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Abstract

Knowledge graph embedding improves the performance of relation extrac-
tion and knowledge reasoning by encoding entities and relationships in
low-dimensional semantic space. During training, negative samples are usu-
ally constructed by replacing the head/tail entity. And the different replac-
ing relationships lead to different accuracy of the prediction results. This
paper develops a negative triplets construction framework according to the
frequency of relational association entities. The proposed construction frame-
work can fully consider the quantitative of relations and entities in the dataset
to assign the proportion of relation and entity replacement and the frequency
of the entities associated with each relationship to set reasonable proportions
for different relations. To verify the validity of the proposed construction
framework, it is integrated into the state-of-the-art knowledge graph embed-
ding models, such as TransE, TransH, DistMult, ComplEx, and Analogy. And
both the evaluation criteria of relation prediction and entity prediction are
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used to evaluate the performance of link prediction more comprehensively.
The experimental results on two commonly used datasets, WN18 and FB15K,
show that the proposed method improves entity link and triplet classification
accuracy, especially the accuracy of relational link prediction.

Keywords: Knowledge embeddings, negative sampling, link prediction,
knowledge graph.

1 Introduction

In recent years, knowledge graphs have been used as an important resource
in many fields [1], such as interactive retrieval [2], intelligence analysis [3]
and intelligent question answering [4]. Some famous knowledge graphs, such
as FreeBase [5] and YAGO [6], store vast amounts of structured data usually
in the form of triplets (head entity, relation, tail entity) (abridged as (h, r,
t)), each of which indicates that there is a relation between the head and
the tail in the real world. For example, the triple (Beijing, the capital of ,
China) indicates that there is a relationship between the head entity “Beijing”
and the tail entity “China” as “the capital of”. Although current knowledge
graphs contain millions of entities and billions of relational facts, there are
still huge amounts of unobserved relational facts. As an efficient way to
automatically predict the unknown relational facts, knowledge representation
learning completes knowledge graphs. It embeds the semantic information of
the entities and relations in knowledge graphs into the dense low-dimensional
real-valued vectors, which can fully reveal the semantic relations between
the entities and the relations to effectively alleviate the data sparseness
caused by the long tail distribution of the knowledge graphs. The semantic
similarity between entities is fast calculated as the distance between two
vectors in low-dimensional vector space to improve the computational effi-
ciency of knowledge representation learning in knowledge graphs. Because
of the advantage, many methods of knowledge representation learning are
proposed. These methods are usually divided into two categories: Tensor Fac-
torization Based Methods and Mapping Based Methods. The former contains
DistMult [7], ComplEx [8], ANALOGY [9], etc., and the latter contains,
Semantic Matching Energy (SME) [10], Semantically Smooth Embedding
(SSE) [11], and translation-based methods [12–19].

Translation-based methods, such as TransE [12], TransH [13] and
TransR [14], are the most used knowledge graphs embedding methods
because of their simplicity and high efficiency. A relation is regarded as a
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translation from the head entity to the tail entity in these methods. In this
kind of method, usually, a score function with parameters is defined, and
the margin-based training objective is used to separate a positive triplet and
its corresponding negative triplet. But there is a difficulty in training the
translation-based models. There are only positive training triplets in knowl-
edge graphs. Usually, to solve this problem, a negative triplet is constructed
by replacing the head or tail entity of a positive triplet randomly. Because of
the simplicity and easy implementation, it’s widely used by some translation-
based knowledge representation models, such as TransE, TransH, TransR,
and TransD [15], and other kinds of models, such as SE, SME, NTN. How-
ever, a practical knowledge graph is often far from complete, and this simple
randomly replacing method may introduce many false-negative triplets in the
training process. Here, the false-negative triplet is the positive triplets that are
mistakenly treated in training as a negative example. Because it is not possible
to traverse all the positive triplets when constructing negative examples, false-
negative triplets can’t be avoided, and they can only be reduced by reasonable
sampling. TransH improves the negative triplets constructing method. In
TransH, according to the category of relations, such as 1-to-1, 1-to-N, N-to-1
and N-to-N, the head or tail entities are replaced in different probabilities
when constructing negative triplets. Thus, the head entity in one-to-many
relations will get more chance to be replaced, and the tail entity in many-
to-one relations will get more chance to be replaced. This improvement,
widely used in TransR, TransD and TranSparse [18], can effectively reduce
the probability of generating false-negative triplets, and it also improves the
accuracy of the entity link prediction which aims to complete a triplet (h, r,
t) with h or t missing. To achieve better results in the relation link prediction
which aims to complete a triplet (h, r, t) with r missing, some presentation
models, such as TransA [16], TransG [19], replace the relation of a triplet
to construct the negative example for training, and improve the accuracy of
the relation link prediction. However, because of the imbalance of randomly
sampling and the unsuitable proportion of replacing probabilities between the
relation and entity in a triplet, it may introduce many false-negative triplets
into training and lead to some errors for link predictions.

In this paper, a novel negative sample generating framework in the
training of knowledge representation model is proposed. The remainder of
this paper is organized as follows. Section 2 elaborates on the negative
triplets construction framework proposed in this paper. And in Section 3,
the performance of the knowledge representation model of the proposed
negative triplets construction framework is tested, and compared with the
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original construction framework. Finally, in Section 4 the conclusions and
future research direction are given.

2 Negative Samples Construction Framework Based on
Frequency of Relational Association Entities

2.1 Negative Samples Generating Strategy

In the process of negative example construction, Excessive false-negative
samples reduce the accuracy of the representation model, and Too many
worthless negative triplets make the model convergence slow. To alleviate
the two problems above, a novel negative sampling framework is proposed.
It sets different probabilities to replace the three elements in the triplet: the
head entity, the relationship, and the tail entity. As replacing two or more
elements in a triplet at the same time will greatly increase the probability of
occurrence of false-negative triplets, only one element of the triple is replaced
at a time in our work. In addition, the sum of the replacement probabilities of
the relationship, the head entity and the tail entity equal to 1.

First, a formal description of the set of negative triplets constructed by
this framework is as follows:

S′(h,r,t)∈S = {(h′, r, t)|h′ ∈ E} ∪ {(h, r′, t)|r′ ∈ R}

∪ {(h, r, t′)|t′ ∈ E} (1)

where S′(h,r,t) (Shortly referred to as S′) is a set of corrupted triplets con-
structed by replacing the head entity h in the triplet (h, r, t) with h′ or
replacing the tail entity t with t′ or replacing the relation r with r′, and
the replaced triplets (h′, r, t), (h, r, t′) and (h, r′, t) are restricted not in the
original S(h,r,t).

Next, we study the relationship replacement probability assigned to
the triplet. There are differences between each relationship. For example,
some relationships is associated with few entities, such as the relationship
numbered 139 in the FB15k dataset: /metropolitan transit/transit service
type/transit lines, only two entities related with it: Entity number 529:
/m/0195fx, entity number 530: /m/0m sb; the relationship numbered 1028:
/user/tsegaran/computer/algorithm/family, and relationship number 1225:
/user/tsegaran/computer/algorithm family/algorithm, there is only one entity
related with them, 6917:/m/0382k.
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Some relationships have many related entities, such as relationship 30:
/people/person/profession, there are 4296 entities related with it.

It is not appropriate to use the same replacement probability for the above
two types of relationships. Therefore, for different relationships, different
relationship-entity replacement probability assignment values need to be set.
For triplets containing relationships with a small number of related entities,
we give them more opportunities to replace the entities; for those triplets
containing relationships with a larger number of related entities, we give them
more opportunities to replace relationships.

Specifically, we traverse the training set and get three statistics for all
triples containing specific relation r:

• the number of entities related with r: CEnt(r);
• the average number of tail entities per head entity, denoted as tph(r);
• the average number of head entities per tail entity, denoted as hpt(r).

Considering the other two features of the data set: the total number of
relationships |R| and the total number of entities |E|, we set the probability
of the replacement of the triplets containing the relationship r:

Pr =
CEnt(r)

1 + CEnt(r)
× |R|
|E|+ |R|

(2)

The greater entities related with the relationship r, the closer the relation
replacement probability of the triplet is to |R|

|E|+|R| when constructing a nega-
tive example; The less entities related with the relationship r, the closer the
relation replacement probability of the triplet is to 1

2 ·
|R|

|E|+|R| . Because the
triplet containing the relationship r has appeared in the training set, at least
one entity is associated with it, that is, CEnt(r) ≥ 1. Under special circum-
stances, there is CEnt(r) = 1, that is, the head and tail entities related with
the relationship r are same. For example, the numbered 1225 relationship in
the FB15k: /user/tsegaran/computer/algorithm family/algorithm, the number
of its related entities is 1.

Finally, the probability allocation method for replacing head and tail
entities of TransH is extended as

tph(r)

tph(r) + hpt(r)
(3)

Which is defined as a parameter for sampling: for a true triplet (h, r, t)
with relation r, and the replacement probability assigned to the head
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entity is

Ph = (1− Pr)
tph(r)

tph(r) + hpt(r)
(4)

the replacement probability assigned to the tail entity is

Pt = (1− Pr)
hpt(r)

tph(r) + hpt(r)
(5)

2.2 The Probability of Generating False-negative Samples in the
Proposed Framework

For an element in the set of constructed triplets, ∆′ ∈ S′, if ∆′ is true, that is,
it is a false-negative triplet, and this situation is recorded as event A. if ∆′ is
a valid negative triplet, and this situation is recorded as event A.

The element of events set B = {Br, Bh, Bt} denotes the event which
method is selected to generate the negative triplets, relation replacement, head
entity replacement, or tail entity replacement. Br, Bh, Bt is a division of the
sample space B, expressed as Equation (6).

P (Br) + P (Bh) + P (Bt) = 1
Br ∩Bh = φ
Br ∩Bt = φ
Bh ∩Bt = φ

(6)

According to Total Probability Theorem , the probability of generating
false-negative triplets using head and tail entity replacement and relationship
replacement methods can be calculated by Equation (7).

P (A) = P (A|Br)P (Br) + P (A|Bh)P (Bh) + P (A|Bt)P (Bt) (7)

where P (A|Br) represents the probability that the triplet (h, r′, t) obtained
through relationship replacement is true, that is, the probability of obtain-
ing an invalid negative triplet through relationship replacement; P (A|Bh)
represents the probability of generating false-negative triplets by head entity
replacing; P (A|Bt) represents the probability of generating false-negative
triplets by tail entity replacing;P (Br) represents the probability of using rela-
tionship replacement when constructing corrupted triplets; P (Bh) represents
the probability of using head entity replacement when constructing corrupted
triplets; P (Bt) represents the probability of using tail entity replacement
when constructing corrupted triplets.
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There are |R|−1 possible values for the triplet (h, r′, t) after the relation-
ship replacement of the triplet (h, r, t), because r′ ∈ R, r 6= r′. The number
of false-negative triplets is the number of constructed triplets appeared in the
dataset. The number of occurrences of the relationship for the fixed (h, t)
in the dataset can be counted, and recorded it as rp(h, t). Therefore, the
probability of invalid negative triplets P (A|Br) produced by the relationship
replacement can be expressed by Equation (8).

P (A|Br) =
rp(h, t)− 1

|R| − 1
(8)

where both the numerator and denominator minus 1 is due to the removal of
the original triple (h, r, t). It should be noted that the triplets in the dataset
are not repeated, and we only count the pairs (h, t) that appear in the triplets
in the dataset. So, 1 ≤ rp(h, t) ≤ |R|.

There are |E| − 1 possible values for the triplet (h′, r, t) after the head
entity replacement of the triplet (h, r, t), because h′ ∈ E, h 6= h′. The number
of invalid negative triplets is the number of constructed triplets appeared in
the dataset. The number of head entities that appear in each tail entity for the
relation r in the dataset can be counted and denoted as hpt(r). Therefore,
the probability of false-negative triplets being replaced by the head entity
P (A|Bh) can be expressed as Equation (9). Same as above that the numerator
and denominator minus 1 because the head entityhin the original triple is
going to be removed.

P (A|Bh) =
hpt(r)− 1

|E| − 1
(9)

There are |E| − 1 possible values for the triplet (h, r, t′) after the head
entity replacement of the triplet (h, r, t). This is because t′ ∈ E, t 6= t′.
The number of invalid negative triplets is the number of constructed triplets
appeared in the dataset. The number of tail entities that appear in each tail
entity for the relation r in the dataset can be counted and denoted as tph(r).
Therefore, the probability of false-negative triplets being replaced by the tail
entity P (A|Bt) can be expressed by Equation (10). Same as above that the
numerator and denominator minus 1 because the tail entity t in the original
triple is going to be removed.

P (A|Bt) =
tph(r)− 1

|E| − 1
(10)
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In consequence, the probability of generating false-negative triplets P (A)
using head and tail entity replacement and relationship replacement methods
can be calculated by Equation (11).

P (A) =
rp(h, t)− 1

|R| − 1
P (Br) +

hpt(r)− 1

|E| − 1
P (Bh) +

tph(r)− 1

|E| − 1
P (Bt)

(11)

where the sum of P (Br), P (Bh) and P (Bt) equal to 1. And in the proposed
framework, P (Br), P (Bh) and P (Bt) is defined as follow:

P (Br) = Pr =
CEnt(r)

1+CEnt(r)
× |R|
|E|+ |R|

P (Bh) = Ph = (1− Pr)
tph(r)

tph(r) + hpt(r)

P (Bt) = Pt = (1− Pr)
hpt(r)

tph(r) + hpt(r)

(12)

Finally, the probability of generating false-negative triplets P (A) can be
obtained:

P (A) =
rp(h, t)− 1

|R| − 1
P (Br) +

hpt(r)− 1

|E| − 1
P (Bh) +

tph(r)− 1

|E| − 1
P (Bt)

=
rp(h, t)− 1

|R| − 1
Pr +

hpt(r)− 1

|E| − 1
(1− Pr)

tph(r)

tph(r) + hpt(r)

+
tph(r)− 1

|E| − 1
(1− Pr)

hpt(r)

tph(r) + hpt(r)

=
rp(h, t)− 1

|R| − 1
Pr + (1− Pr)

2tph(r) · htp(r)− (tph(r) + htp(r))

(|E| − 1)(tph(r) + hpt(r))

=
rp(h, t)− 1

|R| − 1
Pr + (1− Pr)

×
(

2tph(r) · htp(r)
(|E| − 1)(tph(r) + hpt(r))

− 1

|E| − 1

)
(13)
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3 Experimental Results and Discussion

In this section, the proposed negative samples generating framework is
verified on datasets FB15K and WN18 by entity prediction and relation
prediction tasks. The impact of the probability of relation replacement is
also investigated. First, the datasets FB15K and WN18 are introduced. Then,
in the experimental setup, our evaluation protocol and implementation are
described. In order to analyse the impact of replacing probability on the
entity and relation prediction, we select the relation replacement probabilities
from a list of real values between 0 and 1.0. The experimental results show
the effectiveness of our improvement in the negative samples generating
framework.

3.1 Datasets

To make objective experimental comparisons with more representation mod-
els, two widely chosen datasets FB15K and WN18 [20] are used to evaluate
our framework.

Among them, FB15K is a data set extracted from Freebase, which con-
tains 14,951 entities, 1,345 relationships and 592,213 triplets; WN18 is a data
set extracted from WordNet, which contains 40,943 entities, 18 relationships
and 151,442 triplets. The partitioning of these two datasets and their training
set, validation set and test set have been published [20]. Please refer to Table 1
for details.

3.2 Results

For link prediction, relational link prediction, and triplet classification testing,
the same model uses the same set of hypermeters on a data set. The parameter
settings are shown in Table 2. Among them, “+” means that our negative
example construction framework is applied to the model on the left.

The Entity prediction results is presented in Table 3. The Best Results for
Each Case are bolded,and “−” denote as no result in the original paper. The

Table 1 Datasets used in the experiment

Dataset #Rel #Ent #Train #Valid #Test

FB15K 1,345 14,951 483,142 50,000 59,071

WN18 18 40,943 141,442 5,000 5,000
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Table 2 Hyperparameters used in the model in the experiment

Model WN18 FB15K

TransE d=100, γ = 1, α = 0.001 d = 100, γ = 4, α = 0.001

TransE+SparseNSG d = 100, γ = 1, α = 0.001 d = 100, γ = 4, α = 0.001

TransH d = 100, γ = 1, α = 0.001 d = 100, γ = 4, α = 0.001

TransH+SparseNSG d = 100, γ = 1, α = 0.001 d = 100, γ = 4, α = 0.001

DISTMULT d = 200, α = 0.1 d = 200, α = 0.1

DISTMULT+SparseNSG d = 200, α = 0.1 d = 200, α = 0.1

COMPLEX d = 200, α = 0.1 d = 200, α = 0.1

COMPLEX+SparseNSG d = 200, α = 0.1 d = 200, α = 0.1

ANALOGY d = 200, α = 0.1 d = 200, α = 0.1

ANALOGY+SparseNSG d = 200, α = 0.1 d = 200, α = 0.1

relational prediction results are listed in Table 4, and Table 5 shows the triple
classification results. The Best Results for Each Case are bolded, too.

3.3 Discussion

According to the comparison results of the entity predictions listed in Table 3,
it can be seen that the proposed negative triplets construction framework can
improve the entity prediction performance on the majority of knowledge
presentation models. The entire training round is the same, and the new
negative example construction method divides the probability of replacing
the head and tail entities into a part for relationship replacement for training.
The number of training rounds that are originally given to the replacement
of head and tail entities has been reduced, which may lead to a decrease
in the performance of entity prediction. However, the experimental data of
Table 3 shows that the performance of the entity has not decreased, and
the performance of entity prediction has improved. The reason is that the
training of constructing negative examples of relationship replacement is not
completely independent of the entity’s predictive ability. The increase in the
constructive dimension of negative examples can affect the entity’s predictive
ability, which is the result of adding a reasonable probability of relationship
replacement.

In addition, in terms of the number of entities, WN18 has 40,943 and
FB15K has 14,951. Entity prediction is to select from so many entities the
entities that can be missing from the triple. Therefore, in Table 3, hit@10 is
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Table 4 Comparison of relationship prediction experiment results

WN18 FB15K

MeanRank Hit@3(%) MeanRank Hit@3(%)

Datasets Model Raw Filter Raw Filter Raw Filter Raw Filter

TransE 3.27 3.27 73.6 73.64 208 207.6 58.2 58.8

TransE+SparseNSG 3.14 3.14 74.8 74.8 3.28 2.93 89.4 93.7

TransH 3.34 3.34 70.1 70.1 212.8 212.4 44.9 48.2

TransH+SparseNSG 2.92 2.92 73.6 73.6 3.22 2.87 89.8 94

DISTMULT 3.18 3.02 72.6 72.6 55.9 53.6 89.9 95

DISTMULT+SparseNSG 2.24 2.96 73.5 74.9 34.6 32.6 92.6 97

COMPLEX 3.26 3.16 74.6 75.7 52.6 51.3 89.6 93.5

COMPLEX+SparseNSG 3.15 2.97 75.1 76.2 33.71 33.24 92.6 94.6

ANALOGY 3.69 3.57 75.8 76.9 55.7 54.3 86.8 89.4

ANALOGY+SparseNSG 3.58 3.49 76.5 78.3 31.7 30.5 92.6 95.4

suitable for comparing the prediction performance of different model entity
links.

The amount of relationship coefficients between the two data sets is
much smaller than the number of entities, FB15K only has 1,345, and WN18
even has only 18. Hit@10 is no longer suitable for evaluating the predictive
performance of the model. Therefore, in Table 4, hit@3 is more suitable for
evaluating the predictive performance of relational links.

The comparison results in Table 4 show that the relationship prediction
performance has improved on the WN18 dataset, but not as obvious as
FB15K. This is because the number of relationships in FB15K is 1,345, while
the number of relationships in WN18 is only 18. The FB15K dataset has a
wide variety of relationships and is more complicated. Therefore, the relation-
ship prediction on FB15K is much more difficult than WN18. Experiments
on two datasets show that in relational prediction, the performance of rela-
tion prediction has been significantly improved after applying the proposed
negative triplets construction framework to these knowledge representation
models. This shows that our negative triplets construction framework is more
comprehensive than the previous negative triplets construction in the training
of the model. It fully demonstrates the influence of the relationship vector on
the performance of training in the knowledge representation model.

In Table 5, the triple classification experiment results demonstrate that
the proposed negative triplets construction framework can improve the
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Table 5 Comparison of the results of the triple classification experiment

Model FB15K

TransE 79.6

TransE+SparseNSG 83.0

TransH 80.2

TransH+SparseNSG 83.1

DISTMULT 87.0

DISTMULT+SparseNSG 87.7

COMPLEX 87.2

COMPLEX+SparseNSG 88.6

ANALOGY 87.8

ANALOGY+SparseNSG 89.5

performance of the knowledge representation model on the triple classifica-
tion task. In order to further discuss the effectiveness of the proposed negative
triplets construction framework on the triple classification task.

4 Conclusion

In this paper, a new negative triplets construction framwork based on rela-
tional association entity sparseness is presented and applied to knowledge
representation learning models TransE, TransH, ComplEx, DistMult and
ANALOGY. The framework optimized the training process of knowledge
representation learning by introducing the statistical features of the rela-
tionship between the datasets and the association between entities into the
distribution probability of the relationship replacement in the negative case
construction, achieved an improvement in the performance of entity and
relationship link prediction, especially the performance improvement of rela-
tionship prediction is more significant. Moreover, we study the impact of the
probability ratio of relationship replacement and entity replacement in the
negative triplets construction on entity prediction and relationship prediction
performance. The experimental results show that the ratio of relationship
replacement and entity replacement probability which is designed based on
dataset relationships and statistical characteristics in our negative triplets
construction framework can make the multi-class typical knowledge repre-
sentation learning model achieve a balance between relationship prediction
and entity prediction performance. However, the influence of the ratio of
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positive and negative samples in training is not considered in this new
framework.

The above knowledge representation learning models perform well when
predicting the tasks of entities and relationships that have occurred in the
training set. And the performance of the forecasting tasks for new entities
and relationships is not ideal. Many knowledge representation models that
can handle new entities and relationships will be proposed. In the future, how
to quickly and accurately predict the open representation model of newly
entered entities and relationships will be an important development direction;
it is also worthwhile to study whether the open representation model can
continue to reuse the negative triplets construction framework proposed in
this paper; the replacement probability assignment of the relationship with
the relationship, the actual scenario match the relationship prediction and the
match between actual scenario and the relationship prediction and the entity
prediction requirements are also the directions to be studied next.
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