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Abstract

With the rapid advancement of hardware and internet technologies, we are
surrounded by more and more Internet of Things (IoT) devices. Despite
the convenience and boosted productivity that these devices have brought to
our lives and industries, new security implications have arisen. IoT devices
bring many new attack vectors, causing an increment of cyber-attacks that
target these systems in the recent years. However, security vulnerabilities on
numerous devices are often not fixed. This may due to providers not being
informed in time, they have stopped maintaining these models, or they simply
no longer exist. Even if an official fix for a security issue is finally released,
it usually takes a long time. This gives hackers time to exploit vulnerabilities
extensively, which in many cases requires customers to disconnect vulnerable
devices, leading to outages. As the software is usually closed source, it is
also unlikely that the community will review and modify the source code
themselves and provide updates. In this study, we present ARMPatch, a
flexible static binary patching framework for ARM-based IoT devices, with a
focus on security fixes. After identified the unique challenges of performing
binary patching on ARM platforms, we have provided novel features by
replacing, modifying, and adding code to already compiled programs. Then,
the viability and usefulness of our solution has been verified through demos
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and final programs on real devices. Finally, we have discussed the current
limitations of our approach and future challenges.

Keywords: ARMPatch, ARM-based IoT devices, ARM platforms.

Introduction

During the last decades, the development of Internet technologies has caused
a great increase in the number of Internet of Things (IoT) devices in our
daily lives [1]. Furniture, tools, toys, sensors, doorbells, cameras, cars, etc. are
no longer single-purpose hardwired objects. Instead, they share similarities
with computers that have a considerable computational power, equipped with
corresponding peripheral hardware. Nowadays, these devices have operating
systems, run upgradeable software and are connected to the Internet to receive
commands or even upload telemetry.

While this has brought great convenience to our lives and boosted
productivity in various industries, the security implications should not be
underestimated. IoT devices bring many new attack vectors, leading to a
higher number of attacks that target or exploit them [2]. Moreover, these
devices tend to lack software transparency in comparison with the traditional
desktop and server sector. In the end, security vulnerabilities often go unfixed
because providers are generally not informed in time, they have stopped
maintaining these models, or they simply no longer exist. Although fixes of
security issues are sometimes released, their development often takes a long
time. This implies that usually vulnerabilities have been already exploited
by hackers if customers have not disconnected their IoT devices. As their
software is usually closed source, it is difficult for the community to review
and modify it to provide updates.

In this context, a binary patching framework that can modify compiled
binaries is useful. Such a framework would help security researchers freely
patch the firmware of IoT devices when a vulnerability is discovered, avoid-
ing the potentially lengthy process of contacting the developer and waiting
for an updated firmware version. Additionally, non-security researchers may
also use this framework to customize the devices to meet their own business
needs. Even though there are other approaches in the literature, we believe
their solutions are not suitable for fixing vulnerabilities in IoT devices owing
to a variety of reasons.

In this paper, ARMPatch, a flexible static binary patching framework
for ARM-based IoT devices focused on security, is presented. The unique
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Table 1 Comparison of current binary rewriting/instrumentation solutions

Platform(s) Type Usage Overhead

PEBIL [4] x86, x86 64 Static Debugging Moderate

Dyninst [5] x86, x86 64 Static/Dynamic Debugging Low

E9Patch [6] x86 64 Static Multi-purpose Low

Multiverse [7] x86, x86 64 Static Debugging Moderate

DynamoRIO [8] x86, x86 64,
ARM, AArch64

Dynamic Debugging High

Valgrind [9] x86, x86 64,
ARM,

AArch64,
PPC32, PPC64,

MIPS32,
MIPS64

Dynamic Debugging Very High

Frida [10] x86, x86 64,
ARM, AArch64

Dynamic Reverse engineering Moderate

challenges of performing binary patching on ARM platforms have been iden-
tified. Then, functions of compiled binaries (both executables and libraries)
have been modified by adding code, replacing, or modifying it to provide
new features. The viability and usefulness of our solution has been verified
through demos and final programs on real devices. Finally, current limitations
of our approach are discussed.

Background and motivation, ARM is the most popular platform on mobile
and embedded devices today. Currently, 90% of these devices use chips based
on the ARM architecture [3]. However, despite its dominance in the mobile
and embedded world, there is a lack of binary rewriting instrumentation solu-
tions for ARM-based devices. Most established and mature binary rewriting
projects only support platforms such as x86, PowerPC, or SPARC. Projects
that do support ARM are primarily dynamic instrumentation tools, designed
for debugging purposes and reverse engineering, and not for patching security
vulnerabilities.

Nevertheless, dynamic instrumentation tools are not applied to fixing
security vulnerabilities in the firmware of IoT devices because they are
usually large standalone frameworks that need to run concurrently with the
target program in order to inject into the target process and alter instructions
and states at runtime. This may be ultimately possible or even preferable
if the goal is, for instance, to reverse engineer an application on a rooted
Android phone. However, it is impractical to use the same approach in IoT
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Table 2 Comparison between x86 and ARM instruction sets

x86 ARM

Instruction Type CISC, variable lengths RISC, fixed length

Instruction Mode Single mode, x86 2 modes, 3 types (ARM, Thumb
16/32)

Program Counter Not accessible Readable and writable, like a
standard register

Position Dependency [11] Poor PIC support. PIEs
are rare

Good PIC support. PIEs are
common

Inline Data [12] Rare Common

environments where both software and hardware are designed to run only
the necessary routines to operate the device. Thus, running these frameworks
on IoT devices would imply additional complexity, which will also lead to
excessive overhead.

A more practical approach would be to use a static binary patching tool
that supports ARM platforms, especially designed to provide the required
framework to fix security vulnerabilities. Noteworthy, we have also born in
mind the possibility of adapting existing binary rewriting projects to support
ARM; however, they are often deeply coupled to the x86 instruction set
and the supported systems, making it difficult to provide ARM support.
This is to be expected, as problems and solutions usually vary for different
instruction sets and platforms. Moreover, the aforementioned interfaces are
also especially designed for debugging purposes and reverse engineering and
thus, they are not suitable for security fixes.

Compared to other architectures that have been well studied in this area,
ARM poses some unique challenges. To begin with, it essentially consists of
two different sets of instructions: ARM and Thumb. While ARM instructions
have a fixed length of 4 bytes, Thumb provide a separate set designed to
reduce footprint of code that uses 2- or 4-byte instructions. Binaries often
contain both ARM and Thumb instructions at the same time, switching
between them as needed. ARM also has a readable and writable program
counter, which allows devices to use any instruction to change the flow of
control. Compared to earlier architectures, ARM was designed considering
the PIC (position-independent code), so many binaries instructions operate
relative to the program counter. As we will see below, this is both a benefit
and a drawback when it comes to binary patches. It is also worthy to mention
that inline data (i.e., interleaved in the middle of instructions) is common in
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ARM binaries, leading to additional factors that must be considered when
disassembling and rewriting.

Since our focus is on security, a necessary step in deciding what capa-
bilities our framework should have is understanding what common security
fixes look like, what they entail, and how extensive the changes would be.
Therefore, we have collected 66 high risk vulnerability fixes (i.e., identified as
“High” or more by the Common Vulnerability Scoring System) released dur-
ing 2010–2020 from various IoT related open-source projects (e.g., libraries
such as openssl or libcurl, common command-line utilities, and operating
systems such as “OpenWrt”) in the National Vulnerability Database (NVD).
After evaluating these fixes, we have categorized the following types of
changes:

– Function changes (FC): involve changes in the internal logic of certain
functions.

– Function additions (FA): involve the creation of completely new func-
tions.

– Data changes (DC): involve data changes.
– Data additions (DA): involve adding new data.
– Structure changes (SC): involve changes in data structures.

Figure 1 Type of fixes according to our categorization.
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Figure 2 Types of changes among all collected fixes.

As expected, all fixes involved at least some kind of changes to the
existing functions. In fact, for almost the half of the fixes (i.e., 47%), only
function modifications were required. We have observed that many of these
fixes added some additional validations, fixed some conditional expressions,
and modified the parameters of some function calls. After these modifi-
cations, the machine code generated for those functions, as well as their
lengths, are obviously altered. Changes to data structure are particularly
difficult to manage, since the concept of data structures does not exist in
complied binaries, which simply define how memory regions are accessed
and manipulated. Thus, data structure changes often lead to variations in the
generated machine code of the functions that use the data structure, even if
the code is completely untouched.

Design, Our implementation and evaluation target “OpenWrt” devices
running on ARM processors. The “OpenWrt” project is a Linux-based open-
source operating system built for embedded devices, currently used in many
routers, access points and other network equipment [13]. Note that routers are
typically gateways for traffic on home and business networks, a common and
lucrative target for hackers. Although we used Linux-based “OpenWrt” for
the evaluation, all concepts and techniques covered in this manuscript apply
to all ARM platforms.

As shown in the figure above, ARMPatch takes 3 inputs: (i) the original
binary to be patched, (2) a configuration file that defines how the patch
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Figure 3 Processing flow.

must be performed, and (iii) one or more binary files containing the code
that will be injected. The pipeline is then composed by 3 stages: parsing,
disassembling, and patching. Each of these processing stages are detailed in
the following subsections.

ELF Parsing, Executable and Linkable Format (ELF) is the standard
file format for executables and shared libraries on Linux. Immediately after
receiving the original binary, ARMPatch parses its ELF header and performs
basic sanity checks to ensure the input is valid and supported. Then, the
information needed by the disassembly and patching stages is extracted.
For instance, a common ELF parsing stage would check if the binary tar-
gets ARM architectures, if it is an executable or a dynamic link library,
and if it uses position-independent code (PIC). It would also parse section
and segment definitions, keeping track of imported and exported symbols,
identifying code and data areas, and creating and internal mapping. Such
information is essential for disassembly, patching and the final reassembly
stages.

Configuration, A configuration file given by the user controls the pro-
cessing of the original binaries and corresponding new code to inject.
Each configuration file is essentially a collection of descriptions operations
supported by our implementation. Among them, we found:

– Function Replacement: replaces an original function in the binary with
a new externally provided implementation.

– Data Replacement: replaces data in the original binary, including but not
limited to strings, numeric constants, etcetera.

– Function Diff Patch: modifies parts of an original function in the binary
based on an externally provided patch file.

– Dependency Injection: adds a new dynamic link library dependency to
the binary. Optionally, it also allows redirecting original binary functions
to this library.
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Users can freely combine these operations to compose a configuration
file, and eventually create a complete patch when testing it. The implementa-
tion of the operations will be detailed in the following sections.

Disassembly, In the last stage, ARMPatch disassembles both the original
binary and the provided new code according to the results of the previous
stages. The following pseudo-code state lays the background for the patching
stages as it allows decoding instructions and retrieving instruction addressing
information and dependencies.

Algorithm: Pseudo-code to analyze the input assembly of a function
F: Function, B: Binary File, I: Instruction List, R: Reference List
function AnalyzeFunction(F)

I = empty
Ir = empty // PC-relative instructions
Ri = empty // Internal references
Re = empty // External references
for each f in F

i = DecodeInstruction(f)
I.add(i)
if i.PC relative

Ir.add(i)
end if

end for
for each i in I

rs = DecodeReferences(i)
for each r in rs

if r.target >= F.begin && r.target <= F.end
Ri.add(r)

else
Re.add(r)

end if
end for

end for
return I, Ir, Ri, Re

end function

Function Replacement, Function replacement allows the user to replace
a function in the original binary with a new implementation. The replacing
of binary instruction is not trivial as the length of the new function (Ln) is
probably not the same as the original one (Lo). If Ln = Lo, the process is sim-
ple; however, if Ln > Lo, the new code will not fit into the original position
without overwriting other instructions or data that is stored below. We have
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identified three possible approaches to solve this problem, identifying their
advantages and disadvantages:

(1) Insert instructions directly, then move the code that follows it.
Even though it may be considered the most intuitive approach, it is in
fact the least feasible. Compiled code is a tight structure and cannot
be easily changed in length or position. If we change the length of
one or more of the functions in the middle, we would inadvertently
change the addresses of all subsequent content, completely breaking
hardcoded address references of position-dependent code. Even for
position-independent code, we would also alter the distance between
the content before and after the new code, causing relative offsets
to change and point to incorrect addresses. To fix this issue, we
would have to analyze and correct all relevant instructions throughout
the entire binary. However, rewriting the entire binary is a slow and
hard (if not impossible) process. In fact, correctly identifying func-
tions and distinguishing between code and data is still a challenge on
ARM [14].

(2) Place the new function as a new segment at the end. It is possible to
add new segments at the end of a binary and use them to encapsulate
new code or data by modifying the ELF header. The flexibility of the
ELF format allows segment definitions to be placed anywhere in the
file, making it possible to move new segments to the end of the binary
without worrying about changing the length of the header. In this way,
we can place the new function without breaking references. Therefore,
to replace the original function with the new one, one can simply insert
jump instructions at the beginning of the header. Note that this procedure
turns the original function instructions into dead code, though. It is
also noteworthy to mention that a lot of space is wasted if the function
being replaced is large, which could be a problem for IoT devices where
storage is severely limited.

(3) Hybrid approach: overwrite and add new segment. A hybrid
approach would be overwriting when Ln = Lo and putting the function
in a new segment when Ln > Lo. In the latter, it is also possible to
overwrite part of the instructions and put the rest in a new segment, con-
nected with jumps; albeit this process would require careful instruction
disassembly and rewriting for the new function.

Our current implementation uses the overwriting and new segment hybrid
approach. However, we did not employ the partial function overwriting
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Figure 4 Direct Insertion vs New Segment procedures.

Figure 5 An example of “veneer” code.

because of the non-trivial details involved. Hence, if the new function exceeds
the size of the original, it will be entirely moved to a new segment. ARM’s
unconditional PC-relative branch instruction B is used to jump from the
original function to the new replacement. Nonetheless, care must be taken as
the supported range is limited to ±32MB due to design [15]. When very large
binaries are required to be patched (rare in IoT environments), the distance
from the original function to the end of the new segment may exceed this
limit. In this case, we use a “veneer” to load the range into the R12 register,
taking the length of three instructions up instead of only one. Although it
occurs rarely, a potential problem with this approach could be the shortage of
space to insert the veneer when the original function is composed of less than
3 instructions.

ARMPatch also accepts compiled executables and dynamic link libraries
as the source of new functions. Users need to specify, in the configuration
file, the locations of new functions in the files using symbols or offsets. Note
that these inputs go through the same parsing and disassembly stages as the
source binaries.

Owing to the coupling of binary files, it is not possible to extract the
instructions of a function from a binary, copy them into another binary



ARMPatch: A Binary Patching Framework for ARM-based IoT Devices 1839

Figure 6 An example of value-based relocation.

and expect it to work. In order to assure a proper function operation, it is
required to:

(1) Correct external references. Besides very basic pure algorithmic func-
tions, the code often depends on external references. They may be con-
stants or global variables of data segments, other functions in the same
binary, or third-party library functions previously imported through
dynamic linking. These references must be corrected, considering that
they may use PC relative offsets or fixed addresses.

(2) Correct internal references. The code may contain branches to internal
basic blocks due to the presence of control flows. If the entire function
is moved without changing any instructions, internal references are not
an issue. However, if external references must be corrected and thus, the
length of the function changes because of the replacing of instructions;
internal references must be fixed as well.

In addition to the aforementioned correction procedures, it is required to
perform an “instruction relocation” (do not confuse with linker relocation).
The process in detailed in the next section.

Instruction Relocation, During the disassembly stage, we have analyzed
each instruction in the function, finding the places where external references
are involved. They may be branch instructions such as “BL #0x70d08”, PC-
relative loads/stores like “LDR R1, [PC, #0x2b4]”; or any other instructions
that contain PC as operands such as “ADD R1, PC”. First, we determine
whether they are code or data by identifying the type of the instruction and
the segment in which it is included. Here, three cases are possible:

(1) Data. By default, ARMPatch extracts the value from the referenced
location and places it under the instruction. Then, it skips the data to
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Figure 7 An example of imported function relocation.

prevent it from being falsely executed as an instruction by including
“ADD PC, PC, #n”. Although this can work for any bytes, half-words,
words, and double words; it cannot cope with larger data structures,
strings, etc. In such cases, it is also possible to configure ARMPatch
to append an entire data segment from the new binary to the original
binary. The relocation will adjust the instructions to point to the correct
new locations in the data segment.

(2) Imported function. Calls to functions imported from external dynamic
link libraries are recognizable because they are usually branches of the
PLT section. By using the relocation entries of the ELF header, it is
possible to figure out what are the symbols of the imported functions.
Then, it is just needed to retrieve the locations of the PLT entries of
the same functions in the original binary to complete the relocation. A
limitation of our current implementation is that it cannot handle the cases
where the new function refers to external symbols that were not imported
in the original binary. Nevertheless, it is theoretically possible, although
complicated, to add new relocation entries, GOT, and PLT to the original
binary.

(3) Other functions in the binary. If the new function calls other functions
within its binary, the user has two options: (1) provide those func-
tions alongside it, or (2) let ARMPatch heuristically search for their
equivalents in the original binary. If these functions have the same names
for their symbols in both the original and new binaries, ARMPatch
will associate them accordingly. On the other hand, if symbols are not
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available (e.g., stripped binaries), our current implementation generates
byte patterns based on the instructions in the referenced functions and
looks for them into the original binary. Although we are aware that this is
not a perfect solution, optimizing this solution would be out of the scope
of this manuscript. As a future research line, we consider integrating
other state-of-the-art approaches such as DeepBinDiff [16].

Since the above steps involve replacing the original instructions with their
relocated equivalents, the length of the function will not be likely the same.
In this sense, ARMPatch keeps track of each instruction as it is rewritten,
creates a mapping between the original and the new offsets, and finally fixes
internal references after the relocation of the external ones is completed.

Algorithm: Pseudo-code to relocate external references & fix internal references
F: Function, M: Map, ID: Index List
function RelocateFunction(F)

Fnew = empty // Relocated function
Moff = empty // Mapping between original & new offsets
IDitn = empty // Indexes of internal reference instructions
offOrig = 0
offNew = 0
for each i in F

if IsExternalRef(i)
is = RelocateInstructionExternal(i)
Fnew.add(is)
Moff[offOrig] = offNew
offOrig + = len(i)
offNew + = len(is)

else
Fnew.add(i)
Moff[offOrig] = offNew
if IsInternalRef(i)

IDitn.add(offNew)
end if
offOrig + = len(i)
offNew + = len(i)

end if
end for
for each id in IDitn

i = Fnew[id]
Fnew[id] = RelocateInstructionInternal(Moff, i)

end for
return Fnew

end function
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Figure 8 Function diff patch file format.

Data Replacement: Constants defined in the source code (i.e., numbers,
strings, structures) become data in the segments of a binary after compila-
tion. Sometimes they can be the cause of bugs or security vulnerabilities.
ARMPatch provides a functionality to overwrite the original data (located by
symbol or offset) with the supplied data, supporting common primitive data
types (such as signed and unsigned char, short, integer, long, float, double),
or data structures composed with these primitive types. Of course, the length
of the data cannot be changed, since it would either change the location of the
data that follows, breaking the references; or overwrite it. In fact, it generally
does not make sense to vary the length of the data without also changing the
way the code loads it.

Function Diff Patch, ARMPatch also allows applying patches to func-
tions in the original binary by adding, removing, or altering instructions.
The function “diff patch file format” is a collection of operations that are
sequentially performed on the target function; as opposed to the patch config,
which modifies the entire binary. In this case, it can be manually crafted or
generated programmatically via “binary diff” algorithms.

Since the diff patch can change the length of the function and thus, the
internal layout of the instructions, the modified function may need to be
moved to a new segment whether the new length exceeds the available space
in the original location, just like than the function replacement operation
mentioned above. Similarly, it is subject to the relocation process to fix
internal and external references.

A typical use case for this functionality is to add parameter validations to
buggy or vulnerable functions. Consider the code as follows:

As shown, the original code contains a classic buffer overflow vulnerabil-
ity that is trivially exploitable by passing any password longer than 16 bytes,
so the flag on the stack can be overwritten with a non-zero value, exposing
the “super-secret information” without a correct password. In order to fix it, it



ARMPatch: A Binary Patching Framework for ARM-based IoT Devices 1843

Figure 9 An example of the function “diff patch”.

would be necessary to insert three instructions at the beginning of the function
to check the length and jump directly to the failed case if it exceeds the size
of our buffer.

Although the function “diff patch” fulfill its task, it is somewhat limited
in that it only provides shellcode-like instruction snippets, not complete func-
tions within other binaries. As a result, they lack context and it is impossible
for ARMPatch to resolve external references as in function replacement.
Therefore, introducing complex logic with this functionality is not practical.

Dependency Injection: When the original code is too complex or runtime
modifications/instrumentations are desired, the new code would depend on
a lot of new data and functions. In these cases, it is preferable to compile
the code into a dynamic link library to be loaded and tunned together with
the program. ARMPatch can do this by inserting new DT NEEDED entries
into the binary header. Again, if the size exceeds, the same technique used in
function replacement operations is applied to add segments (i.e., moving the
header to the end of the binary).

For this new dynamic link library to be useful, we still need some way
to redirect some original functions to the new implementations. A possible
solution is to create runtime hooks on the original functions during the
initialization paths of the library. Nevertheless, this solution is not conve-
nient because it would require additional code to make runtime changes
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Figure 10 “dlsym” workaround.

to the instructions. Moreover, since PIC is very popular in dynamic link
libraries [17], it is also impossible to statically patch instructions from the
original functions to jump to fixed addresses of the dynamic link library, as
they are not known before being loaded by the linker.

To solve these issues, we provide a workaround using “dlsym”. ARM-
Patch inserts a piece of code that (i) saves the parameters, (ii) locate the new
implementation in the library by its symbol using “dlsym”, and (iii) calls it;
into each of the original functions that need to be replaced.

A limitation of this solution is that the original binary must have already
imported “dlsym”, as we currently do not support adding new relocation
entries, GOT, and PLT. Furthermore, the workaround needs to call “dlsym”
whenever a symbol must be located, which can cause performance overhead
if it is used frequently. As a future research line, we plan to use cache to avoid
this issue.

Evaluation: In order to validate our approach and demonstrate the versa-
tility of our framework, we tested ARMPatch on two typical ARM devices:
(1) a wireless home router, and (2) an Android phone. The router is an ASUS
RT-ACRH13 equipped with the Qualcomm Atheros IPQ4028 SoC, running
a build of OpenWrt 19.07. It has a quad-core ARM Cortex A7 CPU clocked
at 717MHz and a 128MB flash memory, which we consider representative
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of mid-to-high-end IoT devices. On the other hand, the Android phone is a
OnePlus 7 Pro with Qualcomm Snapdragon 855 SoC technology, running the
Android 10 stock ROM. It has an octa-core ARM Cortex A76 CPU clocked at
2.84 GHz and an 8GB RAM, which is a typical Android phone configuration.

Case Study #1: Vulnerability Patching and Bug Fixing with Function
Replacement and Diff. First, we tested the patching of buggy and vulnerable
functions both by writing our own examples and using real-world instances
that have existed in real programs. Based on the statistics we showed above,
many fixes only involved changes to specific functions. Thus, we selected
cases where issues could be fixed using function replacements or diffs, pro-
grammed them as ARMPatch patches, and measured whether our framework
was able to fix them successfully. Moreover, we measured the space overhead
of our solutions.

As shown in the table above, ARMPatch successfully fixed all the cases
we tested. Although the space overhead is relatively large when the origi-
nal binary is small (because it needs to move the ELF header, insert new
segments, and cope with memory alignment requirements), it becomes less
significant as the input binary increases its size.

Case Study #2: Vulnerability Patching with multiple operations com-
bined. In cases where a patch involves more changes and additions (e.g.,
adding new functions, constants, strings, etc.), a simple function replacement
is not enough. For the second case study, we took some random samples
of security patches from open-source projects and evaluated whether they
could be implemented with ARMPatch. Again, measuring how much space
overhead it would introduce if it succeeded, and what the obstacles would be
if it did not.

As shown, ARMPatch was able to cope with two of the three problems
we tested above. However, it had difficulties with a patch of “libcurl” that
involved a change in data structures. We think this is one of the major
limitations of ARMPatch at the moment. If a data structure that is repeatedly
used in the code changes, many functions throughout the binary change
automatically, so it is unrealistic to apply binary-level patches. A workaround
for this issue would be to recompile the entire library as a dynamic link
library, then use Dependency Injection to replace the one that is statically
linked in the binary. This is still a very cumbersome and delicate process,
which is rarely practical.

Limitations: Even though we believe that ARMPatch has demonstrated
its ability to work as a comprehensive binary-patching framework, it presents
some limitations that are discussed below. While some of the remaining
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Table 3 List of cases tested with function replacement and diff

Project Source Description Successful Space Overhead

Demo:
CRC32

N/A A CRC32
calculation tool
with an incorrect
implementation of
the CRC32
algorithm. We
replaced the
algorithm with the
correct one.

Yes 12KB to 21KB
(75% increase)
(The original
binary is too small
to be
representative)

Demo:
Password
Check

N/A A program that
verifies passwords
from user input.
Contains a buffer
overflow
vulnerability. We
fixed the
vulnerability by
patching the check
function.

Yes 11KB to 21KB
(90% increase)
(The original
binary is too small
to be
representative)

uhttpd CVE-2019-19945 Invalid data access
can be triggered
with an HTTP
POST request,
causing
out-of-bounds
memory reads.

Yes 41KB to 48KB
(17% increase)

dnsmasq CVE-2020-25681 A heap-based
buffer overflow
allows attackers to
write arbitrary data
in a heap memory
segment, possibly
executing code on
the machine.

Yes 192KB to 202KB
(5% increase)

wget CVE-2019-5953 A buffer overflow
allows remote
attackers to cause a
denial-of-service
(DoS) attack or
execute arbitrary
code via
unspecified vectors.

Yes 283KB to 290KB
(2% increase)
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issues are minor imperfections that can be easily enhanced in the future,
we believe others are intrinsic to the currently available binary disassem-
bly/analysis techniques.

Complex PC-based Pointer Arithmetic: ARMPatch currently uses sim-
ple static analysis to determine whether a PC-relative reference points to
an external or internal target. Although we found this to be sufficient for
ordinary binaries in our tests (compilers generally do not produce code that
performs complex PC arithmetic), it is possible to have code that is difficult
or impossible to perform correct static analysis. In such cases, ARMPatch
will not be able to relocate the code correctly, resulting in errors executing
relevant instructions.

Self-modifying obfuscated/virtualized code: As in the previous problem,
ARMPatch it is not able to recognize the code that cannot be statically
analyzed. Some proprietary software use techniques to obfuscate its code and
protect it from being cracked or reverse engineered. Fortunately, this is rarely
a problem in open-source projects, and IoT devices scarcely employ these
techniques due to space and performance limitations.

Function recognition: As part of the steps to fix external references,
ARMPatch looks for the equivalent external functions called by the new code
in the original binary. In the current release, this is achieved by searching
for the exact instructions. While this guarantees correctness, it often fails to
match all in many cases. Depending on the compilers and parameters used,
the generated instructions can be drastically different even if the source code
is identical. This can be improved in the future by adopting more advanced
function recognition techniques.

Conclusion

Despite the rapid growth of IoT devices, lack of transparency and timely
updates cause many security risks. The absence of a static binary patching
solution suitable for vulnerability mitigation on ARM platforms also makes
it difficult for third parties to fix the issues themselves. In this study, we
analyze the specific needs to correct vulnerabilities in firmware of IoT devices
(without source code) using binary patching. We also explored and over-
come the involved technical challenges, which resulted in the development
of ARMPatch. Our proposal was validated with real-world cases, which
successfully solved 7 of the 8 vulnerabilities presented. Therefore, we believe
that ARMPatch has proven its effectiveness and versatility in fixing security
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vulnerabilities on ARM platforms, which we hope will be valuable for further
research in the field.
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