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Abstract

Remote control and monitoring will become the future trend. High-quality
automated guided vehicle (AGV) path planning through web pages or clients
can reduce network data transmission capacity and server resource occupa-
tion. Many Remote path planning algorithms in AGV navigation still have
blind search, path redundancy, and long calculation time. This paper proposed
an RLACA algorithm based on 5G network environment through remote
control of AGV. The distribution of pheromone in each iteration of the ant
colony algorithm had an impact on the follow-up. RLACA algorithm changed
the transfer rules and pheromone distribution of the ant colony algorithm to
improve the efficiency of path search and then modify the path to reduce
path redundancy. Considering that there may be unknown obstacles in the
virtual environment, the path obtained by the improved ant colony algorithm
is used as the training data of reinforcement learning to obtain the Q-table.
During the movement, the action of each step is selected by the Q-table
until the target point is reached. Through experimental simulation, it can
be concluded that the enhanced ant colony algorithm can quickly obtain a
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reasonable and adequate path in a complex environment and effectively avoid
unknown obstacles in the environment.

Keywords: 5G, path planning, ant colony algorithm, reinforcement learn-
ing, path correction.

1 Introduction

With the development of 5G networks, planning a more intelligent, faster
and more efficient path in the logistics field is a hot issue of continuous
research. Automated guided vehicle (AGV) gradually plays an essential
role in medical treatment, transportation and life. One of the most critical
functions of AGV is path planning. Path planning has been widely used in
various aspects, such as map software path planning, the movement of game
characters, and the logistics and transportation fields. The quality of online
path planning through web pages or software will affect network transmission
speed, server resource usage and data transmission capacity. So far, many
scholars have proposed many algorithms, such as Dijkstra algorithm [1], JPS
algorithm [2], A* algorithm [3], artificial potential field method [4]. Many
intelligent algorithms have emerged in the later period, such as ant colony
algorithm [5], particle swarm algorithm [6], genetic algorithm [7, 8]. Many
scholars apply these intelligent algorithms [9–11] to path planning and have
achieved good results.

Ant colony algorithm [12] has strong robustness. It can be calculated
in parallel and is easy to combine with other algorithms. In terms of path
planning, ant colony algorithm has good results, but there are also premature,
self-locking, and path redundancy. In response to these problems, many
scholars have made improvements [13–17]. Luo [18] rewarded the optimal
solution in each iteration, penalized the worst solution, and penalized the
last two steps of the deadlock path for avoiding ant deadlock as much as
possible. Wu [19] applied the rollback and death strategy to the maximum
and minimum ant system. Yao [20] proposed an HFACO algorithm, which
defines two different types of ants: exploration Ant A and exploitation Ant
B, by dynamically adjusting the two to solve the premature problem of ant
colony algorithm. Jiao [15] proposed the polymorphic ant colony algorithm,
in which each ant is assigned a different work, and the deadlock is penal-
ized for making the ant move in the direction without obstacles. Liu [21]
combined pheromone diffusion and local geometric optimization, spread the
path pheromone along the direction of the potential field to improve the
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higher fitness subspace, optimized the path using ant colony algorithm, and
optimized the geometric algorithm to avoid cross path. Zhao [22] improved
the initial pheromone distribution’s uneven and directional selection strategy
and introduced the pheromone coverage and update strategy to avoid repeated
searches. Xia [23] applies the improved quantum ant colony algorithm to
path planning. Local and global update rules update the quantum ant colony
algorithm. K. Akka and F. Khaber [24] improved the transition probabil-
ity function to increase the probability of ants moving to places with few
obstacles. Improve the dynamic volatilization coefficient to prevent the ant
colony algorithm from falling into local convergence. Wang [25] combined
Bayesian decision-making with ant colony algorithm and introduced the
environmentally affected side of the successor node into the decision of
successor node selection, limiting the algorithm’s optimization in the poor
solution area and making the algorithm more optimal in the superior solution
area. Sufficient while avoiding falling into the optimal local solution. Dai [26]
combined the ant colony algorithm and the A* algorithm to improve the
convergence speed of the path and roll back deadlocked ants until a movable
path was found, which avoided the deadlock of the ants. Li [27] improved the
environment model and improved the safety and smoothness of path search.
Local path planning and global pheromone update can improve the real-
time performance of pheromone and improve global searchability. Introduce
the idea of cat colony, adopt dynamic grouping, redistribute ant colony, and
improve algorithm diversity.

Many algorithms can improve the ability of the ant colony algorithm and
increase the convergence speed. The improved path still has path redundancy
and low search efficiency. In the AGV path planning system, although the
network calculation speed will be increased, the path will not be the shortest,
which will affect the efficiency of logistics and transportation.

Reinforcement learning is a type of machine learning. Reinforcement
learning influences the subsequent decision-making of the agent through the
interaction between the agent and the environment. Reinforcement learning
has been widely used in various fields. Noguchi [28] combined the artificial
potential field method and reinforcement learning for I-AUV to plan a safe
path to capture sea urchins. Liu [29] combines reinforcement learning and
robot path planning to solve practical problems. Qu [30] combines rein-
forcement learning and grey wolf algorithm for UAV path planning, and the
planned path is shorter and smoother than the path planned by traditional
algorithms. Leiva [31] proposed a robust approach to train map-free navi-
gation strategies to improve the flexibility of dynamic sensor observation.
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Figure 1 AGV remote control diagram.

Jian [32] proposed an ART2 neural network and its learning algorithm based
on reinforcement learning, reducing the number of collisions between robots
and obstacles and effectively avoiding obstacles. Multiple experiments have
shown that reinforcement learning has been widely used in robotics.

This paper is aimed at the problem of remote control AGV path planning
in 5G network environment. As shown in Figure 1, the AGV dispatch client
is installed in the terminal, and the instruction data flow is uploaded through
a 5G gateway (5G CPE) and diverted to the AGV’s dispatch server through
the edge node. The scheduling server calculates the globally optimal path
and uploads the relevant instruction data flow through the 5G gateway (5G
CPE), diverts to the AGV through the edge node, and the AGV selects the
current optimal path according to the actual environment and the planned
global optimal path, thus reaching the target point.

In order to improve the shortcomings of ant colony algorithm in remote
path planning, this paper proposed an AGV path planning based on the
RLACA algorithm. Reinforced ant colony algorithm combines the advan-
tages of reinforcement learning and improved ant colony algorithm. Com-
pared with other ant colony algorithms, the difference of the improved ant
colony algorithm is that reinforcement learning is added to integrate global
and local path planning to realize the unification of global path planning
and local path planning. At the same time, considering the shortcomings of
blindly searching for the optimal path, changing the initial pheromone distri-
bution and changing the pheromone update rules avoids the locally optimal
path. In order to ensure the stability of the path, increase the smoothing
coefficient and the target point trend coefficient, and modify the path to
reduce the redundancy of the path. Considering that unknown obstacles and
collisions need to be avoided in the real environment, all the paths to the
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target point are learned through reinforcement learning, and each movement
action is selected through the Q value obtained through learning. The main
contributions of this paper are as follows:

(1) A new type of reinforced ant colony algorithm is proposed, which
combines the characteristics of reinforcement learning and ant colony
algorithm to solve the problems of AGV system in path planning.

(2) The initial pheromone distribution is improved in the RLACA algo-
rithm, reducing the blindness of the ant colony algorithm search. The
randomness of path selection in ant pathfinding will lead to redundancy
in the path. By introducing the smoothing coefficient and the target point
trend coefficient, the stability of the path is ensured, and the path is
kept moving towards the target point. Improve the pheromone update
rules for the ants that reach the target point so that the path pheromone
distribution has a specific gradient, which improves the search diversity
and avoids premature maturity. During the search process, the redundant
path due to environmental factors is added to the global taboo table to
prevent the ants from continuing to move to this path in the later stage,
making the path search more efficient and intelligent.

(3) The modified path to the target point in the improved ant colony algo-
rithm is used as the training number for updating the Q-table. During the
movement of the AGV, the direction of the next move is selected by grid
map and actual environment to avoid the existence of the environment
Unknown obstacles.

The structure of this article is as follows. The second section is built the
environment model by web or software, basic ant colony algorithm and rein-
forcement learning algorithm of AGV. The third section describes the specific
implementation of the RLACA algorithm. The fourth section describes the
implementation steps and flowchart of RLACA. The fifth section compares
the RLACA algorithm with other algorithms. Section VI summarizes the
RLACA algorithm.

2 Basic Knowledge and Ideas

2.1 Environment Modelling

The establishment of the model needs to be consistent with the actual situ-
ation to help solve the actual problem. In the environment where the AGV
is operating, the grid map is more conducive to realizing the path planning
algorithm, and the grid graph is also more conducive to the deletion and
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Figure 2 Grid map.

modification of the environmental map. Therefore, the grid map is selected
as the simulation map. The moving direction of the AGV is divided into eight
directions: front, back, left, right, left front, right front, left back, and right
back, corresponding to the eight grids around a grid in the grid map.

By converting the two-dimensional environment map into a grid map, the
mobile robot moves in the MM ×MM grid environment, and each square in
the grid map is sorted from left to right and top to bottom. In the map, black
represents obstacles, and white represents areas that can move freely. A grid
is represented by (x, y) its coordinates, and is represented by Equation (1):

x = mod(i,MM )− 0.5

y = MM + 0.5− ceil

(
i

MM

) (1)

Where x is the abscissa, y is the ordinate, mod is the remainder function,
and i is the serial number, which is shown in Figure 2. MM is the length of
the grid map, and ceil is rounded to infinity.

2.2 The Basic Principle of Ant Colony Algorithm

The ant colony algorithm is a swarm intelligence algorithm that simulates
the pheromone left in the pathfinding process of ants and selects the next
node through the generated pseudo-random number combined with the state
transition probability until the target point is reached or there is no node to
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move. After a single ant release is over, the path is updated with pheromone,
and as the ants continue to search, an optimal path is finally converged.

2.2.1 Probability transfer function
In the basic ant colony algorithm, the pheromone and distance on the path
determine the probability transition function. In the kth iteration, the current
transition probability pkij(t+ 1) of ant from node i to node j is calculated as
follows:

P kij(t+ 1) =


[τij(t)]

α[ηis(t)]
β∑

J=Ak(i)
[τij(t)]

α[ηis(t)]
β
, j ∈ Jk(i)

0, others

(2)

Among them, τij is the pheromone concentration between node i and
node j. ηis is the visibility factor, usually the reciprocal of the distance
between node i and target point j, and α and β respectively reflect the
importance of pheromone concentration and visibility factor ηij .

The transition of the ant colony algorithm path is random, without con-
sidering the smoothness of the path, and at the same time, the degree of
approaching the target point is relatively low. These shortcomings will affect
the distribution of pheromone and the speed of convergence.

2.2.2 Pheromone update
When the ant completes a single iteration, the pheromone is updated once,
and the pheromone update equation is calculated as follows:

τij(t+ 1) = (1− ρ)τij(t) +4τij (3)

4τij =
m∑
k=1

4τkij (4)

4τkij =


Q

Lk
, when ant k passes edge ij in this move

0, otherwise
(5)

Among them, τij(t + 1) represents the pheromone concentration, ρ
represents the pheromone volatilization coefficient, 4τkij represents the
pheromone increment in the kth iteration from node i to node j, and m
represents the number of ants released each time.
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The pheromone update of the traditional ant colony algorithm is affected
by the number of moving ants on a specific path ij. The more the number of
moves, the larger the4τij , and more ants will follow the path, which is prone
to local convergence.

2.3 Reinforcement Learning Algorithm

Reinforcement learning is a kind of machine learning and has been widely
used in various fields. Reinforcement learning can be divided into learning
methods based on strategy and value. The Q-learning algorithm is a value-
based learning algorithm. In the learning process, the agent chooses the
corresponding action by the current state to estimate the optimal strategy. The
Q-score table is dynamically updated according to the reward. The update
equation is as follows:

Qt+1(st, at)← Q(st, at) + δ · [rt+1 + γ ·maxaQ(st+1, a)−Q(st, at)]

(6)

Where st represents the current state, st+1 represents the next state, at
represents the current action taken, and rt+1 represents the reward corre-
sponding to the next state based on the corresponding action at. δ is the
learning rate, and γ is the discount factor. maxaQ(st+1, a) is the next state
st+1. Select action a to obtain the maximum Q value. The pseudocode of the
Q-learning algorithm is as follows:

The Q-learning algorithm pseudocode

Initialize Q(s, a)
Randomly choose an initial state st
while the terminal is not reached do

Choose at from st using policy derived from Q-table
Tack action a, observe reward
Find the new state st+1

Observe the maximum Q-table of st+1

Update the Q-table by Equation (6)
Update the state st ← st+1

end while

Reinforcement learning is a blind search of the environment. This search
method does not reinforce the optimal solution in history, and the optimal
historical path is not necessarily the global optimal path. The ant colony
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algorithm will strengthen the optimal solution in the search path and can make
up for the shortcomings in reinforcement learning. Therefore, the RLACA
algorithm is proposed, which combines the ant colony algorithm and the
reinforcement learning algorithm to achieve the path planning algorithm’s
global and local path planning performance.

3 RLACA Algorithm

3.1 Improve Initial Pheromone Distribution

In the traditional ant colony algorithm, the initial path pheromone concen-
tration in every grid is equal, and path selection is blind. In a more complex
environment, the number of ants will be lost. If the pheromone is updated
and the number of ants in each iteration is unreasonable, It is easy to make
the ant colony algorithm premature and can not get the optimal path under
actual conditions. Given the shortcomings in this part, a non-uniform initial
pheromone distribution method is proposed. The pheromone distribution of
each part is as follows:

τij(0) = µ

(
a ∗ τ0 point + b ∗ τ0 line

a ∗ τ0 point(max) + b ∗ τ0 line(max)

)
(7)

τ0 point = lt se − lt ie (8)

τ0 line = 1/(lline + c) (9)

Among them: µ is the pheromone distribution coefficient, which is a
constant, lt se is the Euclidean distance between the starting point and the
target point in the pheromone matrix, and lt ije is the Euclidean distance
from point i to the target point in the pheromone matrix Distance, lline is
the distance between the current point in the pheromone matrix and the line
between the starting point and the target point, a, b, and µ are the proportional
coefficients. c is the offset, which is a constant.

Figure 3 shows the initial pheromone distribution in a 30 × 30 envi-
ronment. In Figure 3, the coordinate (1,1) is the starting point, and (30,30)
is the target point. It can be seen that the pheromone concentration of the
pheromone to the target point is higher, which makes the ant’s pathfinding
process affected by uneven pheromone. Move continuously to the target
point. The pheromone distribution method can reduce the blind search in the
basic ant colony algorithm and improve search efficiency.
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Figure 3 Schematic diagram of pheromone distribution.

3.2 Improve Transfer Rules

In the basic ant colony algorithm, the introduction of heuristic factors and
pheromone can make the ants have a greater probability of moving to
where the pheromone concentration is high and the target point. Since the
pheromone concentration of adjacent nodes has little difference, the path
tortuosity rate is high. It can continuously move to the target point while
improving the stability of the path. Based on the traditional transfer function,
the stability coefficient ϕsta and the target point trend coefficient ϕori are
added.

pkij(t) =

ϕsta
ξϕori

ε [τij(t)]
α[ηis(t)]

β∑
S=Jk(i)

[τij(t)]
α[ηis(t)]

β
, j ∈ Jk(i)

0, others

(10)

ϕsta =

{
1 + cos(180◦ − ε)

2
, current point = start point

1, current point 6= start point
(11)

ϕori =
1 + cos(ω) + 0.01

2
(12)

Among them: ξ is the smoothing factor, and ε is the offset factor, which
reflects the smoothness of the movement and the relative importance of the
target point. 0.01 avoids setting the trend coefficient of the movable direction
away from the target point to 0.

In Figure 4, point P is the previous node, Q is the current node, R is the
next node that can be selected, and point T is the target node.
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R

Figure 4 Schematic diagram of transfer rules.

          

 (a)                            (b) 
Figure 5 Schematic diagram of the moving direction.

Changing the proportion of the transfer function in the path selection
makes the path both stable and at the same time able to move faster to the
target point. When the current point in Equation (11) is at the origin, there
is no previous node, so the stability coefficient is 1, which will not affect the
choice of the path. The 0.01 in Equation (12) is to prevent the value of ϕori
from being 0 and make it effective, The node loses the transfer opportunity.

By analyzing the path of the ant colony algorithm, the path of the ant
colony algorithm has fallbacks and deadlocks because some nodes will cause
the fallback. As shown in Figure 5, B2 and E2 are the current points, and
B1 and F1 are In the previous node, the black arrow indicates the direction
that has been moved. All the movable directions are divided into the forward
direction and the escape direction. The green arrow indicates the forward
direction, and the yellow arrow indicates the escape direction. Set A1, C1, E1,
and F2 as the escape point. When encountering obstacles, all the movement
in the forward direction is invalid, then you can move to the escape point.
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By improving the transition probability, the movement of the ant can be
affected by the target point, moving direction, and the smoothness of the path
can be taken into account while moving toward the target point.

3.3 Change Pheromone Update Rule

In the process of finding a path, the ant deviates from the start-end line (the
line between the start point and the target point). The longer the path is.
The ant colony algorithm is sorted according to the length of the path. After
sorting, the pheromone is updated according to the length of the path so that
the distribution of pheromone in the map has a specific gradient, which can
effectively avoid the premature ant colony algorithm and fall into the local
optimum. Improve the diversity of paths, and enhance the ability to search
for the optimal solution globally. The equation for the improved pheromone
update rule is as follows:

τij(t) = (1− ρ)τij(t− 1) +4τij (13)

4τkij =


Neff −m+ 1

Neff
· Q
Lk
, when ant k passes edge ij in this move

0, otherwise
(14)

Among them: Neff is the number of ants reaching the target point in this
iteration, and m is the sequence number of the shortest path of the ant in this
iteration. Lk is the length of the path.

3.4 Improve the Taboo List

The function of the traditional taboo list is to prevent the ants from walking
again and reduce the efficiency of pathfinding. Since the transition probability
of ants is random, the path may be self-locked, which will affect the update
of pheromone and reduce the number of effective ants. To solve this problem,
increase the global taboo table and combine it with the local taboo table.
When there is no alternative path other than the escape point during the
movement, or even the escape point cannot be transferred, the transfer path
is recorded into the global taboo table to prevent the ants in the later period
once again entered the misunderstanding.

As shown in Figure 6(a), K1 is the previous node, K2 is the current node,
and J1 and L1 are the next nodes that can be selected. Since K1→K2→J1/L1



A Novel AGV Remote Path Planning Based on RLACA Algorithm 2503

      
(a)                          (b) 

Figure 6 Path selection example diagram.

is a redundant path, this should not be considered at the K1 node. By updating
the taboo table, set the path K1→K2 as an immovable path. Subsequent ants
will not continue to walk this path. If the following equation is satisfied in the
path selection, the path from the previous node to the current node is added
to the global taboo table.

T = m+ 1 (15)

T : The number of directions in which the point in the taboo table can
move.

m: Actual number of directions that can be moved.
The number 1 in Equation (14) represents the path from the previous node

to the current node. The global taboo table is updated in real-time with the
path of the lost ant and not updated with the update of the pheromone, which
can prevent the ants from repeatedly entering the wrong zone in the later
period. The role of the local taboo table is to avoid the ants from repeating
the path that has been taken. Combining the two can effectively reduce the
number of ants lost in the complex environment, and at the same time, it can
adaptively adjust the environment to make the ants more intelligent in their
pathfinding. The situation is shown in Figure 6(b). conforms to the equation,
K1→K2 is added to the global taboo table, and the path H1→H2 in Figure 6.
does not meet the conditions for joining the global taboo table.

3.5 Path Correction

In the traditional ant colony algorithm, since the probability of each transition
is generated by pseudo-random numbers, it has strong randomness. The path
selected in this way will have back-off, redundancy and even self-locking
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Figure 7 Path correction diagram.

phenomena. The redundant path is also It will interfere with the update of
pheromone and even cause local convergence. The method of path correc-
tion is adopted to correct the redundant path to the target point. The path
correction method is divided into the following two cases.

1. There is a redundant path between two adjacent nodes, as shown in
Figure 7(a). That is, if Equations (16) or (17) is satisfied between any
two non-adjacent nodes in the path that has moved, it can be judged that
there is redundancy between these two points.

|x1 − x2|+ |y1 − y2| = 1 (16)

|x1 − x2|+ |y1 − y2| =
√
2 (17)

In Figure 7, node A and node G are adjacent paths, and there
are multiple paths from node A to node G, such as A→B→G;
A→B→C→D→E→F→G; →→A→B→ D→E→F→G. These paths
have many redundant nodes, and these paths are directly replaced with
A→G.

2. There is a movable node between the two nodes, as shown in Figure 7(b).
Any two non-adjacent nodes (x3, y3) and (x4, y4) of path point must
satisfy Equation (18, 19)

|x3 − x4|+ |y3 − y4| = 2 (18)

And the middle point (x5, y5) satisfies

MAP(x5, y5) = 1 (19)
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3.6 Improve Reinforcement Learning

Considering that there may be unknown obstacles in the environment where
the AGV moves, the AGV will collide with the obstacles during the move-
ment, which will damage the equipment. In the traditional Q-learning algo-
rithm, the path of each movement in path planning may not be the shortest,
and the path of each movement can reach the target point, but it cannot
achieve global sub-optimal and local optimal path planning. In order to avoid
this situation happens by using the characteristics of the ant colony algorithm:
the shorter the path, the more ants move on this path. Each path to the target
point in the ant colony algorithm is used as the training data for reinforcement
learning, and the Q value corresponding to the shortest path is continuously
strengthened.

In the RLACA algorithm, the current position is taken as the current state,
the direction of movement is selected as the action, and the reward value r is
calculated by the Equations (20–22):

discur =
√

(xcur − xgoal )
2 −

√
(ycur − ygoal )

2 (20)

disnex =
√
(xnex − xgoal )

2 −
√

(ynex − ygoal )
2 (21)

r = discur− disnex (22)

Where discur represents the Euclidean distance from the current position
to the target point, and disnex represents the Euclidean distance from the next
position to the target point. xcur , ycur represent the abscissa and ordinate
of the current position, respectively. xnex , ynex respectively represent the
abscissa and ordinate of the next position. In the beginning, all actions
that movable positions have in Q-table are set to 1, and the actions that
non-movable positions have are set to -INF to avoid interference with path
selection in local path planning after training.

The pseudocode to improve the Q-learning algorithm is as follows:

The Improved Q-learning algorithm pseudocode
for k=1 to n do

Determine current location st and next location st+1

Calculate action at and reward r
Observe the maximum Q-value of st+1

Update the Q-table by Equation (6)
Update the state st ← st+1

end for



2506 W. Yu et al.

4 RLACA Implementation Steps and Flowchart

Step 1: Create a map model, initialization parameters, initial pheromone,
heuristic information, global taboo table, Q-table.

Step 2: Initializes the minimum path in this iteration.

Step 3: Initialize the ant state parameters and initialize the local taboo table
at the same time to calculate the path and the number of paths that can be
moved in the next step.

Step 4: Determine whether the current node is not the target point and
whether the number of movable paths in the next step is greater than 1. If
it is, go to step 5; otherwise, go to step 8.

Step 5: Determine whether the current point is the initial point. If it is, go to
step 7; otherwise, go to step 6.

Step 6: Divides the nodes that can be moved in the next step into escape
points and non-escape points and judge whether there is a non-escape point.
If there is, use the non-escape point as a new movable node. If not, use the
escape point as a new movable node. Move the node and add the path to the
global taboo table.

Step 7: Calculate the stationary coefficient, target point trend coefficient and
transition probability, select the next node by pseudo-random, add the node
to the local taboo table, and use it as the current node, calculate the nodes
that can be moved in the next step and the number of nodes, and execute the
steps 4.

Step 8: Determine whether the path reaches the target point. If it reaches the
target point, correct the path, calculate the length of the path, calculate the
reward value r, update the Q-table, and record the path. If the target point is
not reached, the length of the path is set to 0.

Step 9: Determines whether the upper limit of the number of ants released
this time has been reached. If it is reached, go to step 10; if not, go to step 3.

Step 10: Sorts the path to the target point from small to large and updates the
pheromone according to the sequence number.

Step 11: Determine whether the number of iterations reaches the upper limit.
If not, perform step 2; otherwise, end the search and save the optimal path.

Step 12: According to the current position and the trained Q-table, select a
path to avoid unknown obstacles until reaching the target point.

The algorithm flow chart is shown in Figure 8:
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Figure 8 Flow chart of RLACA algorithm.
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5 Experimental Simulation and Result Analysis

In order to verify the feasibility of the improved ant colony algorithm, a large
number of experimental simulations were carried out. The algorithm’s perfor-
mance was analyzed in both global and local path planning by comparing the
traditional ant colony algorithm and other documents’ improved ant colony
algorithm. The running environment of this algorithm is: CPU is Intel(R)
Xeon(R) E5-2450H @ 2.10GHz; graphics card is GTX 1050 Ti; Windows 10
64bit; 32G memory; simulation software: Matlab2020b.

5.1 Global Path Planning Aspects

In order to verify the feasibility of the algorithm, reduce contingency factors,
and avoid errors in the judgment of the algorithm performance by the grid
map, three different grid maps of 30 × 30 (Environment 1), 50 × 50 and
60 × 60 were routed 20 times. Planning and statistical analysis of operating
results. Set the RLACA parameter settings as shown in the table through
multiple debugging options:

Table 1 Parameter selection of RLACA
Parameter Symbol Value
Smoothing factor ξ 1.4
Offset factor ε 1.6
Volatility coefficient ρ 0.9
Heuristic factor α 1
Expected heuristics β 7
Number of ants released each time M 100
Learning rate δ 0.9
Discount factor γ 0.7

Where IACA 1, IACA 2 are the improved ant colony algorithm in
paper [33] and paper [18]. RLACA strengthens the ant colony algorithm for
this article.

Through Figures 9, 11, and 13, compared with other algorithms, RLACA
has a lower convergence value and requires fewer iterations than other algo-
rithms. The convergence value of the RLACA algorithm in high-complexity
scenarios is similar to the ASrank, and RLACA has a shorter convergence
time. Other algorithms have strong randomness in their movement, resulting
in the convergence path is not the shortest. After the first iteration, the
RLACA algorithm can get a shorter path due to path modification, which
reduces path redundancy.
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Figure 9 The change of the optimal path in the 30×30 environment with the number of
iterations.

 

Figure 10 Road map of 30×30 environmental planning.

From Table 2, it can be seen that in a low-complexity environment, the
path length planned by RLACA and other algorithms is not much different,
but the IACA 1 algorithm tends to open safe space, which leads to its fast
convergence speed, and it is difficult to find the shortest path. In a 50 × 50
environment, the difference between the RLACA convergence path and the
ASrank convergence path is 1.85% of its own, but the ASrank convergence
time is 2.12 times that of RLACA.
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Figure 11 The change of the optimal path in the 50×50 environment with the number of
iterations.

Figure 12 Road map of 50 × 50 environmental planning.

In summary, the RLACA algorithm has the shortest optimization path and
shorter convergence time. Other improved algorithms have different degrees
of precocity, the number of lost ants is large, and the convergence time is
extended.

5.2 Partial Path Planning

In the RLACA algorithm, the path that can reach the target point obtained by
the improved ant colony algorithm is used as the Q table training data.
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Figure 13 The change of the optimal path in the 60×60 environment with the number of
iterations.

Table 2 Comparison of various algorithms in different environments
Average

Average Best Worst Number Average
Path Path Path of Ants Convergence

Algorithms Length Length Length Lost Time (s)
30 × 30 AS 45.15 44.53 46.43 381.9 11.43
Grid ASrank 45.99 43.94 77.77 122.9 17.45
Environment MMAS 44.85 43.94 45.94 247.8 20.81

IACA 1 45.36 45.36 45.36 1.65 6.34
IACA 2 45.27 44.53 45.94 171.9 15.61
RLACA 43.94 43.94 43.94 1.75 5.11

50 × 50 AS 90.08 84.2254 102.23 910.65 93.66
Grid ASrank 76.52 75.15 78.33 622.3 125.01
Environment MMAS 79.44 76.57 83.4 1090.45 271.11

IACA 1 107.32 95.4 111.3 48.45 80.7
IACA 2 83.98 78.57 87.05 610.85 93.93
RLACA 77.32 76.57 78.33 96.15 58.86

60 × 60 AS 163.59 121.2 241.18 1093.85 267.36
Grid ASrank 90.62 90.47 92.12 831 245.31
Environment MMAS 97.28 94.23 98.12 1319.7 539.32

IACA 1 110.42 109.05 111.88 41.55 105.95
IACA 2 97.72 94.71 99.64 654.2 110.68
RLACA 90.47 90.47 90.47 103.65 109.32
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Figure 14 The Q value distribution corresponding to the maximum action of the Q table in
Environment 1.

Figure 15 The Q value distribution corresponding to the maximum action of the Q table
after the training in Environment 1.

The Q value changes are shown in Figures 14 and 15.
In Figures 14 and 15, the starting point is (1,1), the endpoint is (30,30),

and the blank part corresponds to the obstacle’s position. It can be seen
that the RLACA algorithm for local path selection is distributed around the
start and end line, and this distribution mode meets the needs of local path
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Figure 16 Comparison of global path planning and local path planning in a 30 × 30 grid
environment.

planning in the virtual environment. The actual path movement in the local
path planning needs to be moved in conjunction with the learned Q-table.
When there are no obstacles on the globally optimal path, the path moved by
the AGV according to the Q-table entirely coincides with the globally optimal
path. When there are unknown obstacles on the global path that are not in the
environment map, the action corresponding to the maximum Q value in the
current state will be selected according to the Q-table.

In Figures 16, 17, and 18, the green is the moving path that simulates the
actual environment, the blue is the globally planned path, and the red grid is
the unknown obstacle. Through simulation, it can be seen that the RLACA
algorithm can avoid unknown obstacles to reach the target point.

In summary, the advantage of RLACA over other algorithms is that it
can converge to the optimal path in as short a time as possible. Improve the
transfer rules, increase the stability coefficient and the target point guidance
coefficient, improve the ant’s guidance to the target point, and reduce the
blind search path. Through path correction, redundant path pheromone update
is avoided, the pheromone update efficiency is improved, and it is beneficial
to find the optimal path. Increasing the taboo table reduces the number of
lost ants and speeds up the path search efficiency. The RLACA algorithm
integrates global path planning and local path planning, and the path selection
in obstacle avoidance considers the global optimal while also considering the
local optimal, which has higher practicability.



2514 W. Yu et al.

Figure 17 Comparison of global path planning and local path planning in a 50 × 50 grid
environment.

Figure 18 Comparison of global path planning and local path planning in a 60 × 60 grid
environment.
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6 Conclusion

An RLACA algorithm is proposed to solve the problems of premature and
long calculation time in traditional path planning algorithms, increase the
speed of AGV network calculation and improve the operational efficiency
of logistics and transportation efficiency. The algorithm is summarized as
follows:

1. By distributing the initial pheromone according to the distance from the
start and end line and the target point, the blind search of the ant colony
algorithm is reduced, and the probability of searching for the optimal
path is maintained.

2. Change the transfer rules, increase the stability coefficient ϕsta and the
target point trend coefficient ϕori So that the path selection is smooth
and moves to the target point at the same time so that the path planning
of the robot is more in line with the actual situation, dividing the
moving direction into the forward direction and the escape direction
can significantly reduce retreat and self-locking, and improve the search
efficiency.

3. Improve the pheromone update rules, and update the pheromone accord-
ing to the order of the length of the path, which can strengthen the role
of the optimal path while retaining the possibility of searching for other
paths.

4. Combine the global taboo table with the local taboo table to prevent
subsequent ants from repeatedly entering the escape direction, making
the search more intelligent. The pheromone update of the redundant path
avoids misleading the subsequent ants to find the optimal path.

5. By making redundant corrections to the path, the redundant path is
corrected to avoid subsequent misleading of ants, affect the convergence
speed of the path, and reduce the precocity of the ant colony algorithm.

6. The path of the improved ant colony algorithm is used as the learning
data set of reinforcement learning, and the optimal action is selected
according to the Q-table and the current environment.

Through simulation experiments, it can be concluded that the RLACA
algorithm can improve the search efficiency of path planning, speed up
the convergence speed, and solve the premature problem of the ant colony
algorithm. Compared with other intelligent network calculation methods, this
algorithm has stronger practicability and can complete dynamic path planning
in a changing environment.
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