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Abstract

The data mining has remained a subject of unfailing charm for research.
The knowledge graph is rising and showing infinite life force and strong
developing potential in recent years, where it is observed that acyclic knowl-
edge graph has capacity for enhancing usability. Though the development of
knowledge graphs has provided an ample scope for appearing the abilities
of data mining, related researches are still insufficient. In this paper, we
introduce path traversal patterns mining to knowledge graph. We design
a novel simple path traversal pattern mining framework for improving the
representativeness of result. A divide-and-conquer approach of combining
each path is proposed to discover the most frequent traversal patterns in
knowledge graph. To support the algorithm, we design a linked list structure
indexed by the length of sequences with handy operations. The correctness
of algorithm is proven. Experiments show that our algorithm reaches a high
coverage with low output amounts compared to existing frequent sequence
mining algorithms.
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1 Introduction

The advancement of the Mobile Internet increases the likelihood of com-
pletely realizing the Internet of Everything. The amount of data created as
a result of such interconnectivity has skyrocketed, and it might be used as
useful raw materials for relation analysis. Aside from the prior emphasis
on each individual in terms of intellectual analysis, the relations between
each will definitely become significant as a result of the Mobile Internet age.
Fortunately, Knowledge Graph might be useful as long as there is a need for
relation analysis.

Knowledge graph is a repository that is constructed by semantic networks
in essence, and it could be seen as a multi-relation graph. Introducing path
traversal patterns mining algorithms to knowledge graph promotes efficiency.
For instance, in a knowledge graph of investor relations researchers use
frequent supply chain partners to analyze the cause of relationship-specific
asset [19]. Path traversal patterns mining algorithms could help obtain pos-
sible passes from data compression graph [23]. The intention to identify
suitable documents by extracting a knowledge graph of relations from a large
scientific dataset requires frequent path traversal patterns relations [1].

Additionally, loops are always not welcomed in such graph. According to
the survey, it is commonly observed that the 96\% of loops in Probase [36]
have wrong isA relations [18]. Removing loops from the Wikipedia graph
when constructing a primary taxonomic tree is imperative [9]. A loopless
knowledge graph that is told facts about what is true in the world is often a
sign of a bug [26]. Therefore, developing the research of simple path (path
without loops) [12, 13, 40] traversal patterns mining in knowledge graph is
imperative.

However, the appropriative research of simple path traversal patterns on
knowledge graph is absent. Even though we may utilize several classic algo-
rithms to handle this issue, such as GSP [32], Spade [41], PrefixSpan [24],
Spam [2], they could not satisfy well. The vulnerability of such algorithms
is that they could produce frequent subsequences from a graph which is
constructed by a training set, but they could not produce frequent simple
path traversal patterns from it. Furthermore, we could modify path traversal
patterns mining algorithms [5, 21] for mining path traversal patterns from
knowledge graph, the additional cost for loop computation could decrease
the efficiency.

To determine the frequency of simple path, We introduce an evaluation
parameters Coverage. Coverage is accumulated by each sequence of traversal
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Figure 1 An example of a naive knowledge graph.

data, which is a subsequence of other sequences. The sufficiency of a set of
frequent sequences could be determined by its Coverage because one covers
and represents most sequences in the training set. We consider Coverage as a
critical parameter to measure the effectiveness of an algorithm for producing
frequent sequences on knowledge base. To illustrate the point, we give a naive
example.

We have four entities A,B,C,D in an knowledge graph G. There are
three sequences in the training set, in which one sequence < A,B,C > is
used to build relations between A,B,C, where A is directly related to B,
B is directly related to C. We also have such two sequences < B,C,D >
and < A,C > in the training set. Together, a naive knowledge graph G is
build by the training set as shown in Figure 1 where the number on each edge
tells the total frequency of relations between each pair of entities. We want to
discover frequent sequences inG. Classic frequent sequential patterns mining
algorithms would give the result that there are two sequences, < B,C >
and < A,C >, who have a support of 2 sequences. However, there is a
longer sequence < A,B,C,D > which is a substructure of G despite it has
a support of only 1 sequence. This sequence represents all of three sequences
< A,B,C >, < B,C,D > and < A,C >, namely it has a Coverage of
3 sequences. Hence one can see that Coverage is significative and valuable
to determine if a sequence of traversal data in knowledge graph is frequent
enough.

In this paper, we study simple path traversal mining problem on acyclic
knowledge base. With the intention of gaining high Coverage, we develop
a novel framework containing both data structure and algorithm, which is
different from all classic sequential pattern mining algorithms. The structure
indexing the length of each sequence to support the algorithm is concise and
easy to operate. The algorithm aims to produce a set of frequent sequences
of traversal data with high Coverage through combining each sequence of
different length, which is efficient and effective. To ensure the efficiency,
we design the combining process in a divide-and-conquer manner and the
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pruning strategy to accelerate it. To ensure the effectiveness, we combine
sequences in the priority of sequence length and support resulting in a small
set of generated simple path traversal patterns with high Coverage.

The contributions of this paper are summarized as follows.

• We study the simple path traversal patterns mining problem on knowl-
edge base with Coverage as the optimization goal. As we know, this is
the first paper that studies this problem.

• To discover high-coverage paths, we design a novel algorithm that
considers both the length and frequency of the discovered results. For
the consideration of efficiency, we combine sequences of traversal data
in a divide-and-conquer approach. We prove that our algorithm achieves
the goal of problem by reasoning.

• In this algorithm, we add pruning strategy facing to not only the fre-
quency but also the Coverage. We also design a linked list for the
sequences indexed by their lengths to support the algorithm efficiently.

• Extensive experimental results on real data sets show that the proposed
approach could discover simple path traversal patterns on knowledge
graph with high coverage efficiently.

The rest of the paper is organized as follows. Section 2 introduces the
preliminaries, problem definition, and the outline of algorithm. Section 3
illustrates the data structure with its maintenance operations. Section 4 intro-
duces algorithms of sequences combination. In Section 5, we design the
algorithm, and its pruning strategies. We prove the correctness of algorithm
by reasoning. Section 6 shows the result of our experiments. Section 7
discusses the related work of the problem. Section 8 draws the conclusions
and presents an expectation of our work.

2 Overview of Algorithm

In this section, we introduce the basic definitions related to the problem.
After that we determine the definition and optimization goals of our problem.
Finally, the outline of our algorithm is given to make our work easier to
understand.

2.1 Basic Definitions

A simple path traversal patterns is modeled as a sequence, which is an ordered
list of elements denoted by s =< e1, . . . , en >, where e1 6= en because the
path should be simple. The length of a sequence s is the number of elements
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in s, denoted by |s|. A sequence sj is a subsequence of another sequence si
iff the set of ordered element in sj is a subset of that in si, denoted by sj @ si.
Also, sj is a subsequence of si. Given two sequences si =< a1, . . . , an >
and sj =< b1, . . . , bm >, formally we have the following definitions.

Definition 1. sj v si iff there exists integers 1 ≤ x1 < · · · < xm ≤ n such
that b1 = ax1 , . . . , bm = axm .

Definition 2. sj @ si iff sj v si and sj 6= si.

For example, we describe the sequences of marital status as follows.

Example 1. Consider five elements e1, e2, e3, e4, e5, and three sequences
s1 =< e1, e2, e3 >, s2 =< e1, e2, e4 >, s3 =< e1, e2, e4, e5 >, we notice
that s2 @ s3.

We denote D as a training set containing a set of sequences such that
D = {s1, . . . , sn}. The acyclic knowledge base is a directed acyclic graph
G = (V,E) constructed by D, where V is a set of vertices that ∀v′ ∈ V ,
v′ ∈ si and E is a set of edges that ∀e′ =< v′, v′′ >∈ E, < v′, v′′ > is an
adjacent pair in si.

2.2 Problem Definition

In this paper, we focus on simple path traversal patterns mining problem. In
order to achieve an unsupervised process effectively and efficiently, we have
three demands of the problem as follows. Note that these requirements are
not incompatible and we prove that our approaches achieve these demands
later.

Maximize coverage. Coverage is accumulated by each sequence of traversal
data, which is a subsequence of one of resulted sequences in the knowledge
graph. The resulted set of frequent sequences covering and representing most
sequences in the training set always has high Coverage. Thus, the sufficiency
of the resulted set of frequent sequences could be determined by its Coverage.
This is the main optimization goal of the problem.

Maximize length of rules. Because a longer sequence could cover more
paths in the knowledge base and our algorithm is on the basis of combining,
it is necessary to reduce the size of set of sequences for efficiency and
effectiveness. Besides, retrench the size of the set of frequent sequences could
make one more representative and help save both of internal and external
storage space.
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Ensure rules are frequent. We should ensure the support of all sequences are
over a predefined threshold. This will make the generated sequences frequent
enough. Then, our result could benefit from it and obtain frequent sequences
from the knowledge base. This improves the usability of the resulted set of
frequent sequences.

Based on these requirements, we give a formal definition of our problem.
We denote D as the input and T the result. D is a set containing a number
of sequences such that D = {s1, . . . , sn}. Then, we denote one resulted
sequence by a pattern ti. For each pattern ti, its compatible set inD is denoted
by SDti such that SDti = {si|si @ ti, si ∈ D}. T is a set of such patterns
that T = {t1, . . . , ti, . . . , tm}. Finally, the coverage of T is |

⋃
ti∈T S

D
ti |. To

compare the Coverage among different results without loss of generality, we
define the rate of Coverage of T as

cov =
|
⋃
ti∈T S

D
ti |

|D|

Problem. For the inputD, the goal of the problem is to obtain a proper pattern
set T from D, that satisfies the following three conditions.

• Maximize cov(T ), and
• Maximize Σ|ti|

|T | , the average length of sequences in T , and

• For each ti ∈ T , |SDti | ≥ εf , where εf is the threshold of the pattern
frequency.

As above, three conditions meet the demands of the problem. In this
paper, we design the data structure and algorithms around this problem. And
we prove how our algorithms meet these three conditions in Section 5.2.

3 Data Structure

To support effective and efficient currency rule discovery, we develop a
specific data structure of the sequence set D. Based on above discussions,
the basic elements in our data structure named FSGroup are sequences with
their support. FSGroup has two basic operations as follows.

• (Insert.) Inserting a sequence into the structure with its support.
• (Delete.) Deleting a sequence and remove its entry from the structure.

Additionally, the data structure should support the sequential access of
sequences with the same length one by one. Note that the combination of two
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sequences, which is an important operation in the algorithm, is implemented
with these operations, and will be discussed in Section 4. In this section, we
focus on the structure (in Section 3.1) and the implementation algorithms of
these basic operations (in Section 3.2).

3.1 Storage Structures

Since a longer sequence contains more elements than the shorter, the cov-
erage of the former is higher than the latter. Thus, the combine operation
on D is on the longest and second longest sequence. To support these
operations, the sequences are grouped by their lengths. We use a linked
list to store the sequences with the same length for the efficiency of insert
and delete operation. To access the sequences with the specific length, we
group the heads of all linked lists as an array and index the heads with the
lengths of sequences in the linked lists. Formally, the structure is defined as
follows.

Definition 3. A FSGroup contains following three components.

• Groups of linked lists, denoted by B. Each linked list represents the set
of sequences with the same length. Each entry in a linked list is a triad
(seq, count, next) where seq is a sequence, count the support of seq,
and next the pointer to the next entry.

• A pair of length information P = (plen,mlen), where plen predefines
the maximum length of the combined sequences, and mlen is the
maximum length of all sequences.

• An array for head nodes of all linked lists, denoted by H . Head node hi,
i = [2 . . . P.plen] indicates the head of the linked list of all sequences
with length i.

In summary, we describe the data structure as a triad.

L = (B,P,H)

where L is the structure of D, B its set of sequence entries, P its additional
properties,H its index table of linked lists. The additional space consumption
is the index table, of which the length is considered to be the maximum length
of combined sequences. Moreover, It is convenient for using this structure
because sequences with high supports are also longer than others. Therefore,
we could only visit the big end of the index table H when we retrieve the
final result of all combinations. The structure is demonstrated in Figure 2.
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Figure 2 Illustrative diagram of L.

3.2 Operations

In this section we introduce basic operations in L to support our algorithms.
Since we can search a sequence directly by its length, we only need two oper-
ations including insert and delete. The time complexity of insert operation is
O(n) and delete O(1), such that it is easy to use the data structure we devise.

Insert. The insert operation is accomplished by function FSGInsert (L, bm),
which inserts an entry bm into L in accordance with its length. We insert bm
into the proper position to ensure that the support of nodes in the linked listed
pointed by h|bm.seq | are in a monotone decreasing single linked list.

Algorithm 1 FSGInsert algorithm

1: function FSGInsert(L, bm)
2: p← L.h|bm.seq|
3: while p.next.count > bm.count do
4: p← p.next
5: bm.next← p.next
6: p.next← bm
7: end while
8: end function

The pseudocode of this algorithm is shown in Algorithm 1. Line 2 obtains
the head node of the linked list indexed by the length of input sequence. Lines
3–4 find the proper position where we insert the entry to keep monotone
decreasing. Lines 5–6 insert bm into the linked list L.

Delete. We delete the a sequence by using the basic delete operation of linked
list structure. We invoke function FSGDelete(L, bm) to delete an entry bm in
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L to avoid repeated computation after bm has been indicated as used during a
merge or combine operation. This operation could save the storage space.

4 Combination of Sequences

In this section, we propose methods to combine sequences effectively and
efficiently. It is crucial for the combine operation because it generates a long
sequence of two sequences that meets the requirements. We implement this
in a divide-and-conquer approach. For this task, we define two operations,
merge and combine. The former fuses a sequence into its supersequence. The
latter generates the supersequence of two sequences which overlap but do not
contain each other. We will discuss these two operations in Sections 4 and
4.2, respectively.

4.1 Merge Operation

With regard to bm and bn, two entries in L with bm.seq @ bn.seq, the merge
operation merges bm into bn. Concretely, this operation delete bm and add the
support of bm to bn. Since bm.seq @ bn.seq, bn.seq, does not change in this
operation.

Algorithm 2 FSMerge algorithm

1: function FSMerge(L, bn, bm)
2: bn.count← bn.count+ bm.count
3: FSGDelete(L, bm)
4: return bn
5: end function

The pseudocode of merge operation is shown in Algorithm 2. Line 2
accumulates the support of bm to bn. Then in Line 3, we delete bm. The time
complexity of this operation is O(1).

4.2 Combine Operation

Given bm and bn, two entries in L, the combine operation combines them
into one new entry bf , where bf .seq contains all elements in both bm.seq and
bn.seq, and satisfies bm.seq @ bf .seq and bn.seq @ bf .seq. We will discuss
the implementation algorithm for this operation in this section. At first, we
overview the implementation in Section 4.2.1 and then we describe the steps
in detail in Sections 4.2.2, 4.2.3, and 4.2.4, respectively.
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4.2.1 Algorithm overview
Combine operation attempts to get the “union” of bm.seq and bn.seq. How-
ever, the union of two sequences is different to that of sets due to the order
of elements in the sequence. Consider a brief example. s1 =< h,A, t >, and
s2 =< h,B, t >. The longest common sequence (LCS for short) of s1 and s2

is < h, t >. Between h and t, s1 contains the subsequence < A > while s2

contains the subsequence < B >. The results of the combination should
be a sequence. It is a problem how to combine such different subsequences
between common sequences.

As simple path traversal patterns mining requires frequent sequences, the
combination of two different subsequences should maximize the frequency of
the result. Thus, we attempt to choose the order of the elements in different
sequences with the highest frequency among all possible combinations. In
the example above, if the frequency of subsequence < A,B > is larger than
that of < B,A > in the whole sequence set D, we should choose < A,B >
in the combination result. As a result, the combination of s1 and s2 is <
h,A,B, t >.

To state our approach formally, we first introduce some concepts. We split
two sequences s1 and s2 into two kinds of parts, common parts and alien
parts, as introduced in Definition 4.

Definition 4. For two sequences s1, s2, if there exists a continues sequence t,
t v s1, t v s2 and does not exists any subsequence t∗, t @ t∗, t∗ v s1, t

∗ v
s2, we call t a common part. In s1 or s2, if there exists a sequence t′ between
two common parts, then t′ is called an alien part.

We use an example to illustrate this concept.

Example 2. For two sequences s1 and s2 that s1 =< h,A,B, F,G,K, I, t >
, s2 =< h,C,D,E, F,G, I, J, t >, their common and alien parts are shown
in Figure 3.

Intuitively, s1 and s2 share same common parts and their common
parts form their largest common sequence. Thus, common parts of two
sequences could be generated by the largest common sequence generation
algorithm [6]. Then, two sequences are split into several parts according to

Figure 3 Common and alien parts in s1 and s2.
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.  

Figure 4 Skeleton of combine operation.

the common parts. Between two consecutive common parts, each continuous
part is an alien part. After this step, each sequence is split into a series
of common parts and alien parts and could be represented as the form
< h, t1, . . . , ti, . . . , tn, t >, ti @ s, i ∈ [1 . . . n], where ti is either a
common part or an alien part. h and t identify the head and tail of sequence,
respectively.

With this definition, we may discuss the specifics of the combine oper-
ation’s implementation methods. This method integrates related common
and alien components into a single algorithm. Since the more complex step
is the combination of alien parts, we discuss AlienCombine algorithm in
Section 4.2.2 at first. Then based on the AlienCombine algorithm, we propose
PartCombine algorithm in Section 4.2.3. PartCombine algorithm combines
both common parts and alien parts. In order words, it includes three condi-
tions, one of which is processed by AlienCombine algorithm. At last, with
PartCombine algorithm as the core step, the whole algorithm, FSCombine
algorithm is introduced in Section 4.2.4. The relationship of these algorithms
is shown in Figure 4.

4.2.2 AlienCombine algorithm
In this section, we discuss the implementation of AlienCombine step. As
discussed above, the combination of two alien parts selects their element
order with frequency.

To make the selection, we attempt to combine the elements in two alien
parts in sort-merge style. That is, we use two cursors, c1 and c2, pointing
to the processing elements in two alien parts t1 and t2. If the frequency of
< c1, c2 > is larger than that of < c2, c1 >, c1 is selected as an element of
the combined sequence and the cursor in t1 moves to the next. The process
continues until the cursor points to the tail of one sequence and the remaining
elements of the other are concatenated to the tail of the generating sequence.

To compare the elements according to the sequence frequency, we define
the weight of element pair in Definition 5 and give a brief example in
Example 3.
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Definition 5. Let Γ(ei, ej) denote the total support of the subsequence
ssub =< ei, ej > That is, Γ(ei, ej) = |{s|s ∈ D ∧ ssub v s ∧ ei, ej are
adjacent in s}|.

Example 3. Let D = {s1, s2, s3}, where s1 =< A,B >, s2 =< A,B,C >,
s3 =< A,B,C,D >. Thus, Γ(A,B) = 3, Γ(B,C) = 2, Γ(C,D) = 1),
Γ(A,C) = 0 and Γ(B,A) = 0.

Algorithm 3 AlienCombine algorithm

1: function AlienCombine (t1, t2)
2: Out← ∅
3: c1 ← t1[0], c2 ← t2[0]
4: while c1 6= ∅ or c2 6= ∅ do
5: if Γ(c1, c2) > Γ(c2, c1) then
6: Out← Out+ c1
7: c1 ← c1.next
8: else
9: Out← Out+ c2
10: c2 ← c2.next
11: end if
12: end while
13: while ci 6= ∅, i = 1, 2 do
14: Out← Out+ ci
15: ci ← ci.next
16: return Out
17: end while
18: end function

Based on the weight function, the pseudocode of this algorithm is shown
in Algorithm 3, where we use + to represent the concatenation of sequences.
For instance, if s =< a, b > and t =< c, d, e >, s + t =< a, b, c, d, e >.
Line 2 initiates the output. Line 3 points the cursors to the head elements
of two sequences, respectively. Lines 4–10 judge which cursor should be
concatenated to the result Out, then move the cursor to the next, until one
is pointed to ∅, the tail. Lines 11–13 output rest of elements to Out orderly.
As a result, Line 14 returns the combination of two alien parts.

Example 4. We use the example shown in Figure 5 to demonstrate the
proposed algorithm. Firstly, the cursor c1 and c2 are pointed to head of
t1 =< A,B > and t2 =< C,D,E >, respectively. We suppose Γ(A,C) >
Γ(C,A), so we choose the element A and move c1 to the next. Then we
suppose Γ(B,C) > Γ(C,B), so we select B and move c1 to the next.
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Figure 5 An example of combining two alien parts.

Noticing that c1 points to the tail of t1, we orderly output rest of elements
in t2. Finally, we get the result in Out as shown.

Since this operation is implemented in a divide-and-conquer approach,
the time complexity is reduced from O(mn) to O(m + n) where m and n
denote the length of input sequences, respectively. To simplify representation
of time complexity, we let m denote the max length of two sequences. The
time complexity is O(m). Property 1 demonstrates the correctness of this
strategy. A→ B means A and B are adjacent in the sequence combined.

Property 1. For two alien parts s =< e1, . . . , ei, . . . , en >, t =<
f1, . . . , fj , . . . fm >, ∀ ei ∈ s, if ∃fj ∈ t, ei → fj , we have ei → fj′ ,
j′ ∈ [(j + 1) . . .m], vice versa.

Proof. We use contradiction. Suppose fj+1 → ei. Because of fj → fj+1 and
ei → fj , these three paths form a cycle, which is contradict to our statement
of breaking the cycle in Section 2.1. Hence we have ei → fj ⇒ ei →
fj+1 ⇒ · · · ⇒ ei → fm.

4.2.3 PartCombine algorithm
In this section, we propose the algorithm to combine both common parts
and alien parts. Generally, the combination of two sequences s1 and s2 may
involve following three conditions.

• A common part s′ of s1 and s2. s′ is included in the result of
combination, and

• An alien part si in one sequence without a corresponding alien part in
the other sequence. That is, for two common parts si−1 and si+1, s1 =<
h, . . . , si−1, si, si+1, . . . , t > and s2 =< h, . . . , si−1, si+1, . . . , t >. In
this case, the combination result is < h, . . . , si−1, si, si+1, . . . , t >, and
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Figure 6 Three conditions in s0.

• Two alien parts si and sj share the same adjacent common parts.
That is, for two common parts si−1 and si+1, s1 =< h, . . ., si−1,
si, si+1, . . . , t > and s2 =< h, . . . , si−1, sj , si+1, . . . , t > For this case,
we invoke Algorithm 3 to combine si and sj .

Example 5. We use an example to demonstrate these three conditions in
Figure 6, where the number below each block shows the case of the part.

Considering all these three cases, we design PartCombine algorithm as
depicted in Algorithm 4. In this algorithm, we also use + to represent the
concatenation of sequences as in Algorithm 3.

Algorithm 4 PartCombine algorithm

1: function PartCombine (s1, s2)
2: LCS(s1, s2)
3: c1 ← s1.h, c2 ← s2.h, Out← ∅
4: while c1 6= t and c2 6= t do
5: if c1 is common then
6: Out← Out+ c2
7: c2 ← c2.next
8: if c2 is common then
9: c1 ← c1.next
10: else
11: c1 ← c1.next
12: if c2 is common then
13: Out← Out+ c1
14: else
15: Out← Out+AlienCombine(c1, c2)
16: c2 ← c2.next
17: end if
18: end if
19: end if
20: end while
21: return Out
22: end function
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Initially, these two sequences are partitioned into common parts and alien
parts with the longest common sequence algorithm (in Line 2). Then the parts
are combined in a merge style. We use two cursors, c1 and c2, pointing to the
processing parts of s1 and s2, respectively. Line 3 initiates the two cursors and
the output. Lines 4–16 iteratively process parts pointed by cursors until one
of which points to the tail of s1 or s2. We obtain the output of this function,
namely, the result of combining two sequences in Line 18. In detail,

• When the part in c1 is a common part but that in c2 is an alien one
(Line 5), we concatenate the part pointed by cursor c2, then move it to
the next (Lines 6, 7).

• When the both of parts in c1 and c2 are common parts (Lines 5, 8),
we concatenate the any part (because they are the same as stated to the
result, then move both cursors c1 and c2 to the next (Lines 6, 7, 9).

• When the both of parts in c1 and c2 are alien parts (Lines 10, 14), we
invoke AlienCombine Algorithm to combine two alien parts, the output
of which is concatenated to the result. Then we move both cursors c1

and c2 to the next (Lines 11, 15, 16).

The time complexity of this operation is still O(m) because the time
complexity of all three conditions are O(m).

4.2.4 FSCombine algorithm
To combine two entries bm and bn in L, besides the combination of sequences
bm.seq and bn.seq with PartCombine Algorithm discussed in Section 4.2.3,
we also need to delete entries bm and bn, add theirs supports to the combined
entry bf , and insert bf to corresponding list.

Algorithm 5 FSCombine algorithm

1: function FSMerge(L, bn, bm)
2: bf .seq ← PartCombine(bn.seq, bm.seq)
3: bf .count ← bn.count + bm.count
4: FSGInsert(L, bf )
5: FSGDelete(L, bm)
6: FSGDelete(L, bn)
7: return bf
8: end function

The pseudocode is shown in Algorithm 5. Line 2 gets the result of combi-
nation from function PartCombine as mentioned before. Line 3 accumulates
the support from two subsequences to the new entry. Line 4 inserts the new
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entry bf to L. Lines 5–6 delete two old entries bm and bn, respectively. Line 7
returns bf .

The upper bond of time complexity of this algorithm is max{O(m), O(l)},
where the time complexity of PartCombine is O(m), with the maximum
length of input sequences denoted by m, and that of FSGInsert is O(l) with
the maximum length of sequence blocks in linked lists of L denoted by l.

5 The CFSM-AKB Algorithm

In this section, we propose the CFSM-AKB (Coverable Frequent Sequence
Mining on Acyclic Knowledge Base), with the data structure and algorithms
introduced above (in Section 5.1). Then we demonstrate the correctness of
CFSM-AKB (in Section 5.2).

5.1 CFSM-AKB Algorithm

To achieve the goal of problem, in this section, we propose the CFSM-
AKB algorithm. In this algorithm, all sequences are stored in a FSGroup L
introduced in Section 3.1. The algorithm iteratively combines long sequences
by invoking the FSCombine algorithm introduced in Section 4.2.4.

Initially, all input sequences with same length are grouped respectively.
Then L is constructed according to these groups by invoking FSGInsert. In
the algorithm, groups in L are identified as g1, . . . , gl, gi is the linked list for
the sequences with the ith shortest lengths. Since the longer sequences may
be generated and some groups may be withdrawn, l and the subscript of some
groups will change accordingly during the algorithm.

During the algorithm, we use a cursor c to point to the processing entry.
In the beginning, c pointing to the head of the active group with the second
longest length gl−1.

In each round, the precondition is that the entry bi pointed by c is in the
group gj . It is decided whether bi should be merged (but not combined) into
entries in gj+1, . . . , gl. After bi is processed, the increasing of the length of
the longest sequence means that the current group with the second longest
length is not gl−1, and we denote current one by gt. Then c moves to the
head of gt. Otherwise, c moves to the next entry in gj . If all entries in gj are
processed, c moves to the head of gj−1. The algorithm halts when the longest
length of sequences does not change and the tail of g1 has been processed.

The merge or combination operation is applied on the entries according
to the relationship of their sequences. For an example, for bi pointed by c,
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if ∃bk, bi.seq is a subsequence of bk.seq, then bi is merged into bk. Let gj+
denote the set of all the entries in groups gj+1, . . . , gl such thatgj+ = {b|b ∈
gi, i ∈ [(j + 1) . . . l]}. If one entry bi in gj could be merged with multiple
entries bk1 , . . . , bku in gj+, we first merge bi into any entry bki , then combine
these multiple entries two by two. In other words, FSCombine(bki , bki+1

) is
invoked iteratively with i from 1 to u− 1.

Algorithm 6 CFSM-AKB algorithm

1: function CFSM-AKB(L, p, α)
2: c← gl−1.h
3: //gl−1 is the group with the second longest length in L
4: while c 6= ∅ do
5: if ∃bk1 , c.seq @ bk1 .seq then
6: FSMerge(L, bk1 , c)
7: if ∃bk2 , c.seq @ bk2 .seq then
8: last← bk1

9: foreach ki, i ∈ [2 . . . u] do
10: if ∆E(p, α, |bk1 .seq|, |bk2 .seq|) < 0 then
11: last← FSCombine(L, last, bk)
12: if |last > L.mlen| then
13: c← gt.h
14: L.mlen← |last |
15: continue
16: end if
17: end if
18: end if
19: if c.next = ∅ then
20: c← gj−1.h
21: else
22: c← c.next
23: end if
24: end if
25: end while
26: return {b|b ∈ L ∧ b.count ≥ εf}
27: end function

The pseudocode of the whole algorithm is shown in Algorithm 6. Line 2
initiates the cursor c to the head of the current second longest sequences group
gl−1. Line 4 starts the scanning of groups in L. The algorithm stops when the
tail of gl has been processed.

For each entry, the merge or combine operation is performed. If there
exists any sequence as a supersequence of c.seq (in Line 5), it invokes
FSMerge to merge c into bk1 (in Line 6). Moreover, if there exists multiple
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Figure 7 An example of CFSM-AKB algorithm.

entries as supersequences of c.seq (in Line 7), FSCombine is invoked
iteratively to combine each pair of supersequences in Lines 8–11. Note that
in Line 10, all combine operations satisfies an alternative discriminant ∆E . If
the length of the longest sequence increases (in Line 12), the cursor c moves
to the head of gt (in Line 13), new second longest sequences group, and
we change L.mlen to the new length of the longest sequence (in Line 14).
Then we restart the algorithm from Line 4. If c points to the tail of gj (in
Line 16), it will move to gj−1 (in Line 17), otherwise to the next group (in
Line 19). Finally, in Line 20, we return entries with supports larger than the
predetermined threshold εf .

Example 6. Figure 7 shows a brief example of the algorithm. Five sequences
with their supports are shown in Figure 7(a). We point cursor c to < A,C >
at first. Then we find that two sequences are supersequences of c, as stated
above, bk1 =< A,B,C,D > and bk2 =< A,C,D,E >. We merge c to bk1 ,
by invoking FSMerge(L, bk1 , c). Then we invoke FSCombine(L, bk2 , bk1) to
combine bk1 and bk2 into a new entry containing < A,B,C,D,E >, as
shown in Figure 7(b). Since the maximum length is increased from 4 to 5,
in Figure 7(c), we move cursor c to the head of gt =< B,C,D,E >.
Since there is one sequence < A,B,C,D,E > as a supersequence of
< B,C,D,E >, we only invoke FSMerge in this time. In Figure 7(d), since
c points to the tail of gj with Lines 15–16, we move c to the head of gj−1

to < C,E >. Then we also invoke FSMerge. Finally in Figure 7(e), the
algorithm ends when c points to the tail of g1. We get the generated sequence
< A,B,C,D,E > with support 6.

5.2 Properties of CFSM-AKB

In this section, we study the properties of our algorithm including the time
complexity and the correctness.

Time Complexity. We consider the upper bound of our algorithms. The
worst situation is that the longest length of sequences is always changed
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after the combination of two entries. Such operation will generate one new
entry and delete two in each round. Let n denote the number of all input
sequences. We choose a group with at most l entries in each round and the
function FSCombine is invoked n× l times. According to the analysis in Sec-
tion 4.2.4, the time complexity of function FSCombine is max{O(l), O(m)}.
Consequently, the CFSM-AKB algorithm is polynomial time and requires
max{O(nl2, O(nlm)} arithmetic operations.

Correctness. Since the optimal solution of the problem satisfies three con-
ditions, we will prove the correctness of CFSM-AKB algorithm by showing
that its results satisfy these conditions in Lemma 3 and 4.

Lemma 1. In CFSM-AKB algorithm, ∃b ∈ gj+δ and ∀d ∈ gj+ε, respectively,
where 0 ≤ ε < δ ≤ l − j, d is deleted iff d.seq @ b.seq.

Proof. Since d.seq @ b.seq, |d.seq| < |b.seq|. Because we access the head
table H from long end to short end by the cursor, the algorithm invokes
FSMerge(L, b, d) to delete d. In turn, if d is deleted, FSMerge(L, b, d)
is surely invoked. It means that |d.seq| < |b.seq| and d.seq @ b.seq
accordingly. This lemma holds.

Lemma 2. If d is deleted, d is not to be rebuilt.

Proof. We use induction to prove this lemma.

• When |d.seq| = 1, since d.seq contains only one element, if it is deleted,
there are no subsequences to be combined, but d cannot be rebuild
apparently.

• When ∀ei, |ei.seq| = l, l < n, we suppose that if ei is deleted, ei is not
to be rebuilt.

• When |d.seq| = n, we attempt to prove that if d is deleted, d is not to be
rebuilt.

First, since d is deleted, ∃b such that d.seq @ b.seq. (Lemma 1)
Then, we use contradiction. Suppose that d is rebuilt. In such case,
FSCombine(L, e1, e2) must be invoked, where e1 and e2 satisfy following
conditions.

• e1 ∈ gj+µ1 , µ0 < µ1 < ε, and
• e2 ∈ gj+µ2 , µ0 < µ2 < ε, and
• ∃e0 such that e0 ∈ gj+µ0 , 0 < µ0 < ε, and
• e0.seq @ e1.seq and e0.seq @ e2.seq.

In other words, |e1.seq| < n and |e2.seq| < n. Nevertheless, since
e1.seq @ d.seq, e2.seq @ d.seq, and d.seq @ b.seq, we conclude e1.seq @
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b.seq, e2.seq @ b.seq. Hence, FSMerge(L, b, e1) and FSMerge(L, b, e2)
to delete e1 and e2. e1 and e2 will not be rebuilt, in accordance with the
assumption that ∀ei, |ei.seq| = l, l < n, if ei is deleted, ei are not to be
rebuilt. Therefore, d does not exist, either. This is contradict to the assumption
that d is rebuilt. Thus, for any d, |d.seq| = n, if it is deleted, it is not to be
rebuilt.

As a result, for any d, if it is deleted, it will not be rebuilt. This lemma
holds.

Lemma 3. For the result set T of CFSM-AKB algorithm, both cov(T ) and
Σ|ti|
|T | are maximal.

Proof. Firstly, we prove that two claims in this lemma are equivalent.

• Formally, let SDT denote the union of compatible set of all generated
rules that SDT =

⋃
ti∈T S

D
T .Accprdomg to the function that cov(T ) =

|SD
T |
|D| , if we want to maximize cov(T ), for the same data setD, we should

maximize SDT . In other words all sequences in D should be covered by
sequences in T . It is impossible that a sequence s′ in D but not in SDT is
a subsequence of any sequences in T .

• Similarly, according to the function that Σ|ti|
|T | , if we want to maximize it,

we should maximize Σ|ti|. Because the combination of two sequences
increases the average length, we should ensure that there does not exist
two sequences in T satisfy the condition that one is a subsequence of the
other. Formally, ∀tv ∈ T , there does not exist tu ∈ t such that tu @ tv.

Therefore, all we need is to prove that during the algorithm such s′ and tv
do not exist. We set ti and tv correspond to b.seq, and s′ and tu correspond
to d.seq. Thus, two claims are equivalent.

According to Lemma 1 and d.seq @ b.seq, d is deleted. According to
Lemma 2, d is not to be built. As a result, in T , there does not exists d such
that d.seq @ b.seq. This lemma holds.

Lemma 4. The frequency of each sequence generated by CFSM-AKB algo-
rithm is over a threshold. Formally, for the result set T of CFSM-AKB
algorithm, ∀ti ∈ T, |SDti | ≥ εf .

Proof. In Algorithm 6 with Line 20, only sequences whose supports are over
the predetermined threshold εf are output. Thus, this lemma holds.

According to these lemmas, the following theorem shows the correctness
of CFSM-AKB algorithm.
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Theorem 1. The CFSM-AKB algorithm is correct because of the output of
that, T , satisfies three following claims.

• cov(T ) is maximal, and
• Σ|ti|
|T | is maximal, and

• ∀ti ∈ T, |SDti | ≥ εf .

Proof. According to Lemma 3 and 4, ∀T , we have ∀ti ∈ T, |SDti | ≥ εf ,

cov(T ) and Σ|ti|
|T | reach their maximum value, respectively. Therefore, CFSM-

AKB algorithm is correct for achieving the goal of problem.

6 Experiments and Analyses

To verify the performance of the proposed approach, we conduct extensive
experiments on both real and synthetic data. We perform the experiments on
a PC machine with 3.1GHz Intel(R) Core(TM) CPU and 8GB main memory,
running Microsoft Windows 7. All algorithms are implemented in C language
in Microsoft Visual Studio 2013.

To evaluate the performance comprehensively, we test three aspects of
our algorithms. During the experiments, default parameters are α = 0.2 and
p = 0.005.

6.1 Effectiveness

We use the BMSWebView2 dataset [31] used in KDD-CUP competition to
test the effectiveness of the propose approach, since such data set contains
sequences of click-stream data and such sequence could construct a graph for
simple path traversal patterns. This data set contains 77,512 records. We use
65,000 records as the training set, and others are used as the test set. Note that

we use ecov =

⋃
ti∈T

SD
ti

|Dtest| as measure of the effectiveness of the approach.

Comparisons. We conduct three experiments for comparisons. The first one
is to compare the effectiveness of the proposed algorithm with two frequent
sequence discovery algorithms, PrefixSpan [24] and RuleGen [41]. Even
though some other approaches have been proposed such as SPADE [41],
SPAM [2], and LAPIN [39], they share the same result with PrefixSpan.
Meantime, PrefixSpan have a relative better performance on large data set.
RuleGen is a classic algorithm on frequent sequences mining problems,
whose purpose is similar to CFSM-AKB. To ensure the fairness of the
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Table 1 Compared with PrefixSpan and RuleGen
Algorithm Parameters Coverage Amount
CFSM-AKB α = 0.2, p = 0.005, ms = 10 0.8320 1008
PrefixSpan ms = 0.001 0.0713 30586
PrefixSpan ms = 0.0001 0.2622 8597444
RuleGen ms = 100, mc = 0.6 0.0231 98744
RuleGen ms = 50, mc = 0.6 0.0424 3343536

  
(a)  VS. Coverage (b)  VS. Coverage 

Figure 8 Coverage associated with different parameters.

comparison, we tune the parameters of PrefixSpan and RuleGen, and pick
two groups of parameters for each algorithm. These parameters make the
algorithm achieve high coverage and could accomplish the computation in a
reasonable time (within 2 hours).

The experimental results are shown in Table 1, where ms and mc are
minimum support and minimum confidence, respectively. To show the ben-
efits of our approach, we also report the number of discovered sequences
shown in the Amount column. From the experimental results, we find that
our algorithm achieves the highest coverage with relative few sequences. It
shows that our algorithm outperforms existing algorithms in effectiveness
significantly.

The Effect of Parameters. In this section we test the impact of the parame-
ters p and α on the effectiveness of the proposed algorithm. The experimental
results are shown in Figure 8. From the results, it is observed that when p goes
higher, which implies more precise prediction, the coverage also increases.
Another observation is that if α goes higher, the coverage increases due to
the decline of error tolerance. These observations show that our design goal
is achieved with these two parameters.

The Effect of Training Set. In this part, we generate synthetic datasets
according to the approach introduced in [3]. Intuitively, the properties of the
training dataset can also influence the results. Thus, we test the effect of the
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(a) Coverage test by synthetic datasets (b)Time-consuming test by synthetic 
datasets 

Figure 9 Pruning strategy tested with different parameters.

properties of training sets on the effectiveness. We consider three parameters
of the training sets, total entries (E), max rule sequence length (L) and number
of elements (I). We generate six datasets to examine the effect of different
datasets. For each data set, 80 percent of data are regarded as the training
data, other 20 percent as the test data.

The experimental results are shown in Figure 9(a), where E100L20I100
means there are total 100k entries, max rule sequence length is 20, containing
100 elements, and so on. The y-axis is the coverage.

From the experimental results, we have three observations. First, with
fixed L and I , a larger E leads to a better coverage. It is because that more
rules could be discovered from a larger training sets. Second, with a fixed
E, when L and I increase, the coverage decreases. The reason is that more
elements lead to more complex rules and make the rules difficult to discover.
Third, even though the coverage decreases with the increasing L and I , we
could still increase the coverage by enlarging the size of training data set.

6.2 Efficiency

We test the efficiency of CFSM-AKB Algorithm on synthetic data set gener-
ated in the same way as in Section 6.1.3. We vary E from 5k to 100k to test
the efficiency on training set with various data sizes. In the experiments, we
set L = 20 and I = 100. The experimental results are shown in Figure 9(b),
where the x-axis is the size of total entries of a dataset and y-axis is the rule
discovery time on the data set. From the experimental results, the running
time is around linear with the number of entries, which agrees with the time
complexity in Section 5.2.
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(a)  (b)  

Figure 10 Pruning strategy tested with different parameters.

6.3 Effectiveness of Pruning Strategy

Since in FSCombine algorithm, the combination of two long sequences
results in error in high probability, we test the probability that two sequences
with different lengths can be combined according to our pruning strategy. We
test the results on different p and α. Dataset and the parameters are the same
as those in Section 6.1.

Figure 10 shows the restraint effect of combination of two sequences,
where x-axis indicates the length of long sequence, and y-axis that of
short one. Each line in each figure shows the maximum length of short
sequence that can be combined with long sequences with various lengths.
The experimental results are shown in Figures 10(a) and 10(b) with different
p and α, respectively. From the experimental results, the probability that two
sequences with different lengths can be combined increases with the decline
of p but with the increasing of α. From this observation, we conclude that
p and α could control the lengths of sequences involved in the combina-
tion successfully. It demonstrates the effectiveness of the proposed pruning
strategy.

6.4 Summary

The following conclusions are drawn from the experimental findings. From
an acyclic knowledge base, the suggested method may extract valuable
frequent sequences. The suggested method considerably surpasses current
alternatives in terms of effectiveness. The suggested method is fast and can
handle a high number of training sets. The pruning method provided is
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successful. The length of the sequences involved in the combination might
be adjusted using the two parameters.

7 Related Work

The original work of sequential pattern mining is to acquire all sequential
patterns with a predefined support from a database of sequences [32], where
classic works are GSP [32], SPADE [41], PrefixSpan [24], Spam [2], Lapin-
Spam [39]. All of them input the same training set and parameters and return
the same set of frequent sequential patterns. There are also tons of sequential
patterns mining algorithms designed under diverse background recently, such
as Skopus [25], uWSequence [28], WoMine [4], UNB [35], etc. The problem
definition of our work is different from these works because we aim at mining
simple path traversal patterns from a knowledge graph. As a result, they are
ineffective to directly apply them to our problem.

There is also a body of work on sub-graph mining. They are con-
cerned with acquiring frequent sub-graphs in a graph, such as gSpan [38],
Spin [14], Leap [37], ATW-gSpan [16], AW-gSpan [16], UBW-gSpan [16],
DistGraph [34], MuGraM [15]. Additionally, there are data mining for path
traversal patterns under different circumstances, especially on World Wide
Web [5, 21]. However, their goals are different from ours. They lack the
consideration of Coverage.

Another related literature is on the topic of knowledge graph mining. One
of popular researches is utilizing data mining for developing and maintaining
a knowledge graph [11, 17, 30], which are not of our concern. Fortunately,
several researches are involving data mining on the knowledge graph in recent
years, such as rule mining [8, 10, 27], mining outliers [22], mining cardinal-
ity [20], mining conditional keys [33], mining substructures [7], mining user
behaviour information [29]. Diverse data mining tasks are springing up on
account of emerging researches of knowledge graph. To our best knowledge,
our work is the first study of mining simple path traversal patterns on it.

8 Conclusions

In this paper, we have solved the problem of simple path traversal patterns
mining in knowledge base. Our model is a special frequent sequence mining
problem with consideration of coverage. To tackle this problem, we propose
an algorithm based on sequence combination. To increase the efficiency
and effectiveness, we develop a suitable data structure and algorithms for
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sequence combination as well as pruning strategies. We prove algorithm
proposed is correct. Extensive experiments demonstrate that the proposed
approach could find useful frequent sequences efficiently and effectively. The
further works include mining different paths in knowledge graph, mining
frequent patterns in knowledge graph, and other data mining problems in
knowledge graph. We believe that studying data mining in the context of
knowledge graphs will lead to exciting new research.
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