
Local Consistency Reinforcement for
Enhancing Web Service Composition

Ahad AlQabasani1, Ahlem Ben Hassine1,
Arif Bramantoro2,∗ and Asma AlMunchi3

1CS-AI Department, College of Computer, Science and Engineering, University of
Jeddah, Saudi Arabia
2School of Computing and Informatics, Universiti Teknologi Brunei, Bandar Seri
Begawan, Brunei Darussalam
3Cyber-Security Department, College of Computer, Science and Engineering,
University of Jeddah, Saudi Arabia
E-mail: aalqabasani.stu@uj.edu.sa; abinhusain@uj.edu.sa;
arif.bramantoro@utb.edu.bn; ammunshi@uj.edu.sa
∗Corresponding Author

Received 26 May 2021; Accepted 26 December 2021;
Publication 12 April 2022

Abstract

Composing Web services to fulfill a user query remains one of the most
challenging research problems due to its importance to the world economy.
Several composition techniques have been proposed, but these techniques are
becoming more and more expensive due to the tremendous growth of data
over the internet, the intensive use of services, and the continuous changes of
available services. The workflow-based Web service composition problem
is an NP-complete problem, due mainly to the property of the workflow
structuring the composition and the diversity of underlying constraints. Rein-
forcing local consistency is one of the well-known pre-processing techniques
to reduce the complexity of most NP-complete problems. These techniques
are mainly dedicated to binary constraint satisfaction problems. Therefore,
only few researchers devoted their efforts toward reinforcing some level of

Journal of Web Engineering, Vol. 21 4, 989–1016.
doi: 10.13052/jwe1540-9589.2142
© 2022 River Publishers

990 A. AlQabasani et al.

local consistency on Web service composition problems that can be seman-
tically defined in the Ontology Web Language for Web Services (OWL-S)
control structure based constraints. The main goal of this paper is to propose
a novel approach for reinforcing a reasonable level of local consistency, node
and arc-consistency on any Web service composition problems. It is expected
to provide a more up-to-date and realistic representation of any Web service
composition problems without any user interactions, but with the ability to
cope with any types of user’s query, such as incomplete, ambiguous, and
others. This is due to the existence of several novel rules for reinforcing node
and arc-consistency on all types of control structure constraints. Experiments
were performed on random problems of different levels of complexity to
evaluate the performance of the proposed approach.

Keywords: Arc-consistency, constraint problems, NP-complete, web ser-
vice composition, ontology web language for web services.

1 Introduction

As a result of the explosion of data over the internet, the popularity of services
over the Web, and dynamic changes of available services over any platforms;
the use of Web services becomes a central factor in human civilization. A Web
service is a Web-accessible entity that authorizes reaching various services
through WWW to satisfy the diversity of consumer interests and needs. Web
services can be generally classified into two types: simple Web services and
composite Web service [1]. Simple Web service is a Web service that has
no dependency on other Web services to accomplish a consumer request,
whereas composite Web service refers to the clustering and orchestration of
the functionalities of different Web services to deliver what the user request.

Recently, a simple Web service is not enough to fulfill every users’
queries. Several applications that provide several types of Web Service Com-
position (WSC) solutions were proposed. Nevertheless, these solutions are
resource-consuming especially when dealing with complex and incomplete
queries. In this research, we are interested in improving the WSC process
and optimizing required resources. Our main goal is to propose a solution as
a pre-processing step for the composing process that enhances the complexity
of the WSC problem by reducing the consumption of resources in terms
of CPU time and memory. Our idea is to enforce several optimal levels
of consistency on the original composing problem in order to reduce the
number of inconsistencies. Enforcing consistency is a known approach in

Local Consistency Reinforcement for Enhancing Web Service Composition 991

the Constraint Satisfaction Problem (CSP) community that is often used for
complex real problems. However, direct application of this approach on Web
service is not straightforward due to the different semantic and direction
of possible relationships between Web services. These relationships can be
formalized as one of the main feature of services orchestration [2]. It is how
these services are combined together by using control structures of the latest
open standards of Ontology Web language for Web Services (OWL-S) [3].
OWL-S control structures are defined as follows [3, 4]:

• Sequence
The tasks of Sequence are described as a list to be executed in order
without any predefined conditions.

• Split
The components of a Split process are a bag of tasks to be executed con-
currently. The split process completes as soon as all of its components
are executed.

• Split+Join
The process consists of concurrent and synchronized execution of a
bunch of tasks. A Split+Join control structure completes when all of
its components have been executed. Using two control structures of
Split and Split+Join, it is possible to design a partial synchronization
by splitting and joining few tasks.

• Any-Order
It allows a bag of tasks to be executed asynchronously and in an unspec-
ified order. This control structure requires the execution and completion
of all its components. The execution of processes in Any-Order construct
cannot overlap, but their completion is required.

• Choice
It calls for the execution of a single task from a given bag of tasks. Any
of the given tasks may be chosen for execution.

• If-Then-Else
The If-Then-Else is a control construct that has properties of if con-
dition, then, and else holding different aspects of the If-Then-Else. Its
semantics is intended as ”Test If-condition; if True do Then if False do
Else.”

• Iterate
The Iterate construct makes no assumption on how many iterations are
being made for a task, and when to initiate, terminate, or resume it. The
initiation, termination and maintenance condition can be specified with
whileCondition or untilCondition.

992 A. AlQabasani et al.

The main contributions of this research are i) to enhance the representa-
tion of any WSC problems that can cope with any types of real user’s query,
such as incomplete, ambiguous, and others; without any interactions with
the user and with the idea of extracting missing information in incomplete
user query based on existing Web resources, to ensure that all underlying
tasks added to the initial problem are solvable; ii) to propose novel rules
for enforcing a reasonable level of consistency on any WSC problems since
the constraint graph of this problem are non-binary and not affordable to
transform into binary due to the semantic nature of the OWL-S links; iii)
to propose a new agent-based problem-solving approach based on the rules
for solving general real-world WSC problems.

2 Related Works

Many researchers tackled the challenge of formalizing and solving Web
services composition problems to fulfill a user query, such as in [5]. An
automatic WSC can reduce unexpected failures by minimizing human inter-
vention with automatic generation of composite services process as grounded
in [6]. In [7], the authors introduced two algorithms using a service depen-
dency graph, and a services combination through I/O dependencies. The
solution starts from the evaluation of whether a certain request made by a
consumer can be established or not. As a filtering process, it calculates the
minimum cost of the search result of the produced services. These processes
produce all paths being traversed, even for the invalid ones or those that lead
to a different targeted result.

In [8], a multigraph representation for the recommendation system is
introduced. This system follows an automatic service composition by inter-
acting with user preferences and service behavior achieved in the previously
processed service’s history. In [9], the authors proposed an artificial bee
colony algorithm for WSC. It is interesting to note the algorithm is con-
sidered as web service selection problem instead of WSC, although several
decomposition graphs are presented. The main idea of this algorithm is to
employ the nature of bee colony to find the best services amongst other
services as neighboring nodes. However, it remains unclear how to per-
form an overall WSC based on the outcomes of this algorithm. Another
type of nature based algorithm was discussed in [10] that proposes to use
ant colony system to solve cloud based services composition. Multi agents
are collaborated to perform various actions and integrated with ant colony
method. In terms of Quality of Service (QoS), the execution time of the

Local Consistency Reinforcement for Enhancing Web Service Composition 993

algorithm reaches 30 seconds and the fitness value reaches 39.37. These three
papers infer that a graph search method must process all nodes of services
by an iteration of exploration process to find a better solution. However,
the more solutions the algorithm to search for, the more time and memory
it consumes. In addition, the aforementioned solutions lack of integrity in
terms of discarding unneeded solutions that remain processed into the final
process.

The authors in [11] aim to solve the problem of dynamic changes in user
functional requirements that might appear during the execution. The four
stages of the automatic WSC process, which includes planning, discovery,
selection, and execution; are also discussed in detail. They implement the
workflow by using a hierarchical task network planner developed based on
the user specification as an input, the desired output, and the constraint
as a requirement. The planner can be transformed to an OWL-S with the
technique of accuracy check. We incorporate a similar technique to define a
complementary concrete web service.

Semantic similarity measurement is one of the techniques used in WSC.
To accommodate the semantic similarity, an integrated development envi-
ronment system for composite services engineering is proposed in [12].
The system requests a user to fully clarify the query together with a main
input as well as the preferences. However, if a user is unable to fulfill the
query parameters due to an overhead in the process or simply by mistake,
it results in an incomplete query, which eventually produces an inadequate
outcome. The system requires a clear interpretation of services’ semantics
and characteristics, because the composition procedures strongly depend on
the similarity between web services’ semantics.

More and more composition approaches were proposed in the literature
due to the importance of this problem. Nevertheless, most of them tried to
find the optimal solution. However, finding an optimal solution consumes a
considerable amount of time and memory, especially when the size of the
problem increases. The aforementioned approaches lack integrity in terms of
discarding unneeded sub-solutions that may appear in the final process.

Many researchers performed several investigations to improve the solving
process of complex problems as a pre-processing step, known as local consis-
tency reinforcement techniques. These techniques have gain more attention
through decades and, consequently, several improvements are introduced to
each reinforced consistency level [13]. Arc-consistency is the most common
filtering technique. Several extensions were proposed in [14, 15], where the
new versions of arc-consistency above AC-3 have been introduced to enhance

994 A. AlQabasani et al.

worst-case complexity, such as AC-4, AC-6, and AC-7; but ultimately they
are harder to implement.

In [16], authors redefined another level of consistency, which is cir-
cuit consistency. The proposed technique is d-Dynamic Circuit Consistency,
where d is the order of different constraints. This level is different from
the arc-consistency. It is based on an oriented graph of constraints. Despite
the importance of these techniques, only few efforts were devoted towards
involving several levels of consistency as a pre-processing step for enhancing
the solving process of any WSC problems. The main reason is that the
constraint graph in the WSC problem is on the one hand a non-binary graph
and on the other hard oriented according to the control structure constraints,
therefore, it is difficult to transform into a binary one due to the semantic
characteristics of the used OWL-S links.

In [17], the authors propose a new approach based on two local consis-
tency reinforcement methods, i.e. node and arc-consistency. Their idea is to
start by directly removing the values that do not satisfy unary constraint and
comprise the least worthy of QoS. It is followed by pruning the values of the
inconsistent arc. In this work, the authors did not consider all types of OWL-S
control structures that may exist in the constraint graph. Moreover, there is no
effect on the reinforced consistency level. Although the objective is to keep
only the highest service quality in the skyline set, the authors did not consider
different types of (non-binary) constraints that can exist between different
tasks. In [18], the authors propose an orchestration of complex tasks with the
goal of reaching an optimal representation to solve any WSC problems. In
their proposed CSP-based formalization, they rely on the interaction of the
user in order to deal with incomplete queries. However, none of the levels of
local consistency is considered.

Table 1 compares our proposed approach to the aforementioned existing
techniques in terms of the workflow pattern, the use OWL-S to employ

Table 1 Previous works on WSC comparison
Work Semantic Use Flow Pattern OWL-S Local Consistency
[19] QoS Sequence, AND, XOR N/A N/A
[11] QoS Sequence, Choice OWL-S Semantics N/A
[12] Semantic

similarity
Graph transformation OWL-S Semantics N/A

[17] QoS N/A N/A Considered
Ours Semantic

similarity
Sequence, Split, Join OWL-S control

structures
Considered

Local Consistency Reinforcement for Enhancing Web Service Composition 995

its control structure on the composition, and the accommodation of local
consistency.

3 Consistency Reinforcement for WSC

In this section, we describe our novel formalization of any WSC problems
followed by the description of the proposed rules to reduce their complexity
before starting the solving process.

3.1 New Formalisation for WSC Problem

The proposed formalisation is a novel one in which i) we deal with any type of
user query, such as ambiguity, incompleteness, and others; ii) we rely on the
recommendation given to each existing Web services, instead of the QoS that
is not always available and the enforcement of QoS increases the complexity
as well as the execution time as shown in [19]; iii) we increment the current
problem by using the available Web resources rather than interacting with the
users or using the existing workflows which may not be available due to the
lack of public standards on their execution language. Hence, the extraction of
missing information in incomplete user query is performed based on existing
Web resources, to be sure that all underlying tasks are solvable. Note that the
information related to the hidden tasks can be exploited to make the query
feasible. In the WSC problem, whatever the query given by the user, we have
to find the ”best” composite Web service that fulfills this query. There is no
way to answer it without providing a solution.

The WSC problem can be defined by a set of Distributed Dynamic
Constraint Optimisation Problems (DDCOP) (X, D, C, f), as follows:

• X = {X1, X2, . . . , Xn} with n is the number of initial ambigous/
incomplete tasks, that we call abstract Web services, in the user query.
Each Xi = ({Xi.in}, {Xi.out}, {Xi.pre}, {Xi.post}). Note that for the
initial task X1 (resp. the final task Xn), the set of inputs and preconditions
(resp. outputs and postconditions) are given by the user. This set of tasks
can be incremented according to the type of the task.

• D = {D1, D2, . . . , Dm} with m is the number of initial available
concrete Web services for each Xi, whose service profile descriptions
semantically match the task specification [20]. The input of the Web
service (resp. the output) is semantically included in the input of the
task (resp. output of the Web service). For each concrete Web service
skj ∈ Dk, we assign a degree of recommendation, wkj ∈ [0, 1]. This

996 A. AlQabasani et al.

value can be determined using a machine learning based recommender
system.

• C = CH ∪ CS , two types of constraints, hard and soft constraints.
The CH defines the constraints between tasks, whereas CS defines
all the constraints related to the preferences of the users, for example
user preferences on the language of several Web services. For each
constraint Cj ∈ CS , we assign a penalty ψj ∈ [0, 1] that reflects the
loss for not satisfying the constraint with

∑
j∈[1..|CS |] ψj = 1. If Cj is

a hard constraint then ψj = 1. Sometimes the preferences of a user are
conflicting, which means that it cannot be all satisfied. Therefore, we try
to minimize the less unsatisfied preferences.

• f (sl) is the objective function to optimize as given in (1), where sl is
a solution of the problem defined by instantiating all variables of the
problem with concrete Web services. f (sl) is defined as the summation
of the degree of recommendation of all involved concrete Web services
in the obtained solution (sl) and the importance of all unsatisfied soft
constraints by executing sl.

f(sl) = α×Rec(sl)− β × Penality(sl) (1)

with
Rec(sl) =

∑
sj∈sl

wj (2)

and
Penalty(sl) =

∑
Ck∈CS

ψk (3)

with α and β ∈ [0, 1] as an adjustable weight depending on the service
domain. For example, if the user request deals with planning a trip over-
seas, the weight associated to the user’s preferences (i.e. β) should be
greater than the one associated to the recommendation (i.e. α), because
the user usually prefer a service with less service recommendation.

For our DDCOP, the initial set of abstract Web services and their domains
is distributed among a set of Task agents. Each agent initially maintains only
one task and tries to find a solution for it. The use of multi-agent system
can be indicated by the fact that for an abstract workflow, several tasks can be
performed independently and in parallel, in order to reduce the computational
complexity. Therefore, assigning an intelligent software compound that is
able to act autonomously and independently for taking a decision enhances

Local Consistency Reinforcement for Enhancing Web Service Composition 997

the global solving process and consequently provides the result in a faster
manner.

Any agents can update its set of task(s) using available resources, which
means that each agent maintains a part of the initial CSP and increments
it through subtasks or constraints if needed. This is the characteristic of
dynamic CSP. The links between Task agents are defined by the OWL-S
control structure according to the initial workflow that corresponds to the
user query. Each agent tries to find the best solution for its task(s) as defined
in (1) as a local goal, while all agents communicate to find the best solution
sl∗ that satisfies all hard constraints and maximizes the global goal as given
in (4).

f(sl∗) = argmax
sl

f(sl) (4)

Solving this DDCOP problem involves two main steps:

1. The first step is a preprocessing one, in which all Task agents cooperate
to reduce the size of the initial problem by reinforcing the most rea-
sonable level of consistency, i.e. node and arc-consistency, on each type
of the OWL-S constraints based on the rules proposed in this paper. If
the domain maintained by any of the Task agent becomes empty, the
agent tries to change its underlying task by another set of tasks, using
its available resources, if possible. Otherwise, a deeper investigation to
replace this task is performed.

2. The second step is the solving one, in which all agents communicate to
find a ”good” solution for the problem according to (4).

3.2 Consistency Reinforcement Rules for WSC Problem

The WSC problem differs from other CSP problems, since the constraints in
its corresponding constraint graph are i) naturally oriented, ii) not applicable
to map to binary constraints, i.e. most constraints involve only one variable
from one side and several variables from the other side, and iii) extracted
from OWL-S control structures and hence it is subject to the semantics of
these control structures.

Applying existing techniques for reinforcing a certain level of consis-
tency is not possible, since most of these techniques are dedicated for
binary oriented constraints. Therefore, we need to propose new rules for
enforcing consistency according to each OWL-S control structure based
constraint. Consistency reinforcement techniques are mainly used with NP-
complete problems in order to reduce their search space and consequently
their complexity.

998 A. AlQabasani et al.

The reinforcement of local consistency filters the possible existing Web
services and, therefore, reduces the complexity of the underlying problem.
Hence, incorporating the most used level of our rules increases the optimality
of the result. The higher the consistency level applies, the more constraints
the variables (available Web services) will have and the more services will be
reduced. Composing Web services is a complex task. Consequently, a direct
reinforcement of existing algorithms is not possible, since the composition
of the services to the customer must follow the scenario or the workflow of
executing several Web services. We refer this process to service orchestration,
which is achieved by using control structures of the open standards OWL-S.

We propose the concept of complement between two Web services that is
defined as follows.

Definition 1 A concrete Web service sjl is a complement of another concrete
Web service sik , i.e. complement(sik , sjl), if and only if sjl .in ⊆ sik .out.

Definition 2 An abstract Web service Xi is node consistent (NC), if and only
if all concrete Web services sik in its domain D(Xi) can perform the task
specified by Xi.

In order to invoke a concrete Web service sik , we need to provide all the
required inputs for this Web service. For i=1, these inputs are given by the
user, otherwise they are provided by the previous invoked Web services.

Rule 1. An abstract Web service Xi is NC, if and only if for all sik ∈ D(Xi),
sik .in ⊆ {X1.in ∪ Xj .out for all Xj that precedes Xi and i 6= 1}. Note that
X1.in defines all the initial information (inputs) provided by the user in the
query. These information can be used in each task of the abstract workflow.

In order to reinforce NC for each abstract Web service Xi, we should
remove all sik from D(Xi) that does not satisfy Rule 1. It means that
we should remove all sik from D(Xi), where sik .in are not provided by
previous Xj .

Arc-consistency is the most used level of consistency due to its complex-
ity with regards to the performed reduction. Arc-consistency can be applied
only on binary constraints. Applying arc-consistency on the WSC problem
cannot be performed automatically due to the nature of the underlying
constraint graph, i.e constraints are not binary and cannot be transformed
easily into binary ones. Therefore, we propose several rules for enforcing
arc-consistency on any WSC problems according to the type of OWL-S link.

Definition 3 An abstract Web service Xi is arc consistent if and only if,
D(Xi) 6= ∅ and each concrete Web service sik in the domain of D(Xi) has

Local Consistency Reinforcement for Enhancing Web Service Composition 999

a complement sjl in the domain of all Xj with i6=j, related to Xi by one of
the OWL-S control structure.

In the following, the proposed arc-consistency rules according to the
OWL-S control structures are briefly described. Note that only major OWL-
S control structures are considered in this paper due to the efficiency of the
discussion.

Sequence structure is a binary oriented constraint between two abstract
Web services. Checking arc-consistency for this constraint should be done
from both sides using the following proposed rule.

Rule 2. An abstract Web service Xi is arc consistent if and only if Xi is arc
consistent with all Xj related to it by Sequence control structure, i.e. link(Xi,
Xj)=Sequence. Xi is arc consistent with Xj if and only if i) each Web services
sik in the domain of Xi have at least one complement in the domain of Xj and
ii) each Web service sjl in the domain of Xj has served as a complement to a
Web service in Xi.

Formally, an Xi is arc-consistent iff Xj with link(Xi, Xj)=Sequence, i), ∀
sik ∈ D(Xi), ∃ sjl ∈ D(Xj) such that sjl .input ⊆ sik .output, and ii) ∀ sjl ∈
D(Xj), ∃ sik ∈ D(Xi), sjl served as a complement for sik .

To reinforce arc-consistency on the WSC problem, we should detect all
the sequence links (Xi, Xj) and remove all concrete Web services that do not
satisfy Rule 2. Figure 1 illustrates an arc-consistency reinforcement between
two tasks. Note that if a domain of any abstract Web service becomes empty,
the problem is inconsistent, i.e there is no composite Web service that can
satisfy the user query.

Split structure is represented in Figure 2. Since it is an oriented constraint
that involves more than two abstract Web services on two sides of the link:
one at the beginning of the oriented link, and two or more at the end of the
link. Hence, checking consistency for these two sides should be established

Figure 1 Reinforcing arc-consistency on sequence structure.

1000 A. AlQabasani et al.

Figure 2 Reinforcing arc-consistency on split structure.

differently. We use the pair (A, B), where A is a unique abstract Web service
and the set B is the set of all abstract Web services as a result of the split link
as follows.

Rule 3. For each pair of abstract Web services (Xi,{Xj}) where {Xj} is the set
of all abstract Web services involved in the split control structure, i.e. link(Xi,
{Xj})=Split; Xi is arc-consistent if and only if i) each sik ∈ D(Xi), sik has
at least one complement in the domain of each task in {Xj}, and ii) for each
task Xj ∈ {Xj}, for each sjl ∈ D(Xj), sjl has served as a complement for at
least sik in the D(Xi).

Formally, an Xi is arc-consistent with {Xj} where link(Xi, {Xj})=Split,
iff i) ∀ sik ∈ D(Xi), ∀ Xj ∈ {Xj}, ∃ sjl ∈ D(Xj) such that sjl is a complement
of sik , and ii) ∀ Xj ∈ {Xj}, ∀ sjl ∈ D(Xj), sjl has served as a complement for
at least one sik ∈ D(Xi).

In order to reinforce arc-consistency on all split structures, we need
to remove all concrete Web services from the domain of all abstract Web
services in each pair (Xi, {Xj}) that do not satisfy Rule 3 as illustrated in
Figure 2. If one of the domains of abstract Web services becomes empty, then
the problem is inconsistent.

Join structure is represented in the Figure 3. Since this constraint is two-
sided oriented constraint that involves a set of tasks in one side and one task
on the other side, checking consistency should be accomplished differently
from both sides.

Local Consistency Reinforcement for Enhancing Web Service Composition 1001

Figure 3 Reinforcing arc-consistency on join structure.

Rule 4. A pair of abstract Web services ({Xi }, Xj) where link({Xi},
Xj)=Join, the set {Xi} is arc-consistent with Xj if and only if i) for each
Xi in {Xi}, for each sik in D(Xi), there exists at least one smn in the domain
of Xm in {Xi}, with m6=i, such that the tuple (sik ,. . . , smn ,. . .) has at least
one complement sjl in the domain of Xj and ii) for each sjl in the domain of
Xj , sjl has served as a complement for a tuple in {Xi}.

Formally, ∀ ({Xi}, Xj) where link({Xi}, Xj)=Join, {Xi} is arc-consistent
with Xj iff i)∀ Xi∈{Xi}, ∀ sik in D(Xi), ∃ smn ∈D(Xm), Xm ∈ {Xi} and m6=i,
such that (sik ,. . . , smn ,. . .) has at least one complement sjl ∈ D(Xj) and ii) ∀
sjl∈ D(Xj) ∃ (sik ,. . . , smn ,. . .) ∈ D(Xi), such that sjl served as a complement
for this tuple.

In order to reinforce arc-consistent on all existing ({Xi}, Xj) related by a
Join structure, we should remove all concrete Web services from the domains
of {Xi}, and the domain of Xj that do not satisfy Rule 4 as presented in Figure
3. Any obtained empty domain yields to an inconsistent problem.

Choice structure can be considered a generalisation of if-then-else struc-
ture in the way of arc-consistency reinforcement. This structure involves one
abstract Web service from one side and more than one Web services from the
other side (as given by Split structure). However, arc-consistency should be
considered differently form both sides (and differently from Split structure).

1002 A. AlQabasani et al.

Rule 5. For each pair of abstract Web services (Xi, {Xj}) where {Xj} is
the set of all abstract Web services involved in Choice control structure, i.e.
link(Xi, {Xj})=Choice; Xi is arc-consistent if and only if i) each sik ∈ D(Xi),
sik has at least one complement in the domain of at least one of the tasks in
{Xj}, and ii) for each task Xj in {Xj}, for each sjl ∈ D(Xj), sjl has served as
a complement for at least one sik in the D(Xi).

Formally, an Xi is arc-consistent with {Xj}where link(Xi, {Xj})=Choice,
iff i) ∀ sik ∈ D(Xi), ∀ Xj ∈ {Xj}, ∃ sjl ∈ D(Xj) such that sjl is a complement
of sik , and ii) ∀ Xj ∈ {Xi}, ∀ sjl ∈ D(Xj), sjl has served as a complement for
at least one sik ∈ D(Xi).

Reinforcing arc-consistency on all Choice structures involves removing
from the domain of all abstract Web services in each pair (Xi, {Xj}) all
concrete Web services that do not satisfy Rule 5. If one of the domains of
this abstract Web services becomes empty, then the problem is inconsistent.

Our proposed approach involves two steps that are repeated until some
stop conditions are satisfied:

• For each type of OWL-S constraint, use the corresponding rules to dis-
card inconsistent concrete Web service from the corresponding domain.
The domain reduction should be performed on both sides of the link.
Note that, this process should be performed alternately until no more
reduction is possible, e.g. removing values from one side domain may
lead to more reductions on the other side.

• Propagate the performed reduction on one constraint to the next con-
straints. The algorithm stops if i) the domain of any abstract Web
services Xi becomes empty D(Xi)=∅, which means that no available
concrete Web service can fulfill the task, or ii) no more inconsistent
concrete Web services can be removed from the domain of any tasks.

Figure 4 represents the architecture of our approach that includes several
stages of prepossessing required to reduce the problem. Note that an agent is
managing all algorithms to act as one system.

4 Illustrative Example

E-commerce service has gained huge attention in recent years since it pro-
vides an easy and fast service to the consumer. E-commerce can be defined
as the process of selling physical items or services through a digital medium.
Hence, the use of Web services is one of the best techniques to provide
e-commerce service.

Local Consistency Reinforcement for Enhancing Web Service Composition 1003

Figure 4 Proposed WSC architecture.

To illustrate the execution of the proposed approach, we introduce an
example of composing e-commerce services. It clarifies how our solution
(reinforcing consistency on OWL-S structures) affects in Web service com-
position problem in general. Assume that we have a query, i.e. attending a
conference, the workflow in Figure 5 illustrates the use of OWL-S control
structures for performing the following tasks: Reserve a flight, Book a hotel,
Book a taxi from/to the airport, Money changing.

To respond to users’ query, several e-commerce services with different
areas (vehicles, housing, and banking) are filtered to produce the best services
to the customer. Each task represents the composition process of Web service
to its field, and each task has input and output. Having user query with
{user.id, conference.date, city}, we can formalize this problem using the
proposed DDCOP approach in (X,D,C, f) as follows:

• X = {X1, X2, X3, X4} where:

– X1 represents the task of reserving the flight based on the
conference schedule. X1.in = {user.id, conference.date, city},
X1.out = {flight.id, flight.price, flight.time, date, city, user.id}.

– X2 represents booking hotel at the same period of conference
event. X2.in = {user.id, date, city}, X2.out = {hotel.price,
booking.id, check.out.time, user.id, city}.

– X3 represents taxi booking, but the customer wants the taxi ser-
vices two times during the stay. X3.in = {date, time, location},
X3.out = {taxi.price, booking.id}.

1004 A. AlQabasani et al.

Figure 5 Attending conference service workflow in OWL-S.

– X4 represents the final task of money changing that confirms all
previous tasks. X4.in = {user.id, task.id, task.price}, X4.out =
{confirmation}.

The enforcement of consistency is required to reach the goal of optimal
e-commerce services composition, due to the priority between tasks, as well
as the strong relationship between the inputs and outputs.

• D = {D(X1), D(X2), D(X3), D(X4)} where:

– D(X1)={available flight services}.
– D(X2)={available hotel services}.
– D(X3)={available taxi services}.
– D(X4)={available banking services}.

Local Consistency Reinforcement for Enhancing Web Service Composition 1005

Based on the number of available services in WWW, the execution over
CPU time and memory in the composition process is exhausted [1]. The
involvement of constraints in DDCOP approach provides more reasonable
results to the user query. Moreover, node and arc-consistency reinforcement
can reduce resource consumption.

• CH ∪ CS = {C1, C2, C3, C4} where:

– C1: X1.user.id 6= null.
– C2: X1.price+X2.price+X3.price <= $ 2000.
– C3:X2.date < conference.date where (X2.date = conference.date

- 1), i.e. one day before conference date.
– C4: All services are in Arabic language.

Assume that CH = {C1, C3}, and CS = {C2, C4}. For each constraint
Cj ∈ CS , we assign a penalty for CS is ψS = {W (C2) = 0.7,W (C4) = 0.3}
that reflects the loss for not satisfying the constraint with

∑
j∈[1..|CS |] ψj = 1.

If Cj is CH , then ψj=1.

• f (sl) is the objective function to optimize as given in (1). Table 2
provides the recommendation weight of each Sj (Web services available
in Xi).

By assigning the values α = 0.2 and β = 0.8, we associate a higher value
to β to deliver the service that satisfies user’s preferences. In the following,
we present the possible combinations of solutions (SL) based on the weights’
values on Table 2. Note that the column Rec in Table 3 is calculated using
Equation (2), and the penalty value associated to each solution reflects the
dissatisfaction of the particular composition of sl (SL#).

After formalizing the problem and giving the data above, we can perform
our contribution on enforcing consistency algorithms on OWL-S control
structures, by adding another layer of constraints on each control structure.
The composition process is solved as follows:

1. Pre-processing step: filter Web services by applying the rules mentioned
in section 3.2 to save more time and memory caused by expansive
calculations to be performed in the next step.

Table 2 Recommendation weight to the available Sj

X1 X2 X3 X4

S11 (0.2) S21 (0.4) S31 (0.8) S41 (0.9)
S12 (0.5) S32 (1) S42 (0.4)
S13 (0.1)

1006 A. AlQabasani et al.

Table 3 Values to solve f (sl)
SL# Rec ψj

SL1a = {S11, S21, S31, S41} 2.3 0.12
SL1b = {S11, S21, S32, S41} 2.5 0.03
SL1c = {S11, S21, S31, S42} 1.8 0.10
SL1d = {S11, S21, S32, S42} 2 0.05
SL2a = {S12, S21, S31, S41} 2.6 0.08
SL2b = {S12, S21, S32, S41} 2.8 0.2
SL2c = {S12, S21, S31, S42} 2.1 0.18
SL2d = {S12, S21, S32, S42} 2.3 0.06
SL3a = {S13, S21, S31, S41} 2.2 0.01
SL3b = {S13, S21, S32, S41} 2.4 0.5
SL3c = {S13, S21, S31, S42} 1.7 0.02
SL3d = {S13, S21, S32, S42} 1.9 0.05

Figure 6 An example of removing Web services after arc-consistency reinforcement.

An example of this composing process is given in Figure 6. Note that
the structure of the oriented link between the two tasks is sequence; so
Rule 2 in 3.2 is applied to Web service. S12 and S13 are removed, due
to not including all of their inputs in the user’s output.

2. Solving step: choose the best option to satisfy user preferences using
the optimization function defined in (1). In this step, we compute the
remaining solutions in Table 3 that are only the first four rows as listed
in Table 4. Therefore, SL1b is the highest adequate service according
to user preference. (Note that the full problem is not computed in this
example to clarify its process).

Local Consistency Reinforcement for Enhancing Web Service Composition 1007

Table 4 Results of f (sl)
SL# f (sl)
SL1a 0.364
SL1b 0.476
SL1c 0.28
SL1d 0.36

Eventually, using constraints provides a less complex solution by reduc-
ing the domain of the region values before assigning the value. As a result,
the complexity of searching for the values to assign the variables is reduced
and, therefore, the time and memory consumption is enhanced.

5 Experimental Evaluation

The aim of the experiment is to evaluate the performance of the proposed
pre-processing treatment by reinforcing node and arc-consistency on all
abstract Web services, mainly when the number of available concrete Web
services increases. We implemented a sequential version (using only one
agent as suggested in [21]) of the proposed approach and we performed the
reinforcement of node and arc-consistency (as the most reasonable and strong
enough) for the most difficult and used types of OWL-S control structures,
such as Sequence, Split, Join, and Choice.

We apply the proposed approach to a more complex and random cases
that any processes of Web services composition occasionally experience.
Note that we constructed a random generator to test our approach with a
diverse data set. As pointed out by authors in [12], it is hard to generate a
diverse data set because it limits the experiments on simpler cases. Hence,
we developed the prototype from the scratch. It starts from the initiation of
workflow parameters, such as inputs, outputs, and links); that represent the
interactions between tasks in WSC problem as also developed in [22]. The
environment in the implementation is Eclipse IDE 2020 with Java program-
ming language. It runs on Windows 10 with Intel Core i5, 3.40GHz, and
4GB RAM.

For the dataset, we considered the following parameters, n is the number
of abstract Web services, m is the number of concrete Web services per
abstract Web services, and p is the percentage of constraints between abstract
Web services in the workflow. We generated 30 abstract workflows for each
combination of <n, m, p> with n={5, 7, 10} as in the real world WSC
problem, the number of tasks cannot exceed 10, m={10, 30, 50, 100} for

1008 A. AlQabasani et al.

Figure 7 Results for {5, m, p} in terms of CPU time.

Figure 8 Results for {5, m, p} in terms of percentage of reductions.

each task with at most 100 Web services can be provided, and p={20%, 50%,
80%} to deal with easy (not highly connected workflow) and hard (highly
connected workflow) problems with a total of 1080 samples. We tried these
parameter options to simulate the real composition problems. The average of
the obtained results were expressed in terms of i) percentages of reductions,
and ii) CPU time.

The reinforcement of arc-consistency is able to detect the inconsistency of
the problems without solving them for easy problems with m<30. When we
increased the number of the concrete Web services, the CPU time is greater,
less than one second as shown in Figure 7. Even for hard problems with
p>80%, arc-consistency is able to prune 60% of the size of the initial problem
and consequently decrease its complexity as illustrated in Figure 8.

In the second part of experiments, as shown in Figure 9, we increased
the number of abstract Web services, and we noticed that arc-consistency is

Local Consistency Reinforcement for Enhancing Web Service Composition 1009

Figure 9 Results for {7, m, p} in terms of percentage of reductions.

Figure 10 Results for {7, m, p} in terms of CPU time.

able to reduce with more than 60% complex problem in greater, less than
one second as illustrated in Figure 10. The reduction for p = 80% is more
important than for p = 20%, this is due to the fact that when the number of
constraints is less (p = 20%), few confusion between concrete Web services
accrued and mostly no need to deduct them.

In the last part of the experiments, as shown in Figure 11, we increased the
number of abstract Web services to n=10. We noticed that the arc-consistency
performs better. Most problems with the number of concrete Web services
m<50 are detected as inconsistent, therefore there is no solution for them for
a reasonable CPU time as illustrated in Figure 12.

Based on these experimental results, it can be inferred that reinforcing
arc-consistency on WSC problems is non-trivial due to its capability to

1010 A. AlQabasani et al.

Figure 11 Results for {10, m, p} in terms of percentage of reductions.

Figure 12 Results for {10, m, p} in terms of CPU time.

reduce a significant amount of time for the solving process. This level of
consistency is of high utility mainly when the complexity of the underlying
problem increases. Hence, the experiment supports our assumption that each
consistency level reinforcement is worth for WSC and able to deduct more
unreliable Web services. This is based on our findings that we obtained
70% highest percentage of reduction over inconsistent web services (beside
100% after arc-consistency reinforcement) for p = 80% after enforcing node
consistency.

Table 5 summarizes the different performance impacts for both node and
arc consistency levels. There is a higher reduction noted on the reinforcement
of both levels of consistencies. Hence, it can be inferred that the constraints

Local Consistency Reinforcement for Enhancing Web Service Composition 1011

Table 5 Reinforcement comparison result
Reinforcement Lowest Highest Max CPU Highest Lowest
Case Reduction Reduction Time (ms) Inconsistency Inconsistency
NC 15% 80% 50

m=10
n=10

m=100
n=5

AC 35% 100% 350
NC and AC 86% 100% 250

over the composition process increase due to the effectiveness of node
consistency and subsequently the arc consistency reinforcement on the data.

6 Conclusion

In this paper, we addressed the problem of applying node and arc-consistency
on any Web services composition problems. A new approach based on arc-
consistency reinforcement for different OWL-S constraints were proposed.
The idea is to perform arc-consistency of non-binary constraints according
to their semantics. This approach allows pruning all values that cannot be
part of any solutions for the problem. Several rules for arc-consistency were
presented to support the semantic of OWL-S constraints. Hence, the proposed
approach based on these rules could reduce the complexity of the underlying
problem and made the search for the optimal solution more affordable. The
experimental obtained results showed that the proposed approach is able not
only to prove the inconsistency of most complex problems in advance, but
also to reduce the failure possibility of workflow execution. As for future
work, we intend to reinforce more levels of consistency.

References

[1] B. Medjahed and A. Bouguettaya, Describing and Organizing Semantic
Web Services, pp. 73–99. New York, NY: Springer New York, 2011.

[2] Y. Hammal, K. S. Mansour, A. Abdelli, and L. Mokdad, “Formal
techniques for consistency checking of orchestrations of semantic web
services,” Journal of Computational Science, vol. 44, pp. 1–17, 2020.

[3] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIl-
raith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, et al., “Owl-s:
Semantic markup for web services,” W3C member submission, vol. 22,
no. 4, 2004.

1012 A. AlQabasani et al.

[4] C.-H. Liu, S.-L. Chen, J. Y. Kuo, and T.-Y. Huang, “A flow graph-based
test model for owl-s web services,” in 2011 International Conference on
Machine Learning and Cybernetics, vol. 2, pp. 897–902, IEEE, 2011.

[5] A. B. Hassine, S. Matsubara, and T. Ishida, “A constraint-based
approach to horizontal web service composition,” in International
semantic Web conference, pp. 130–143, Springer, 2006.

[6] L. Thomas and A. Immanuel, “Web service composition: A survey on
the various methods used for web service composition.,” International
Journal of Advanced Research in Computer Science, vol. 8, no. 3,
pp. 665 – 670, 2017.

[7] P. Guluru and R. Niyogi, “New approaches for service composition
based on graph models,” in 2014 Seventh International Conference on
Contemporary Computing (IC3), pp. 507–512, IEEE, 2014.

[8] F. Slaimi, S. Sellami, O. Boucelma, and A. B. Hassine, “A multigraph
approach for web services recommendation,” in On the Move to Mean-
ingful Internet Systems: OTM 2016 Conferences, (Cham), pp. 282–299,
Springer International Publishing, 2016.

[9] F. Dahan, H. Mathkour, and M. Arafah, “Two-step artificial bee colony
algorithm enhancement for qos-aware web service selection problem,”
IEEE Access, vol. 7, pp. 21787–21794, 2019.

[10] F. Dahan, “An effective multi-agent ant colony optimization algo-
rithm for qos-aware cloud service composition,” IEEE Access, vol. 9,
pp. 17196–17207, 2021.

[11] U. Arul and S. Prakash, “Toward automatic web service composition
based on multilevel workflow orchestration and semantic web ser-
vice discovery,” International Journal of Business Information Systems,
vol. 34, no. 1, pp. 128–156, 2020.

[12] A. Abid, M. Rouached, and N. Messai, “Semantic web service compo-
sition using semantic similarity measures and formal concept analysis,”
Multimedia Tools and Applications, vol. 79, no. 9, pp. 6569–6597, 2020.

[13] K. Ghedira, Constraint satisfaction problems: csp formalisms and
techniques. John Wiley & Sons, 2013.

[14] M. Mouhoub, “Dynamic arc consistency for csps,” International Jour-
nal of Knowledge-based and Intelligent Engineering Systems, vol. 13,
no. 2, pp. 45–58, 2009.

[15] S. Kong, S. Li, and M. Sioutis, “Exploring directional path-consistency
for solving constraint networks,” The Computer Journal, vol. 61, no. 9,
pp. 1338–1350, 2018.

Local Consistency Reinforcement for Enhancing Web Service Composition 1013

[16] A. Idrissi and A. B. Hassine, “Circuit consistencies,” in PRICAI 2004:
Trends in Artificial Intelligence (C. Zhang, H. W. Guesgen, and W.-
K. Yeap, eds.), (Berlin, Heidelberg), pp. 124–133, Springer Berlin
Heidelberg, 2004.

[17] H. Fekih, S. Mtibaa, and S. Bouamama, “Local-consistency web
services composition approach based on harmony search,” Procedia
computer science, vol. 112, pp. 1102–1111, 2017.

[18] A. Bramantoro, A. B. Hassine, S. Matsubara, and T. Ishida, “Multilevel
analysis for agent-based service composition.,” J. Web Eng., vol. 14,
no. 1&2, pp. 63–79, 2015.

[19] V. Gabrel, M. Manouvrier, and C. Murat, “Web services composi-
tion: complexity and models,” Discrete Applied Mathematics, vol. 196,
pp. 100–114, 2015.

[20] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara, “Semantic
matching of web services capabilities,” in International semantic web
conference, pp. 333–347, Springer, 2002.

[21] P. Philipp, M. Maleshkova, A. Rettinger, and D. Katic, “A semantic
framework for sequential decision making for journal of web engi-
neering,” Journal of Web Engineering, vol. 16, no. 5&6, pp. 471–504,
2017.

[22] M. Abdel-Salam, W. Bahgat, E. Mohamed Eldaydamony, and A. Atwan,
“A novel framework for web service composition,” International Jour-
nal of Simulation: Systems, Science and Technology, vol. 20, p. 1, 07
2019.

Biographies

Ahad AlQabasani received her bachelor degree in computer science from
the Faculty of computer and information technology, Tabuk University, Saudi
Arabia, in 2018. She completed her master degree in computer science,
at the College of Computer Science and Engineering, Computer Science
and Artificial Intelligence Department, University of Jeddah, Saudi Arabia.
She had an article accepted at International Conference on Signal, Control
and Communication (SCC), published at IEEE Xplore in 2019. She also had
an accepted article to be published at the International Journal of Modelling,
Identification and Control (IJMIC). Her research interests include constraints
problems, Web service composition, and speech recognition.

1014 A. AlQabasani et al.

Ms. AlQabasani participated at the 3rd scientific forum, in 2018, and won
the second place in the research track at University of Jeddah, Saudi Arabia.

Ahlem Ben Hassine is Ph.D. graduated in Computer Science, specialty in
Artificial Intelligence from the Japan Advanced Institute of Science and
Technology (JAIST) Japan, in 2005. Then, she had two years of research
fellow at the Computational Linguistics Group, Language Grid project at the
National Institute of Information and Communication Technology (NICT)
Kyoto-Japan.

From 2007 to 2016, she was an assistant professor at the National School
of Computer Science (ENSI-Tunis). Currently she is an assistant professor
at the College of Computer Science and Engineering, Computer Science
and Artificial Intelligence Department, University of Jeddah, Saudi Arabia.
Her Research interests involve constrained problems, multi-agent systems,
meta-heuristics, machine learning, renewable energy and Web Composition.
She is the author of more than 30 papers in books, international journals and
high ranked conferences. She was also a recipient of many grants and awards,
from JAIST, C&C, NICT during her PhD and Post-doc program.

Arif Bramantoro is currently a senior assistant professor in School of
Computing and Informatics, Universiti Teknologi Brunei, Brunei Darus-
salam. Previously, he was an associate professor in Information Systems
Department, Faculty of Computing and Information Technology in Rabigh,
King Abdulaziz University, Saudi Arabia. From 2012 to 2016, he was an
assistant professor in Information Systems Department, College of Computer
Sciences and Information, Al-Imam Mohammad Ibn Saud Islamic University
(IMSIU), Riyadh, Saudi Arabia.

Local Consistency Reinforcement for Enhancing Web Service Composition 1015

He was an expert researcher at Information Services Platform Labo-
ratory, National Institute of Information and Communication Technology
(NICT), Japan, from 2011 to 2012. He received Ph.D. from Department of
Social Informatics, Kyoto University, Japan, in 2011. He holds master degree
from Faculty of Information Technology, Monash University, Melbourne,
Australia in 2006. His bachelor degree was obtained from Department of
Informatics, Institute Technology of Bandung, Indonesia in 2001.

His research interests include service system, business process workflow,
and business intelligence. He is the author of more than 40 articles. He was a
recipient of Research Excellence Award in 2016 from Deanship of Scientific
Research, Al-Imam University, Saudi Arabia; and Best Paper Award from
IEEE International Conference on Cloud Computing (ICCC) in 2015.

Asma AlMunchi is an associate professor in Cybersecurity Department
in College of Computer Science and Engineering at University of Jeddah,
Kingdom of Saudi Arabia. She has obtained her Ph.D. degree in Information
Security from Curtin University, Australia in 2014, Master degree in Internet
Security and Forensic (with distinction) in 2009 from Curtin University, and
B.Sc. in Computer Science from King Abdulaziz University, Kingdom of
Saudi Arabia in 2004. She is currently serving as a supervisor of Cyber-
security department–Female section in College of Computer Science and
Engineering at University of Jeddah, and Vice Dean of Faculty of Computing
and Information Technology-Female section at University of Jeddah-Khulais
branch, Kingdom of Saudi Arabia. Her research interest includes educational
technology, and information security.

	Introduction
	Related Works
	Consistency Reinforcement for WSC
	New Formalisation for WSC Problem
	Consistency Reinforcement Rules for WSC Problem

	Illustrative Example
	Experimental Evaluation
	Conclusion

