tGCN method is respectively improved by 11.4% and 58.1%
in the CSE-CIC-IDS2018 dataset. Similar results were obtained on the other
two datasets. This indicates that tGCN has a more prominent advantage in
small sample scenarios. It also shows that the advantage of triple metric
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Figure 3 Comparison of the influence of training sample data on the accuracy of CSE-CIC-
IDS2018 data set.

Figure 4 Comparison of the influence of training sample data on the accuracy of UNSW-
NB15 data set.

Figure 5 Comparison of the influence of training sample data on the accuracy of host state
data set.
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Figure 6 Comparison of normalized training time of three models.

learning using small sample intrusion detection scenarios is obviously better
than the traditional deep learning models such as CNN. Combined with
metric learning and graph convolutional neural network, the proposed method
maximizes its advantages in small sample scenarios. With the increase of
the number of trainable samples, the advantage of tGCN method over other
methods is gradually weakened, and the Accuracy of tCNN and CNN method
is constantly close to that of tGCN.

Figure 6 compares the normalized training time of the three comparison
methods. In the three datasets, the normalized training time of tGCN is much
smaller than that of the other two models. Compared with tCNN and CNN
models, tGCN shortens the training time by 88.6% and 81.9% respectively.
tGCN also has a great advantage in training time because the GCN data
structure modeled in this paper greatly compresses the dimensions of the data
while retaining the information of the key graph structure.

5 Conclusion

In the face of new unknown threats that may appear in the future in the field of
network security, an innovative method of network intrusion detection based
on triples of small samples graph neural network is proposed, which provides
an effective means to detect abnormal cases with only a small amount of
sample data. By modeling the traffic data and internal state data as graph data
structure, the data dimension is reduced and the computational efficiency is
improved. The innovation point is that the trigram sample data is input into
the trigram convolutional neural network, in which the trigram convolutional
neural network shares the network structure and parameters as the distance
feature extraction network, and the three-element loss is responsible for the
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training network, so that the distance between two similar samples is far less
than the distance between different samples. Finally, a simple and efficient
KNN algorithm is used to further classify the distance features. TGCN-KNN
proposed in this paper can effectively classify abnormal data and normal
data, and achieves the expected effect in small sample experimental scenarios
constructed by reference stream datasets CSE-CIC-IDS2018, UNSW-NB15
and internal state datasets. In addition, the results of the three methods were
compared when the sample size was sufficient. Even in the case of adding
random interference, TGCN-KNN still has great advantages.
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