
DotCHA: An Interactive 3D Text-based
CAPTCHA

Suzi Kim and Sunghee Choi∗

School of Computing, Korea Advanced Institute of Science and Technology,
Daejeon, Republic of Korea
E-mail: kimsuzi@kaist.ac.kr; sunghee@kaist.edu
∗Corresponding Author

Received 30 August 2019; Accepted 18 December 2019;
Publication 22 January 2020

Abstract

We introduce a new type of 3D text-based CAPTCHA, called DotCHA,
which relies on human interaction and overcomes the limitations of existing
2D and 3D CAPTCHAs. DotCHA asks users to rotate a 3D text model
to identify the correct letters. The 3D text model is a twisted form of
sequential 3D letters around a center pivot axis, and it shows different letters
depending on the rotation angle. Because each model consists of many small
spheres instead of a solid letter model, DotCHA is classified as a scatter-type
CAPTCHA and resists character segmentation attacks. Moreover, DotCHA
is resistant to machine learning attacks because each letter is only identified
in a particular direction. We demonstrate that DotCHA is resistant to existing
types of attacks while maintaining usability.

Keywords: CAPTCHA, 3D CAPTCHA, text-based CAPTCHA,
3D typography, mental rotation, security, usability.

1 Introduction

Completely Automated Public Turing tests to tell Computers and Humans
Apart (CAPTCHA) [37] was developed to protect systems from denial of

Journal of Web Engineering, Vol. 18_8, 837–864.
doi: 10.13052/jwe1540-9589.1884
c© 2020 River Publishers

838 S. Kim and S. Choi

service (DoS) attacks by malicious automated programs. It is a Turing
test to discriminate human users from malicious bots by using tasks that
humans can perform easily but machines cannot. Two-dimensional (2D)
CAPTCHAs are the most commonly used form of CAPTCHA to identify
humans. However, the rapid enhancement of machine learning has enabled
bots to overcome the 2D text-based CAPTCHAs [7, 9, 16] and 2D image-
based CAPTCHAs [35] with high accuracy. In particular, with advances
in Optical Character Recognition (OCR), sophisticated attacks have been
introduced to break 2D text-based CAPTCHAs. These attacks have led to
the development of three-dimensional (3D) CAPTCHAs that are relatively
hard to be decoded by computers.

3D CAPTCHAs are categorized into two types: 3D model-based
CAPTCHAs and 3D text-based CAPTCHAs. Previous 3D text-based
CAPTCHAs were formed by a simple extrusion of alphabets, making them
easily recognizable with a single glance. However, the simple extrusion is
vulnerable to OCR attacks because it has the same visual effects as distorted
2D text. 3D model-based CAPTCHAs have improved security by reducing
usability, which is the strength of 3D text-based CAPTCHAs. They are based
on the mental rotation ability [32, 33], which enables users to find answers
by inferring from the direction of various 3D objects [18, 31, 38], such as
vehicles and animals. However, 3D model-based CAPTCHAs have a low
correct response rate, because they require the users to not only recognize
the 3D object but also judge and infer the answer by performing elaborate
operations. As a result, it takes a long time to obtain the right answer for 3D
model-based CAPTCHAs compared with 3D text-based CAPTCHAs. More-
over, for those who are accustomed to conventional text-based CAPTCHAs,
3D model-based CAPTCHAs cause usability issues.

In a previous work [22], we proposed a new type of 3D CAPTCHA, called
DotCHA, which satisfies both security and usability. DotCHA combines the
strengths of text-based CAPTCHAs and 3D model-based CAPTCHAs. It
presents different alphabets that are rotated at different angles. The alphabets
are composed of several small spheres instead of being shown as a single
solid model so that it is resistant to segmentation attack. DotCHA provides
usability to users who are familiar with text-based CAPTCHAs while pre-
serving the security of 3D model-based CAPTCHAs. In this paper, we extend
our previous work by presenting further experiments validating the security
and usability of DotCHA. In Section 2, we briefly review previous works.
Section 3 describes the generation of DotCHA, and Section 4 evaluates
DotCHA using some attack scenarios. The prototype implementation and
source code are available at https://github.com/suzikim/dotcha.

https://github.com/suzikim/dotcha

DotCHA: An Interactive 3D Text-based CAPTCHA 839

2 Related Work

In this section, we briefly discuss three main types of CAPTCHAs which are
closely related to DotCHA: 2D text-based, 3D model-based, and interactive
CAPTCHAs (Figure 1).

Figure 1 Examples of previous 2D text-based, 3D model-based, and interactive
CAPTCHAs.

840 S. Kim and S. Choi

2.1 2D Text-based CAPTCHAs

2D text-based CAPTCHAs are the most widely used form, due to their ease of
use and simple structure. A sequence of alphabets and numbers are presented
to a user, and the user should identify the correct text to pass the test. Usually,
noise and distortion appear in the letters to make the test robust to automated
attacks.

Gimpy and EZ-Gimpy [3] are based on the human ability to read heavily
distorted and corrupted text. Gimpy picks up 10 random words from the
dictionary and arranges them to be overlapped with each other. Users have to
identify at least three words to pass the test. EZ-Gimpy uses only one random
word from the dictionary, but instead increases its security by deformation,
blurring, noise, and distortion of letters. Mori and Malik [28] break Gimpy
and EZ-Gimpy using object recognition algorithms and dictionary attacks.

Baffle text [10] minimizes the instances of dictionary attack by using
pseudorandom but pronounceable words. The users are asked to infer the
correct answer from words that have missing parts of letters. MSN Passport
CAPTCHA [11] has eight characters, including alphabets and numbers,
which are highly warped to distort the characters.

The prime advantages of 2D text-based CAPTCHAs are that they are
easy to generate and identify. However, it is also easy to be recognized
through OCR attacks [34, 39]. More advanced 2D text-based CAPTCHAs
have been introduced [14, 25]; however, they have been easily broken by
machine learning attacks [7, 9, 16].

2.2 3D Model-based CAPTCHAs

3D CAPTCHAs are designed to defeat bots, which use machine learning to
identify 2D text-based CAPTCHAs easily, by minimizing the legibility. Most
of the 3D model-based CAPTCHAs are based on the rotation of 3D mod-
els [18, 31, 38]. They take advantage of the cognitive ability of humans,
called mental rotation [32, 33], which is an inherent characteristic of human
nature. Mental rotation enables humans to compare two models in different
orientations. However, users feel difficult to deal with an unfamiliar model,
so they spend a long time to solve the problem.

3D text-based CAPTCHAs are more familiar to users because they orig-
inated from text-based CAPTCHAs that users have been accustomed to.
Ince et al. [20] introduce a cubic-style 3D CAPTCHA, which contains six
alphabets on each side of a cube. However, it is vulnerable to segmentation
attacks because the letters are simply attached to each side of the cube without

DotCHA: An Interactive 3D Text-based CAPTCHA 841

interference. There have been several CAPTCHAs using a sequence of 3D
letter models created with extrusion and warping [19, 24]. Ye et al. [42]
demonstrate that CAPTCHAs with such a simple distorted form could easily
be broken with a high degree of accuracy.

2.3 Interactive CAPTCHAs

Interactive CAPTCHAs rely on user interaction to mitigate automated
attacks. They require users to solve the problem by cognitive abilities and
human actions. The 3D model-based CAPTCHAs [20, 38], which require
rotation of the 3D model to get the answers, also belong to the interactive
CAPTCHAs.

2D images are the most commonly used sources in interactive
CAPTCHAs. Gossweiler et al. [17] introduce a 2D-image based interactive
CAPTCHA that requires users to rotate a randomly oriented image to its
upright orientation. SEIMCHA [26] applies geometric transformations to 2D
images, and users are required to identify the upright orientation of the image.
Gao et al. [15] introduce a CAPTCHA that asks users to solve a jigsaw puzzle
of a 2D image divided into small pieces and shuffled. In rotateCAPTCHA
[29], which combines the orientation and puzzle-solving techniques, the users
have to recreate the original image by rotating the segmented image.

CAPTCHaStar [13] requires the users to change the position of a set of
randomly scattered small squares by moving the cursor to recognize the cor-
rect shape. Our DotCHA adopts the movement of small scattered objects from
CAPTCHaStar to ensure resistance to random guessing attacks [23]. The
main problem with interactive CAPTCHAs, which focus more on security
than usability, is that it is difficult and time-consuming to solve the problem.
This is because users are not accustomed to solving visual problems. Our
DotCHA combines the strengths of text-based and interactive CAPTCHAs to
satisfy both security and usability.

3 Generation of DotCHA

3.1 Requirements

DotCHA is designed to satisfy both security and usability by improving
the security of 2D text-based CAPTCHAs and the usability of 3D model-
based CAPTCHAs. DotCHA is a kind of 3D typography because it is a
text-based 3D model. Kim and Choi [21] introduced an automatic generation
of 3D typography, which makes a single model appear to be different letters

842 S. Kim and S. Choi

depending on the view direction. Figure 2 shows DotCHA-C which adopts
Kim and Choi’s 3D typography. It has a form in which up to three letters are
engraved on each side of a cube. Since one cube represents three letters, it
has the advantage of excellent embedding ability. However, as Kim and Choi
mentioned, it is not possible to embed all the combinations of letters. Also,
there is a lack in usability because users need to identify letters by rotating
the model in three Degrees of Freedom (3-DoF).

To increase the usability, DotCHA-L is developed by engraving only one
letter in a cube and arranging several cubes in a row. Figure 3 shows the
shape of each cube rotated along its local axis to achieve a similar effect
to the existing 2D text-based CAPTHCA. Although the rendered form is
similar to the existing 2D text-based CAPTCHA, it has the advantage of being
able to check the letter interactively. However, as mentioned above, excessive
autonomy of 3-DoF leads to lack of usability in finding the correct direction
of each letter.

Therefore, to reduce DoF, we generate a DotCHA that has a common
axis but another axis is unique to each letter. All letters of the 2D text-
based CAPTCHAs are visible at once, and the letters are legible because

Figure 2 DotCHA-C is an adoption of the 3D typography from Kim and Choi [21]. (a) For a
given cube, (b) we engrave letters on each side of the cube, (c) remove unnecessary blocks, and
(d) convert blocks to spheres. The projection results from each side represent answer letters:
(e) H, (f) E, and (g) R.

Figure 3 DotCHA-L is generated by engraving only one letter in a cube and arranging
several cubes in a row. Each cube is rotated along its local axis.

DotCHA: An Interactive 3D Text-based CAPTCHA 843

Figure 4 Sample results of the DotCHA generation.

of the clear form of lettering; therefore, it is vulnerable to OCR attacks.
Each letter of DotCHA is only legible at a unique rotation angle, which
makes this technique robust to OCR attacks, by twisting 3D extruded models
around a center axis, as shown in Figure 4(c). In addition, we remove visual
unnecessary parts of the models so that each letter is not read in any direction
other than in its unique direction, as shown in Figure 4(d).

In order to improve usability, the contents of DotCHA include just 3D
letter models instead of other visual representations, such as images or object
models. The rotation axis of DotCHA is fixed to a single axis, shown as a
black bar in Figure 4, to reduce the burden and confusion for users, who may
wander around the 3D space. We replace remaining cubes with spheres to
prevent direction attacks, which guess the unique orientation of each letter
by aligning the edges of small cubes, and more details will be given in
Section 3.4. Figure 5 shows the pipeline to generate a DotCHA from given
target alphabets.

3.2 Extrusion and Twist of 3D Model

We use the molecular construction method [21, 27] to engrave the given let-
ters on a solid rectangular parallelepiped model. Molecular construction [27]
is a technique in which a model is divided into smaller units forming the
larger model. The basic idea of generating a DotCHA involves cutting a solid
cube model into small unit blocks and then deleting unnecessary blocks or
adding missing blocks to represent the given letters. Figure 4(b) and 4(c)
show the results of extrusion and twist, respectively. One letter has a size of
k× k× k, and it retains the same shape as an extrusion of a 2D letter pattern.

844 S. Kim and S. Choi

Figure 5 System Pipeline to generate DotCHA. Target letters are extruded and twisted to
the 3D model, and split to small unit blocks. We remove redundant blocks which do not affect
the perception of letters. The remaining blocks are converted to spheres, and noise spheres are
added around the model.

The 3D letter models are then rotated around the center axis of the
rectangular parallelepiped model at unique angles to ensure that the correct
answers are not recognized from a single direction. If the number of letters
used in a CAPTCHA is n, the correct answer of the DotCHA can be identified
only if the machine finds all n directions.

3.3 Removal of Redundant Blocks

Although not all letters are visible at once in defense of segmentation attacks,
a twisted model is still vulnerable to OCR attack. We remove a set of
unit blocks from the models so that each letter is recognized only in one
particular direction, not in any direction. The blocks are removed based on
two conditions. Firstly, we remove unnecessary blocks that do not affect
the shape of the letters. If two blocks are placed side by side along one
axis, even if one block is discarded, it is still recognized as a letter in a
certain direction. Secondly, the blocks are evenly removed while preserving
the balance between directions, because the letters can be easily identified in
an arbitrary direction if the blocks are gathered.

We use a multigraph G, which has multiple edges between a pair of
vertices. Each unit block is represented as a vertex of the graph G. Two
unit blocks are connected by two types of edges depending on whether the
blocks are located on the same coordinates along the y or z axes, as shown
in Figure 6. Since the rotation axis is fixed to the x-axis and the overlapping

DotCHA: An Interactive 3D Text-based CAPTCHA 845

Figure 6 xyz axes of multigraph.

in x coordinates does not affect the recognition of the letter, we ignore the
x-axis in G. We score all the vertices according to the scoring function S of
vertex v as follows:

S(v) = α · |NR(v)|+ |NG(v)| , (1)

whereNG(v) is a set of adjacent vertices of v in graphG andNR(v) is the set
of neighboring vertices. For a given vertex v, we define a neighboring vertex
as the one whose Euclidean distance from vertex v is at most k. The first term
is related to the dispersion of blocks in the cube. It indicates the number of
blocks that exist around the block v. The second term is for calculating the
number of blocks that are placed along the y and z axes. α is a constant for
balancing between the two terms. We used α = 0.3 in our experiments.

We iterate the vertices in the descending order of the scores to decide
whether to remove the block or not. At each iteration, unless the block is the
only block placed along the y or z axes, it can be discarded from the DotCHA
model. To avoid the deterministic removal for a given µ, α, and k, the target
vertex v′ of each iteration is removed with the following probability Ψ(v′):

Ψ(v′) = rank(v′)/ |V (G)| , (2)

where |V (G)| is the number of vertices in graph G and rank(v′) is the rank
of v′ among vertices in G. The higher the S(v), the more likely it is to be
deleted. However, since it may not be deleted according to the probability,
the randomness of the removal is guaranteed. The iterations stop when the
number of iterations exceeds µnk3, where µ represents the removal ratio and
nk3 is the volume of the bounding box. Large µ makes it take a long time for

846 S. Kim and S. Choi

the user to find the correct answer, while small µ makes the security weaker;
therefore, an appropriate balance of µ is important. We used µ = 0.8 in our
experiments.

3.4 Prototype Implementation

Since the direction of cube blocks can be inferred from the edges of the cube,
the orientation of letters can be easily identified. To hide the orientation of
the model, we convert the unit blocks into spheres, and it has a similar result
to the scatter-type method [6]. The post-processing involves three parameters
to maximize usability and security:

• Sphere radius (ρ): the radius of the sphere converted from the unit block.
The edge length of a unit cube is 1, and ρ = 1 means that a sphere fits
exactly into the cube without any cutoff or margins.
• Sphere offset (σ): the location offset of the center of the sphere from the

center of the unit block. σ = 0 means that the centers of the sphere and
unit cube are identical, and σ = 0.5 means that the center of the sphere
exists on the surface of the unit cube.
• Noise (δ): the number of noise spheres.

After the redundant blocks are removed, δ noise spheres are added to the
model to prevent recognition by automated machines. The region of noise
spheres is three times bigger than nk3, and excludes the bounding box of
DotCHA. This is based on the concept of motion parallax, which gives users
the perception of depth from the relative motion between models [12]. The
noise spheres appear to move faster or slower as compared to the alphabet
spheres, and the user can distinguish them by the human visual system of
depth perception. We set ρ to be smaller than the half-edge of the unit block
to avoid edge detection attacks. Each sphere is randomly translated within the
range of (0, σ) to avoid pixel-counting attacks.

The rotation axis of DotCHA is fixed to the x-axis in order to reduce
the burden and confusion for users. Also, we support both automatic and
interactive rotation to improve usability. DotCHA is implemented using
Three.js library, which is a lightweight 3D engine, on HTML5 Canvas, so that
it is supported by a majority of the browsers. We use k = 10 alphabet pattern
with Consolas font. To defend against segmentation attack, random clutter
spheres are added to the background, which makes it difficult to separate the
foreground and background to identify the letters.

DotCHA: An Interactive 3D Text-based CAPTCHA 847

4 Experiments

We analyzed the security of DotCHA by considering several different attack
scenarios. The goal of all the attacks is twofold: (1) to find the correct view
directions to identify the letters and (2) to read the letters in the selected view
directions. For the first goal, we tested whether a particular view direction
can be characterized by the attacks. We tested the second goal by applying
OCR to read the sampled images. We used n = 6 letters of DotCHA, and a
combination of random alphabet letters was used to avoid dictionary attack.

4.1 Validation of Each Phase

Our pipeline consists of five steps: extrusion, twist, redundant blocks
removal, conversion to spheres, and noise insertion, as shown in Figure 5.
To validate the effect of each stage on the security of DotCHA, we conducted
OCR tests on the interim results of each step. We fixed the rotation angle
around the x-axis with the correct direction of the first letter. We used Google
Tesseract [36] and ABBYY FineReader 14 [2] for OCR engines and Table 1
shows the test results. For incomplete models that do not go through all the
steps, some letters are easily noticeable by OCR engines. The results show
that every step is helping to increase security while achieving its goals.

Table 1 Validation results of each phase

848 S. Kim and S. Choi

4.2 Finding the Correct View Directions

As mentioned in Section 3.2, an automated attack should find the n = 6
correct view directions to identify the correct answer. We sampled 30 differ-
ent views including six ground truth views and scored them through pixel
counting and edge detection.

4.2.1 Pixel-counting attack
Pixel-counting attack is based on two assumptions: first, the wider the overlap
between the spheres, the clearer the shape of letters; second, the narrower the
overlap between the spheres, the more information that can be represented.
We counted the number of non-background pixels and checked whether the
correct views can be distinguished from incorrect views by the number of
pixels. We confirmed that the correct view directions cannot be identified by
pixel counting, as described in Table 2, which shows the results of the pixel-
counting attack when ρ = 0.5, σ = 0.2, and δ = 0.001. It shows that the
correct answers are ranked arbitrarily regardless of the pixel counts. In the
process of converting the unit blocks into spheres, we added a random offset
to the position of the sphere, and this makes DotCHA robust to pixel counting.

DotCHA requires several segmentations, as many as the number of letters,
and this becomes an overhead to repeat. Moreover, segmentation can be
avoided by increasing the range of the random offset of spheres. Even if the
segmentation works well, DotCHA is still resistant to pixel-counting attack,

Table 2 Results of scoring with pixel counting. Thirty views have been ranked through pixel
counting, and the views of the largest and smallest pixel counts are shown in order. In addition,
the pixel counting results of the correct views are shown in the right column with correct
letters. The pixel-counting attacks failed to find the correct view, and it shows that the correct
view cannot be distinguished by pixel counting

DotCHA: An Interactive 3D Text-based CAPTCHA 849

because the number of pixels varies depending on the view direction and
clutter, as depicted in Table 3. Furthermore, even if some segmentations
succeed, it is impossible to guess the entire word from only a few letters
obtained through segmentation, because DotCHA does not use dictionary
words.

4.2.2 Edge detection attack
This criterion aims to find the correct view directions by detecting edges
from the original images. We ran Canny edge detection [8] on every sampled
image. A DotCHA model was projected onto a 2D text form after removing
unnecessary pixel information via edge detection. We counted the number of
pixels in the edge-detected images to distinguish the correct view directions
from the irrelevant view directions.

There was no correlation between the correct view directions and the
number of edges, as shown in Table 4. While converting the unit blocks
into spheres, we made the sphere smaller than the unit block. As a result,
the spheres were separated from each other, and edge detection showed the
edges of spheres, which lowered the prominence of the edges of letters.

4.2.3 Geometric attack
Because DotCHA is rendered in orthographic projection instead of perspec-
tive projection, all dot seems to have the same size regardless of the depth.
It makes users feel like the dot is moving in 2D coordinates rather than 3D.
Therefore, an attacker may separate dots and calculate the distances between
the dots to infer the correct view direction. Of course, it is another tricky issue
to distinguish the grouped dots into individual dots. We do not set lighting for
the rendering, and it makes the border of dots invisible.

However, we assume that the attacked separates all dots somehow to show
the robustness of DotCHA against geometric attack. We use two measure-
ments: average distance and scattering. The average distance is calculated

Table 3 Pixel counts from different views of letter ‘D’, when ρ = 0.4, σ = 0.3, and
δ = 0.001. The pixel counts vary depending on the rotation angle, and it is resistant to
pixel-counting attacks

850 S. Kim and S. Choi

Table 4 Results of scoring with edge counting. Thirty views have been ranked through edge
counting, and the views of the largest and smallest edge counts are shown in order. In addition,
the edge counting results of the correct views are shown in the right column with correct
letters. The edge counting attacks failed to find the correct view, and it shows that the correct
view cannot be distinguished by edge counting. ρ = 0.5, σ = 0.2, and δ = 0.001 were used
for edge counting

from the distance between each dot. To calculate the scattering, we measure
the distance between each dot and center coordinate. Table 5 is the results of
the average of distances between dots. It shows that the distances between
dots do not correlate with the correct view.

4.3 Reading the Letters from the Correct View Directions

In the previous subsection, we showed that it is difficult to find the correct
view direction automatically. For the experiment described in this subsection,
we tested the possibility of reading letters from the given correct view
directions when we assumed that the machine somehow found the correct
view direction.

4.3.1 Pixel-counting attack
A pixel-counting attack [39, 41] counts the number of pixels of each seg-
mented letter by the vertical histogram of a CAPTCHA image. The number
of pixels is then mapped to the lookup table, which contains precomputed
numbers of every alphabet.

The most important part of segmentation is the removal of background
or clutters. However, it is difficult to remove them from DotCHA, because
clutter spheres look similar to spheres that form the letter model. As a result,
it disturbs the segmentation through vertical histogram, as shown in Figure 7.

DotCHA: An Interactive 3D Text-based CAPTCHA 851

Table 5 Results of geometric attack according to the average distance (Avg) and scattering
(Sct). 0◦ makes a view of the correct answer: ‘D’. It shows that there is no correlation between
the correct view directions and distances of dots

4.3.2 OCR attack
We conducted recognition tests using two well-known OCR engines: Google
Tesseract [36] and ABBYY FineReader 14 [2]. We performed two types
of attacks: entering whole words into the OCR engines for automated
recognition and entering segmented individual letters into the OCR engines.

In both attacks, OCR engines could not completely recognize any of the
words, even from the correct view images. Since the size of the spheres were
small, they were not connected to each other. As a result, it was difficult to
identify the letters by OCR, just as with the scatter-type CAPTCHA, which
is resistant to OCR [6]. We shrank the image so that the shape of the spheres
seemed to disappear and become downsampled. Then, the letters are partially
recognized with a success rate of just 3.3%, which shows that DotCHA
provides reasonable resistance to OCR attack.

4.4 User Study

We ran a user study to compare the response time and success rate required to
solve a 2D text-based CAPTCHA and our DotCHA according to the usability
criteria [13]. A total of 50 participants recruited online took part in our web-
based survey, and all the participants underwent eight unsupervised tests

852 S. Kim and S. Choi

Figure 7 Vertical histograms of DotCHA, when ρ = 0.35 and δ = 0.0015. Noise remains in
the image and it disturbs the segmentation by affecting the histogram. As the range of random
offset increases, the segmentation tends to fail.

using their own devices: six DotCHA challenges (named T1 to T6) and two
2D text-based CAPTCHA challenges (T7 and T8).

Before the tests, we introduced the concept of DotCHA to the participants
and explained how to identify the letters. To allow participants to become
familiar to DotCHA, we showed an example of the correct answer to the
participants without time limits. To ensure a fair time measurement, users
were asked to load the model by clicking the button. Since there was no delay

DotCHA: An Interactive 3D Text-based CAPTCHA 853

in the model’s loading, we recorded the time from loading to entering the
answer.

All the DotCHA challenges had n = 6 letters and were randomly gen-
erated using the value of the parameters in Table 6. Six DotCHA challenges
used the specified letters, but different models were generated according to
the random values of the parameters whenever the user loaded the model
into the browser. T7 and T8 were generated from reCAPTCHA with a
single word, as shown in Figure 8. To familiarize the participants with the
challenges, one practice DotCHA demo was shown to the participants at
the beginning of the survey without revealing the correct answer. Through
the practice demo, participants were taught how to rotate the DotCHA and
how to enter the answer so that overhead due to inexperienced operation was
not generated during the time measurements. The users were not told whether
they had passed or failed each challenge.

Although participants sometimes gave partially correct answers, we only
assigned credit when all letters were entered correctly. Table 7 shows the
average time and standard deviation of success and failure cases and each
test’s success rate and Figure 9 plots the tests’ success and failure response
times. The graph indicates the domain of the response time according to the
percentage of participants. For example, in the case of T2, 81.6% of partic-
ipants successfully answered within 61.2 seconds and 50% of participants
answered the correct answer within 31.3 seconds. Symbols are plotted on the
graph to show the constant intervals (20%) in the participants’ domain for
each test.

While the overall success rate of DotCHA was lower than reCAPTCHA,
some tests (T2, T4, and T6) showed a similar success rate as reCAPTCHA,
which exceeded 80%. Some participants required a relatively long time to

Table 6 Values of parameters µ, ρ, σ, and δ for the survey

T1 T2 T3 T4 T5 T6

µ 0.85 0.7 0.8 0.8 0.8 0.8
ρ 0.5 0.5 0.3 0.5 0.3 0.3
σ 0 0.2 0.2 0.3 0.3 0.3
δ 0.0005 0.0005 0.0005 0.0005 0.0005 0.001

Figure 8 reCAPTCHAs for T7 and T8.

854 S. Kim and S. Choi

Table 7 Survey results for DotCHA and reCAPTCHA

DotCHA reCAPTCHA
T1 T2 T3 T4 T5 T6 T7 T8

Success Rate (%) 76.9 82.1 48.7 82.1 61.5 87.2 84.6 94.9

Success
Avg Time (s) 48.8 29.4 41.2 11.3 11.6 35.5 7.2 24.0
Std 28.3 12.2 19.3 4.5 10.1 21.4 4.0 15.6

Failure
Avg Time (s) 34.3 26.2 28.6 8.3 6.6 19.2 5.7 18.9
Std 24.2 8.7 14.8 4.5 2.2 16.8 2.3 6.3

0 50 100 150
0

20

40

60

80

100

Success Response Time (s)

Pa
rt

ic
ip

an
ts

(%
)

T1

T2

T3

T4

T5

T6

T7

T8
0 20 40 60 80 100

0

20

40

60

Failure Response Time (s)

Pa
rt

ic
ip

an
ts

(%
)

T1

T2

T3

T4

T5

T6

T7

T8

Figure 9 Success and failure response times.

solve T1 and T6. We suppose that this is because these participants were
not yet familiar with DotCHA (T1), or when one of the most difficult
combinations of parameters (high µ, σ, and δ and low ρ value) was used
(T6). In the case of reCAPTCHA (T7 and T8), most users answered with a
high success rate within a short response time but some participants spent
more than a minute acquiring the correct answer. For T4 and T6, neither the
success rate nor the average time for success differed significantly compared
to reCAPTCHA.

The low success rate of T3 and T5 is due to the confusion of letters
with similar forms, such as Y–V and D–O. We believe that this issue can
be solved by using a font that has clear differences between the shapes of
letters instead of the current Consolas font. Comparing T1, T2, and T3, it
seems that the removal ratio affects the response time. However, participants
gradually became accustomed to the large removal ratio and showed a stable
response time from T4.

T4 and T5 compare the effect of the sphere radius and 80% of participants
seem to have a similar response time. The difference setting between T3
and T5 is the sphere offset; surprisingly, T5 recorded faster success response
times. We suppose that this is possible because the participants had become

DotCHA: An Interactive 3D Text-based CAPTCHA 855

fully accustomed to the parameter’s influence. T5 and T6 compare the effect
of noise. When the noise increased, the success response time was slightly
delayed but had a high success rate. We believe that this user study con-
firms the possibility that delicately tuning parameters can create a practical
DotCHA that can balance security with usability.

5 Discussion

DotCHA is a newly introduced 3D text-based CAPTCHA to ensure both
usability and security. Our work has several limitations and possibilities for
improvements. The major issue is whether the letter can be read without
finding the correct view perfectly. As Table 8 shows, this issue is influ-
enced by compromises to usability. DotCHA is robust in security because
it is expressed as a set of individual dots rather than connected contours.
However, if small values of ρ and σ are employed for usability, there is
a possibility that letters can be read without ensuring the exactly correct
view. Machine learning-based OCRs, which were made for general purposes
such as the Google Tesseract [36] and ABBYY FineReader 14 [2], have
been found in previous experiments to be unable to read the current scatter
type CAPTCHA. However, to prevent machine learning technology specially
designed to attack DotCHA, additional improvements are required through
geometric deformation utilizing the advantages of the 3D model.

The simplest solution is to add a 3D background that continues to move
in the background behind the DotCHA as shown in Figure 10. The purpose
of the 3D background is to make it difficult to separate itself from the
foreground by moving regardless of the DotCHA’s movements. Although a

Table 8 Results of view generation according to the change of angle near the correct angle
(from −10◦ to 10◦)

856 S. Kim and S. Choi

Figure 10 We can add a 3D background to disturb the machine in the separation of
foreground (letters) background (noise). The background model has different transformations
(red arrow) with letter model (blue arrow), such as scaling, translation, and rotation.

Figure 11 Adding 3D deformations in the extrusion stage to defend against segmentation
and machine learning attack.

human can recognize the background from the foreground through motion
parallax, machines generally judge captured images without motion parallax;
therefore, the machine would be disturbed in the separation of the foreground
and the background. However, with the development of machine learning
technology, motion parallax will become vulnerable someday so defense
through geometric deformation of the 3D model itself is required.

Deformation of the letters is a common technique used in 2D text-
based CAPTCHA [3] and 3D text-based CAPTCHA [19, 24]. Deformation
processes used in the existing 3D text-based CAPTCHA use simple extrusion
and warping, and they cannot avoid the segmentation attack. More complex
types of nonlinear deformations, such as bending, squashing, and stretching,
can be used in the extrusion or twist stages of DotCHA generation, thereby
making changes in the shape of letters according to the more diverse view
angle. The nonlinear deformations also defend against machine learning
attacks as the model changes into many unpredictable shapes, as shown in
Figure 11. However, since usability also decreases due to the deformation,
it is necessary to determine the appropriate degree of deformation through
additional experiments.

DotCHA: An Interactive 3D Text-based CAPTCHA 857

Figure 12 Conversion of each dot into a set of small particles to reduce the placement
tendency of spheres: (left) views from an arbitrary angle and (right) correct angle.

The placement tendency of spheres plays a major role in making letters
recognizable in a view that is not necessarily the correct view. To reduce this
tendency, converting each dot into a set of small particles is the best way, as
shown in Figure 12. A set of particles increases the scatter ratio and these
particles are expected to bring a big shape change in a small view difference.

DotCHA can be attacked not only by 2D image-based machine learning
but also by 3D model-based machine learning. In the case of 2D learning,
there is no other way but to bring disturbance to the learning dataset by
adding random factors, such as backgrounds, deformation, and particles.
Recently, 3D model-based learning has emerged, but it is still in its infancy
stage as most focus has been placed on 3D model retrieval or reconstruction.
3D model-based learning should perform segmentation on every sphere of
the given DotCHA model. Model segmentation is one of the most elaborate
techniques in computer graphics, and sphere labeling to each letter will not
be easy even if random factors are added to the model. However, machine
learning has improved rapidly so we cannot be optimistic about defending
against the new type of CAPTCHA. It is necessary to constantly study various
attack and defense methods through variations of machine learning tech-
niques for various purposes. There is no doubt that DotCHA’s improvement
and attacking technology will continue to constantly redevelop.

6 Conclusion

In this paper, we have proposed a new type of 3D text-based CAPTCHA,
called DotCHA, which attempts to overcome the limitations of existing 2D
and 3D approaches. It is a scatter-type CAPTCHA, which shows different
letters according to the rotation angle, and the user should rotate the 3D model
to identify the letters. We demonstrated that DotCHA is robust against several
types of attacks.

858 S. Kim and S. Choi

There is a general consensus that it is hard to design a CAPTCHA that
simultaneously combines good usability and security [30]. To improve the
usability of DotCHA while preserving security, we combined the automated
rotation and interactive systems. As we demonstrated, DotCHA defeats sev-
eral types of attacks even when the correct view direction is given. In the same
way as image-based CAPTCHA handling over images, the browser receives
a 3D model, so security issues in communication are not problematic.

To improve the security, three additional strategies are possible: adding
a background, using a set of small particles instead of a single sphere,
and distorting the 3D model. Adding a complicated background protects
the CAPTCHA against machines due to the difficulties in separating the
foreground from the background to identify the letters. A set of small
particles also increases the scatter ratio and enhances the defense against
pixel-counting attack or edge detection attack. In addition, with the same
principle as the 2D text-based CAPTCHA, distortion can be applied to the
3D letter model to make the DotCHA robust to segmentation attack.

Acknowledgement

This work was supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea
government(MSIT) (No. 2019-0-01158, Development of a Framework for
3D Geometric Model Processing).

References

[1] Nucaptcha. http://www.nucaptcha.com. Accessed: 2019-12-10.
[2] Abbyy finereader 14. https://www.abbyy.com/en-apac/finereader/,

2014. Accessed: 2019-12-10.
[3] Luis von Ahn, Manuel Blum, Nicholas Hopper, John Langford, and Udi

Manber. The captcha project. http://www.captcha.net/captchas/gimpy/,
2000. Accessed: 2019-12-10.

[4] Gerhard Bachfischer and Toni Robertson. From movable type to moving
type-evolution in technological mediated typography. In AUC Academic
and Developers Conference, 2005.

[5] Gerhard Bachfischer, Toni Robertson, and Agnieszka Zmijewska.
A moving type framework. In Proceedings of the 10th WSEAS interna-
tional conference on Communications, pages 607–612. World Scientific
and Engineering Academy and Society (WSEAS), 2006.

http://www.nucaptcha.com
https://www.abbyy.com/en-apac/finereader/
http://www.captcha.net/captchas/gimpy/

DotCHA: An Interactive 3D Text-based CAPTCHA 859

[6] Henry S. Baird and Terry P. Riopka. Scattertype: a reading CAPTCHA
resistant to segmentation attack. In Document Recognition and Retrieval
XII, San Jose, California, USA, January 16–20, 2005, Proceedings,
pages 197–207, 2005.

[7] Elie Bursztein, Jonathan Aigrain, Angelika Moscicki, and John
C. Mitchell. The end is nigh: Generic solving of text-based captchas.
In 8th USENIX Workshop on Offensive Technologies, WOOT ’14,
San Diego, CA, USA, August 19, 2014., 2014.

[8] John F. Canny. A computational approach to edge detection. IEEE
Trans. Pattern Anal. Mach. Intell., 8(6):679–698, 1986.

[9] Kumar Chellapilla and Patrice Y. Simard. Using machine learning
to break visual human interaction proofs (hips). In Advances in
Neural Information Processing Systems 17 [Neural Information Pro-
cessing Systems, NIPS 2004, December 13–18, 2004, Vancouver, British
Columbia, Canada], pages 265–272, 2004.

[10] Monica Chew and Henry S. Baird. Baffletext: a human interactive proof.
In Document Recognition and Retrieval X, Santa Clara, California,
USA, January 22–23, 2003, Proceedings, pages 305–316, 2003.

[11] Sarika Choudhary, Ritika Saroha, Yatan Dahiya, and Sachin Choudhary.
Understanding captcha: Text and audio based captcha with its applica-
tions. International Journal of Advanced Research in Computer Science
and Software Engineering, 3(6), 2013.

[12] Yang-Wai Chow and Willy Susilo. Anicap: An animated 3D CAPTCHA
scheme based on motion parallax. In Cryptology and Network Security
– 10th International Conference, CANS 2011, Sanya, China, December
10–12, 2011. Proceedings, pages 255–271, 2011.

[13] Mauro Conti, Claudio Guarisco, and Riccardo Spolaor. Captchastar!
A novel CAPTCHA based on interactive shape discovery. In Applied
Cryptography and Network Security – 14th International Conference,
ACNS 2016, Guildford, UK, June 19–22, 2016. Proceedings, pages 611–
628, 2016.

[14] Rony Ferzli, Rida A. Bazzi, and Lina J. Karam. A captcha based on the
human visual systems masking characteristics. In Proceedings of the
2006 IEEE International Conference on Multimedia and Expo, ICME
2006, July 9–12 2006, Toronto, Ontario, Canada, pages 517–520, 2006.

[15] Haichang Gao, Dan Yao, Honggang Liu, Xiyang Liu, and Liming Wang.
A novel image based CAPTCHA using jigsaw puzzle. In 13th IEEE
International Conference on Computational Science and Engineering,

860 S. Kim and S. Choi

CSE 2010, Hong Kong, China, December 11–13, 2010, pages 351–356,
2010.

[16] Philippe Golle. Machine learning attacks against the asirra CAPTCHA.
In Proceedings of the 2008 ACM Conference on Computer and Com-
munications Security, CCS 2008, Alexandria, Virginia, USA, October
27-31, 2008, pages 535–542, 2008.

[17] Rich Gossweiler, Maryam Kamvar, and Shumeet Baluja. What’s up
captcha?: a CAPTCHA based on image orientation. In Proceedings
of the 18th International Conference on World Wide Web, WWW 2009,
Madrid, Spain, April 20–24, 2009, pages 841–850, 2009.

[18] Yuki Ikeya, Masahiro Fujita, Junya Kani, Yuta Yoneyama, and
Masakatsu Nishigaki. An image-based CAPTCHA using sophisticated
mental rotation. In Human Aspects of Information Security, Privacy,
and Trust – Second International Conference, HAS 2014, Held as Part
of HCI International 2014, Heraklion, Crete, Greece, June 22–27, 2014.
Proceedings, pages 57–68, 2014.

[19] Montree Imsamai and Suphakant Phimoltares. 3D captcha: A next
generation of the captcha. In Information Science and Applications
(ICISA), 2010 International Conference on, pages 1–8. IEEE, 2010.

[20] Ibrahim Furkan Ince, Yucel Batu Salman, Mustafa Eren Yildirim, and
Tae-Cheon Yang. Execution time prediction for 3D interactive captcha
by keystroke level model. In Computer Sciences and Convergence Infor-
mation Technology, 2009. ICCIT ’09. Fourth International Conference
on, pages 1057–1061. IEEE, 2009.

[21] Suzi Kim and Sunghee Choi. Automatic generation of 3D typography.
In Special Interest Group on Computer Graphics and Interactive Tech-
niques Conference, SIGGRAPH ’16, Anaheim, CA, USA, July 24–28,
2016, Posters Proceedings, pages 21:1–21:2, 2016.

[22] Suzi Kim and Sunghee Choi. Dotcha: A 3D text-based scatter-type
CAPTCHA. In Web Engineering – 19th International Conference,
ICWE 2019, Daejeon, South Korea, June 11–14, 2019, Proceedings,
pages 238–252, 2019.

[23] Punam Kumari and Mansi Kapoor. Effect of random guessing attack
on image based captchas: Analysis and survey. International Journal of
Innovations & Advancement in Computer Science, 4, 2015.

[24] Cristina Romero Macias and Ebroul Izquierdo. Visual word-based
captcha using 3D characters. pages 1–5, 2009.

[25] Goran Martinovic, Andrew Attard, and Zdravko Krpic. Proposing a new
type of CAPTCHA: character collage. In MIPRO, 2011 Proceedings of

DotCHA: An Interactive 3D Text-based CAPTCHA 861

the 34th International Convention, Opatija, Croatia, 23–27 May, 2011,
pages 1447–1451, 2011.

[26] Maryam Mehrnejad, Abbas Ghaemi Bafghi, Ahad Harati, and Ehsan
Toreini. Seimcha: a new semantic image captcha using geometric
transformations. The ISC International Journal of Information Security,
4(1):63–76, 2012.

[27] J. Abbott Miller. Dimensional Typography:: Words in Space: Kiosk
Report# 1. Number 1. Princeton Architectural Press, 1996.

[28] Greg Mori and Jitendra Malik. Recognizing objects in adversarial
clutter: Breaking a visual CAPTCHA. In 2003 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR 2003),
16–22 June 2003, Madison, WI, USA, pages 134–144, 2003.

[29] S. A. N. Samarasinghe N. R. W. W. M. R. D. Wickramasingha, H. B.
R. A. K. R. A. M. Keerawella and R. G. Ragel. Rotatecaptcha a novel
interactive captcha design targeting mobile devices. In Industrial and
Information Systems (ICIIS), 2015 IEEE 10th International Conference
on, pages 49–54. IEEE, 2015.

[30] Margarita Osadchy, Julio Hernandez-Castro, Stuart J. Gibson, Orr
Dunkelman, and Daniel Pérez-Cabo. No bot expects the deepcaptcha!
introducing immutable adversarial examples with applications to
CAPTCHA. IACR Cryptology ePrint Archive, 2016:336, 2016.

[31] Ayane Sano, Masahiro Fujita, and Masakatsu Nishigaki. Directcha:
A proposal of spatiometric mental rotation CAPTCHA. In 14th
Annual Conference on Privacy, Security and Trust, PST 2016, Auckland,
New Zealand, December 12–14, 2016, pages 585–592, 2016.

[32] Roger N. Shepard and Jacqueline Metzler. Mental rotation of three-
dimensional objects. Science, 171(3972):701–703, 1971.

[33] Shenna Shepard and Douglas Metzler. Mental rotation: effects of
dimensionality of objects and type of task. Journal of Experimental
Psychology: Human Perception and Performance, 14(1):3, 1988.

[34] Patrice Y. Simard, David Steinkraus, and John C. Platt. Best practices
for convolutional neural networks applied to visual document analysis.
In 7th International Conference on Document Analysis and Recognition
(ICDAR 2003), 2-Volume Set, 3–6 August 2003, Edinburgh, Scotland,
UK, pages 958–962, 2003.

[35] Suphannee Sivakorn, Iasonas Polakis, and Angelos D. Keromytis. I am
robot: (deep) learning to break semantic image captchas. In IEEE Euro-
pean Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken,
Germany, March 21–24, 2016, pages 388–403, 2016.

862 S. Kim and S. Choi

[36] R. Smith. An overview of the tesseract OCR engine. In 9th International
Conference on Document Analysis and Recognition (ICDAR 2007),
23–26 September, Curitiba, Paraná, Brazil, pages 629–633, 2007.

[37] Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford.
CAPTCHA: using hard AI problems for security. In Advances in Cryp-
tology – EUROCRYPT 2003, International Conference on the Theory
and Applications of Cryptographic Techniques, Warsaw, Poland, May
4–8, 2003, Proceedings, pages 294–311, 2003.

[38] C. Winter-Hjelm, M. H. Kleming, and R. H. Bakken. An interactive
3D captcha with semantic information. In Proc. Norwegian Artificial
Intelligence Symp., pages 157–160, 2009.

[39] Jeff Yan and Ahmad Salah El Ahmad. Breaking visual captchas with
naive pattern recognition algorithms. In 23rd Annual Computer Security
Applications Conference (ACSAC 2007), December 10–14, 2007, Miami
Beach, Florida, USA, pages 279–291, 2007.

[40] Jeff Yan and Ahmad Salah El Ahmad. Usability of captchas or usability
issues in CAPTCHA design. In Proceedings of the 4th Symposium on
Usable Privacy and Security, SOUPS 2008, Pittsburgh, Pennsylvania,
USA, July 23–25, 2008, pages 44–52, 2008.

[41] Jeff Yan and Ahmad Salah El Ahmad. CAPTCHA security: A case
study. IEEE Security & Privacy, 7(4):22–28, 2009.

[42] Qi Ye, Youbin Chen, and Bin Zhu. The robustness of a new 3D
CAPTCHA. In 11th IAPR International Workshop on Document Analy-
sis Systems, DAS 2014, Tours, France, April 7–10, 2014, pages 319–323,
2014.

Biographies

Suzi Kim received the B.S. and M.S. degree in Computer Science from
Korea Advanced Institute of Science and Technology (KAIST) in 2012 and

DotCHA: An Interactive 3D Text-based CAPTCHA 863

2016. She worked for the Daewoo Shipbuilding Marine Engineering (DSME)
from Jan. 2012 to Mar. 2013 and Prezi from Apr. 2013 to Aug. 2014. She
is currently working toward the Ph.D. degree in School of Computing at
KAIST. Her research interests include computer graphics such as procedural
and inverse-procedural modeling and geometry processing.

Sunghee Choi received the B.S. degree in computer engineering from Seoul
National University in 1995, and the M.S. and Ph.D. degrees in computer
science from the University of Texas at Austin, in 1997 and 2003, respec-
tively. She has been working as a professor in School of Computing at Korea
Advanced Institute of Science and Technology (KAIST) Daejeon, Korea
since 2004. Her research interests include computational geometry, computer
graphics and geometric problems in wireless sensor networks.

	Introduction
	Related Work
	2D Text-based CAPTCHAs
	3D Model-based CAPTCHAs
	Interactive CAPTCHAs

	Generation of DotCHA
	Requirements
	Extrusion and Twist of 3D Model
	Removal of Redundant Blocks
	Prototype Implementation

	Experiments
	Validation of Each Phase
	Finding the Correct View Directions
	Pixel-counting attack
	Edge detection attack
	Geometric attack

	Reading the Letters from the Correct View Directions
	Pixel-counting attack
	OCR attack

	User Study

	Discussion
	Conclusion

