
On Twitter Bots Behaving Badly:
A Manual and Automated Analysis
of Python Code Patterns on GitHub

Andrea Millimaggi and Florian Daniel∗

Politecnico di Milano, Via Ponzio 34/5, 20133 Milan, Italy
E-mail: andrea.millimaggi@mail.polimi.it; florian.daniel@polimi.it
∗Corresponding Author

Received 04 December 2019; Accepted 18 December 2019;
Publication 22 January 2020

Abstract

Bots, i.e., algorithmically driven entities that behave like humans in online
communications, are increasingly infiltrating social conversations on the
Web. If not properly prevented, this presence of bots may cause harm to
the humans they interact with. This article aims to understand which types
of abuse may lead to harm and whether these can be considered intentional
or not. We manually review a dataset of 60 Twitter bot code repositories on
GitHub, derive a set of potentially abusive actions, characterize them using
a taxonomy of abstract code patterns, and assess the potential abusiveness
of the patterns. The article then describes the design and implementation of
a code pattern recognizer and uses the pattern recognizer to automatically
analyze a dataset of 786 Python bot code repositories. The study does not
only reveal the existence of 28 communication-specific code patterns – which
could be used to assess the harmfulness of bot code – but also their consistent
presence throughout all studied repositories.

Keywords: Bots, Harm, Abuse, Code patterns, Pattern recognition, GitHub,
Twitter, Python.

Journal of Web Engineering, Vol. 18_8, 801–836.
doi: 10.13052/jwe1540-9589.1883
c© 2020 River Publishers

802 A. Millimaggi and F. Daniel

1 Introduction

Social networks, microblogging or instant messaging services like Facebook,
Twitter, Instagram, LinkedIn, WhatsApp, Telegram, and similar are the foun-
dation of the Web 2.0, that is, the Web made of content and services provided
by the users themselves. Over the last 15 years, these applications have
enabled users all around the world to stay informed, share ideas and discuss
opinions. In short, they revolutionized online communication to billions of
humans.

In the recent years, a new phenomenon has arisen: bots, i.e., algorith-
mically driven entities that behave like humans in online communications
and increasingly participate in conversations without the human participants
necessarily being aware of communicating with a machine [8]. State-of-the-
art artificial intelligence, speech technology and conversational technology
enable the implementation of software agents whose communications are
only hardly distinguishable from those by human agents. Combined with
generally low transparency about the true nature of bot accounts, humans
are easily fooled.

In [10], we have started asking ourselves whether the increasing presence
of bots may lead to harmful human-bot interactions that may hurt the human
participant in the conversation, and by searching for papers, news, blog
posts, and similar we found a variety of anecdotal evidence that this may
indeed happen. Of course, bots are not harmful in general. But sometimes,
intentionally or unintentionally, software-driven conversations may just break
common conversational rules, etiquette, or even the law. For instance, in the
prior study we found anecdotal evidence of bots that used language that was
not suitable to children, that pretended to be real women in online dating
sites, or that engaged in conversations with other accounts that had offensive
or discriminating account names. Note that in the former two examples it’s
the users of the bots that got hurt, while in the latter example it’s the owner
of the account that suffered a damage to its public image. It is important
to acknowledge the problem, to be able to provide countermeasures and to
prevent people or organizations from getting hurt.

As we show in our discussion of related works, most of the literature
today focuses on the detection of bots and on telling bots and humans apart
starting from the evidence (e.g., posts, comments, likes) that is observable
and accessible online. There is very little information on assessing the harms
caused by this presence of bots, even less so on the reasons that lead to harm.
This article studies this latter aspect and aims to identify how harm is caused

On Twitter Bots Behaving Badly 803

by bots to understand the likely, underlying intentions. Doing so requires
looking behind the curtain, away from the content shared online and into
the actual code implementing the bots’ communication logic.

The contributions of this article are:

• The construction of a dataset of social bot GitHub code repositories for
Twitter; the analysis focuses on code written in Python and on project
metadata.
• An abuse-oriented classification of bot code repositories according to

how the developers themselves advertise their projects.
• A qualitative, systematic code review that identifies 28 potentially abu-

sive code patterns that may lead to harmful interactions with human
users and a discussion of the harmfulness and possible intentions
underlying these patterns.
• The implementation of an automated pattern recognizer for Python code

repositories able to search for potentially abusive code patterns.
• A large-scale analysis of 786 code repositories providing empirical

evidence for how widespread the use of the identified patterns is in
state-of-the-art bot implementations.

Next, we elaborate on the background of the work, then in Section 3 we
describe the dataset we use for our study and report on a preliminary analysis
of the data. In Section 4, we detail the method underlying the analysis and
describe the respective results: actions, patterns and possible consequences.
In Section 5, we introduce the pattern recognizer for automated code pattern
search and report on the results we obtained by applying it to a large dataset
of code repositories. After summarizing the most related works, we discuss
our findings, conclude the article and outline future works.

2 Background

2.1 Harm and Abuse in Human-bot Interactions

Harm occurs when someone suffers an injury or damage, but also when
someone gets exposed to a potential adverse effect or danger. In prior work
[10], we analyzed empirical evidence of harms caused by bots identified the
following types of harm caused by bots:

• Psychological harm: it occurs when someone’s psychological health or
wellbeing gets endangered or injured. An example of a bot causing
psychological harm is Boost Juice’s Messenger bot that was meant

804 A. Millimaggi and F. Daniel

as a funny channel to obtain discounts by mimicking a dating game
with fruits but used language that was not appropriate for children
(http://bit.ly/2zvNt0E).
• Legal harm: it occurs when someone becomes subject to law enforce-

ment or prosecution. A good example is the case of Jeffry van der Goot,
a Dutch developer who had to shut down his Twitter bot generating
random posts, after it sent out death threats to other users (http://bit.
ly/2Dfm71P).
• Economic harm: it occurs when someone incurs in monetary cost or

loses time that could have been spent differently. For example, in 2014
the bot wise_shibe provided automated answers on Reddit and users
rewarded the bot with tips in the digital currency Dogecoin, convinced
they were tipping a real user (http://bit.ly/2zu2b6r).
• Social harm: it occurs when someone’s image or standing in a commu-

nity gets affected negatively. An example of a bot causing social harm
was documented by Jason Slotkin whose Twitter identity was cloned by
a bot, confusing friends and followers (http://bit.ly/2Dfq4DH).
• Democratic harm: it occurs when democratic rules and principles are

undermined and society as a whole suffers negative consequences.
Bessi and Ferrara [3], for instance, showed that bots were pervasively
active in the on-line political discussion of the 2016 U.S. Presidential
election.

These types of harm may happen while bots perform regular actions,
such as posting a message or commenting a message by someone else, that
are not harmful per se and that also human users would perform. What
needs to happen in order to cause harm is the abusive implementation of
these actions. Abuses we found are: disclosing sensitive facts, denigrating,
being grossly offensive, being indecent or obscene, being threatening, mak-
ing false allegations, deceiving users, spamming, spreading misinformation,
mimicking interest, cloning profiles, and invading spaces that are not meant
for bots. Some of these may be subject to legal prosecution (e.g., threatening
people), others only breach moral, ethical or social norms, yet they still may
be harmful to unprepared human users. Note that these abuses may happen in
any of today’s social networks and are not limited to any one in specific.

2.2 Platform Policies and Permissions

In order to properly assess the behavior of a bot, it is important to understand
the position of the platforms targeted by bots in relation to automation

http://bit.ly/2zvNt0E
http://bit.ly/2Dfm71P
http://bit.ly/2Dfm71P
http://bit.ly/2zu2b6r
http://bit.ly/2Dfq4DH

On Twitter Bots Behaving Badly 805

through bots. For this purpose, we manually surveyed the usage policies
of a selection of social networks (Facebook, Twitter, Tumblr), instant mes-
saging platforms (Telegram, Whatsapp, Facebook Messenger), platforms for
media sharing (Instagram, Pinterest), a professional network (LinkedIn) and
Reddit.

All platforms provide developers with programmable interfaces (APIs)
that can be used for the development of bots; Messenger and Telegram even
come with APIs specifically tailored to bots, more specifically, chatbots.
Whatsapp is the platform that is most restricted: its Business API allows
the implementation of bots, but it seems limited to company use only;
however, Android intents (https://bit.ly/2RwjScE) can be used locally on
the mobile phone to interact with Whatsapp programmatically. Where an
API is provided, it typically allows programmatic access to essentially all
functionalities that would also be available to users via the platforms’ user
interfaces. Users of the APIs must authenticate with the platforms (the pre-
ferred protocol is OAuth) and obtain a token enabling programmatic access;
only Telegram gives tokens without authentication. All of the studied APIs
are REST APIs; Facebook and Twitter also provide access to streaming, live
data. To ease development, some platforms (Facebook, Messenger, LinkedIn)
are equipped with developer-oriented software development kits (SDKs),
even in multiple programming languages. Others (Instagram) provide more
basic programming libraries. Twitter provides both an SDK and a more basic
library.

As for the usage policies, almost all platforms impose some kind of
limitation. For instance, “200 calls per hour per user” per app on Face-
book. Twitter uses message-level limits, e.g., to prevent aggressive following
practices. Only Messenger does not explicitly limit usage and instead even
states “you can safely send 250 requests per second.” Some platforms impose
specific requirements, such as “keep your app’s negative feedback below our
threshold” (Facebook) or “automated bots must respond to any and all input
from the user” (Messenger). An explicit code review is needed for Facebook,
Instagram and Messenger. Automation is generally allowed, although com-
monly limited to actions the target users have explicitly granted permission
to; Twitter, for instance, disallows “sending messages in an aggressive or
discriminate manner.” Most policies even include content restrictions like
“don’t create fake accounts” (Facebook) or “don’t send tweets containing
links that are misleading.” All surveyed platforms explicitly state that they
may suspend accounts or apps if they violate their policies.

https://bit.ly/2RwjScE

806 A. Millimaggi and F. Daniel

3 Dataset: Twitter Bot Code Repositories

This article follows a Data Science methodology [9] to extract new knowl-
edge from data. We thus describe here the dataset underlying our study and
provide a first analysis of how developers themselves describe their own bot
projects.

3.1 Data Sources and Retrieval

In this article, we specifically focus on Twitter (https://twitter.com) and bots
written in Python. The former is an opportunistic choice, shared by most
literature on the topic (see Section 6 for related works) and is motivated
by the openness of Twitter compared to other platforms. The latter stems
from the observation that Python is the most used language for Twitter
bot implementations in GitHub (35.4% of the repositories we analyzed for
Twitter use it). GitHub (https://github.com) is the code hosting service we
use for data collection; the choice is again driven by adoption: with about
31M users and 100M projects (or “repositories”), GitHub is today’s most
used code hosting service (https://www.alexa.com/topsites/category/Comput
ers/Open_Source/Project_Hosting).

In order to identify candidate repositories for our analysis, we used
GitHub’s search API with a combination of two terms, “Twitter” and any
among “bot,” “automation,” “auto” and “automated.” Figure 1 shows the
distribution of results obtained by the search considering still all program-
ming languages. As the result of the query “Twitter bot” shows, the term
“bot” is highly used for Twitter (we performed similar searches for all
platforms mentioned in Section 2.2, and the results distributions do vary
from platform to platform). The search represents the state of GitHub as of

Figure 1 Distribution of GitHub search results by searched keywords (includes all program-
ming languages.

https://twitter.com
https://github.com
https://www.alexa.com/topsites/category/Computers/Open_Source/Project_Hosting
https://www.alexa.com/topsites/category/Computers/Open_Source/Project_Hosting

On Twitter Bots Behaving Badly 807

October 29, 2018, the date the search was performed. For each identified
repository, we collected all code files included in the repository as well as
a subset of the respective project metadata: URL, programming language,
description (a short line of text), and fork/subscriber/watcher counts.

The data collected following this methodology is by its very nature
specific to Twitter, Python and GitHub. For other combinations of these three
parameters, the same methodology can be used to collect and analyze similar
data/metadata.

3.2 Preliminary Analysis

As the purpose of this article is to understand how bots implement their inter-
actions with humans, the analysis necessarily requires a manual inspection.
This, in turn, requires a careful selection of repositories, in order to keep
the size of the dataset manageable and the selected repositories meaningful.
Before choosing which repositories to keep and which not, we thus run a sim-
ple analysis based on the textual descriptions of the projects in order to obtain
a preliminary understanding of which actions the repositories implement.

The analysis followed a top-down approach: We took as starting point
the actions identified in our previous work [10], i.e., talk with user, redirect
user, write post, comment post, forward post, like message, follow user, and
create user, and matched the retrieved repositories with these action labels.
In order to match repositories with action labels, we manually inspected the
descriptions of the first 100 items as returned in order of relevance by the
GitHub search API and extracted textual keywords from the descriptions.
Examples of keywords are: send messages, reply to messages, chat, post,
tweet, tag, poke, and similar. Then we mapped all keywords to respective
action labels, such as {send messages, reply to messages, read messages,
direct message, chat} → talk.

The mapping exercise produced evidence for the existence in the dataset
of all the actions above, plus the addition of 3 new action labels: some projects
explicitly claimed to implement a spam functionality; others implemented a
poke user and a recommend user functionality.

According to [10], spamming is actually an abuse of the actions write
post or forward post, but we kept it as the descriptions explicitly use the
keyword. Poking and recommending users are not functionalities of Twitter:
the former is a specific action of Facebook and the latter of LinkedIn, but they
appeared anyway in the classification. Very likely the two actions refer to bots
that provide cross-platform functionalities, starting from Twitter, which are
however out of the scope of this article.

808 A. Millimaggi and F. Daniel

Figure 2 Labels of repositories.

The goal of this inspection was to enable the automatic labeling of the
repositories with action labels by analyzing the keywords found in their
descriptions and the informed selection of repositories for manual inspec-
tion. The automation was achieved by transforming all keywords (and their
variants) into regular expressions that could easily be searched for in the
repository descriptions. The results of the classification of all retrieved Twit-
ter repositories is shown in Figure 2. It is evident that the most popular
action labels are: follow user, forward post, write post, and talk with user.
Interestingly, the label like post is not as important, while all other actions
have very little support in the dataset.

Regarding the identified action types it is important to note that these
actions per se do not yet imply any specific abuse or harm. However, if
misused they all may be used to perform abuses. The labels in Figure 2, in
particular, stem from a prior empirical analysis where we found at least one
abuse per label.

3.3 Final Dataset

With the goal of maximizing the likelihood of being able to identify recurrent
patterns in the code while guaranteeing diversity in the dataset, we applied
the following criteria for the selection of the code repositories to be included
in the study:

On Twitter Bots Behaving Badly 809

• Selection of repositories that use as main programming language
Python.
• Exclusion of all those repositories that, after manual inspection, were

considered out of scope, e.g., because not implementing bots at all
or because not implementing any direct communication with other
platform users.
• For each of the four most used actions (according to the preliminary

analysis), selection of 5 repositories randomly chosen from the respec-
tive best repositories, according to the ranking provided by GitHub. The
respective scores account for the number of forks, clones, likes, and
similar. This choice assures that there is a minimum number of popular
projects in the dataset for which we can assume to find code patterns
with reasonable support.
• For each of the four most used actions, random selection of 5 reposi-

tories from the rest of the respective retrieved repositories. This choice
aims to include also examples that are less popular, while still useful for
our analysis.
• Selection of 10 repositories randomly chosen from the best repositories

we could not classify automatically in the preliminary analysis. This
assures the presence of a-priori unknown but popular repositories.
• Selection of 10 repositories randomly chosen from the rest of the

not classified repositories, again to assure a representative selection of
generic, a-priori unknown repositories.

The final dataset selected for analysis in this article is thus composed
of 60 GitHub Twitter bot repositories whose main programming language is
Python. In average, each repository comes with 3 files (standard deviation
of 2.02) with an average number of lines of code of 192, an average size of
21.39 KBytes, an average number of subscribers of 3, and an average number
of watchers of 13. The most popular repository (twitter-contest-bot, https:
//github.com/kurozael/twitter-contest-bot) has been forked 99 times, the
least popular one (tweetpix, https://github.com/mseri/tweetpix) 0 times, with
an average of 5 forks per project across all projects included.

4 Identification and Analysis of Abusive Code Patterns

4.1 Method

To the best of our knowledge, this is the first study that aims to understand
and categorize how state-of-the-art social bots implement their interactions

https://github.com/kurozael/twitter-contest-bot
https://github.com/kurozael/twitter-contest-bot
https://github.com/mseri/tweetpix

810 A. Millimaggi and F. Daniel

with human actors and whether it is possible to identify explicit intentions for
the behaviors the bots exhibit in their social communications; no results exist
yet. Starting from the dataset described above, we thus perform a manual,
systematic review [11] of the code retrieved from GitHub, in order to (i) iden-
tify which code passages implement interactions with humans, (ii) categorize
the concrete actions the bots use in their interactions (similar to [10]), and
(iii) identify different implementation patterns for each categorized action,
along with respective examples (green field analysis). Actions and patterns
were first categorized by one of the authors and then agreed on and integrated
by both authors. The result is a conceptual framework composed of actions,
patterns and code examples that may allow us to infer the intention behind
possible abuses; we did not specifically take into account code comments, as
they were generally not used consistently throughout the repositories.

4.2 Actions: How Bots Participate in Communications

The preliminary analysis of our dataset in Section 3.2 has shown that Twitter
bot developers promise almost all of the typical actions also human users
can perform when using social networks in general. In order to understand
which actions are really implemented in the repositories forming our dataset,
and how, we reviewed all code files of the dataset manually looking for
relevant code fragments. For a code fragment to qualify as action it either
has to (i) implement some form of interaction by the bot with other users or
(ii) implement application logic that manages content or user data fetched
from the social network. An action thus represents a self-contained interac-
tion of the bot with content and/or users.

The result of this iteration is summarized in Table 1, which describes the
9 actions that represent a consistent synthesis of all examples identified by
this exercise using a Twitter-specific terminology. As expected, the bottom-up
analysis brought up a set of typical social network actions, declined in Twitter
terminology. Bots follow other users, like their tweets, tweet own content,
mention other users in their tweets, or retweet tweets by others. Inside private
chat rooms, they also chat with other users using instant messages. This result
is in line with the actions identified in [10].

But there is more. Looking at the code of the bots further produced three
internal actions that support their social network actions: bots heavily search
Twitter for users or tweets, in order to harness accounts and content to work
with; they intentionally pause or delay their interactions, in order to imper-
sonate users; and they may store content they retrieve from the network for

On Twitter Bots Behaving Badly 811

Table 1 Synthesis of online communication actions implemented by Twitter bots

Action Description Visible

Follow Follow users to establish social relationships yes

Like Like tweets by other users to endorse them yes

Tweet Post a new tweet to communicate content yes

Mention Mention other users in tweets using @ to attract attention yes

Retweet Re-post tweets by other users to endorse them yes

Chat Send direct messages to users to converse with them yes

Search Search users or tweets using names, keywords, hashtags, ids or similar
or by navigating social network relationships (e.g., friends of friends,
followers of friends, friends of followers, followers of followers)

no

Pause Pause the conversation flow of the bot no

Store Store content retrieved from the social network for later use no

later use. These internal actions are observed only in the code of the bots and
would not be identifiable by looking at the externally visible communications
of the bots only, as done by most literature on the topic. Later in this article,
we will see that also internal actions that are not immediately visible to users
may lead to abuses and harm.

4.3 Code Patterns: How Bots Implement Their Actions

Focusing on the code fragments considered relevant as communication
actions, a second iteration of the code review aimed at synthesizing all exam-
ples of action implementations into a taxonomy of recurrent code patterns
that explains how actions are implemented in practice. For a code fragment
to qualify as a pattern, two requirements must be met: (i) it must be possible
to abstract the fragment and to associate it to at least one action, and (ii) it
must recur at least two times in different code repositories. A pattern thus
represents the intended function of a set of instructions, not their syntactic
manifestation in the code.

Even accounting for different names of identifiers in the code, without
this type of semantic abstraction it would be necessary to perform a purely
syntactic similarity search. However, given the diversity of the repositories
and developers that characterize our dataset, only unlikely it would have been
possible to spot two fragments that are syntactically equivalent.

For instance, it is possible to interact with the Twitter API using direct,
low-level HTTP requests, or one can use a dedicated API wrapper library,

812 A. Millimaggi and F. Daniel

such as (in order of use in our dataset): tweepy (http://www.tweepy.org),
Twitter libraries (https://bit.ly/2Gg3WJC), TwitterAPI (https://bit.ly/2
UwSZri), Twython (https://bit.ly/2aOjCnT), or own, proprietary libraries.
Similarly, there are different options for the automatic generation of text for
tweets or instant messages, such as nltk (https://www.nltk.org/) or seq2seq
(https://bit.ly/2Ry2FQt). Patterns abstract away from these implementation
choices and aim to capture the essence of what the developer wanted to
implement.

The result of this analysis is reported in Table 2, which names and
summarizes the identified patterns. These 28 patterns concisely represent the
different interpretations of the 9 actions as implemented in the approximately
140 code examples collected and analyzed.

Table 2 Taxonomy of code patterns used for the implementation of actions

Action Pattern Description
Follow Unconditioned follow Follow users without checking suitability of users,

usernames or content shared
Whitelist-based follow Follow only users whose attributes or tweets match

some element of a given whitelist
Blacklist-based follow Don’t follow users whose attributes or tweets satisfy

one or more criteria specified in a blacklist
Phantom follow Follow users and unfollow them when condition is

satisfied, e.g, a limit of friends reached or being
followed back

Like Unconditioned like Like tweets without checking suitability of content,
user or username

Whitelist-based like Like only tweets by users whose attributes or con-
tent match some element of a whitelist

Blacklist-based like Don’t like tweets whose attributes or users match an
element of a blacklist

Mass like Aggressively like tweets of given users
Tweet Fixed-content tweet The content of the tweet is taken from a fixed, static

collection of predefined messages
AI-generated tweet The text of the tweet is automatically generated

using AI/NLP tools
Trusted source tweet The content of the tweet is taken from a source that

can be considered trusted
Tweet with opt-in Tweets are sent only to people who ask to interact

with the bot, sending it a message or mentioning it
in a tweet

http://www.tweepy.org
https://bit.ly/2Gg3WJC
https://bit.ly/2UwSZri
https://bit.ly/2UwSZri
https://bit.ly/2aOjCnT
https://www.nltk.org/
https://bit.ly/2Ry2FQt

On Twitter Bots Behaving Badly 813

Table 2 Continued

Action Pattern Description
Mention Unconditioned mention Mention other users without checking suitability

of username or content shared
Targeted mention Classify users on the basis of their tweets and

mention them in targeted messages
Whitelist-based mention Mention only users whose attributes match a

whitelist
Blacklist-based mention Don’t mention users whose attributes match a

blacklist
Retweet Unconditioned retweet Retweet without checking content or username for

suitability
Whitelist-based retweet Retweet content only from users whose attributes

match some element of a whitelist
Blacklist-based retweet Don’t retweet tweets whose attributes or users

satisfy some condition expressed in a blacklist
Mass retweet Aggressively retweet multiple tweets by selected

users
Chat Unconditioned chat Send direct messages to users without checking

suitability
Talk with opt-in Reply only to messages sent to the bot (passive

behavior)
AI-generated chat Generate messages using AI/NLP tools

Fixed-content chat Take message from a fixed list of predefined
phrases

Targeted chat Classify users based on their tweets or attributes
and target message accordingly

Search User search Search user account by name, keyword, id or
similar

Tweet search Search tweets by keyword or hashtag

Trend search Search trending topics or hashtags by location
Pause Mimic human Use pauses in instant messages to deliver human-

like conversation experience to other humans
Satisfy API constraints Use as short as possible pauses just to avoid being

blocked by API usage limitations
Store Store persistently Store retrieved content or user information for

later use

Example 1. Let us inspect the following two lines of code to understand the
logic of the proposed patterns:

for tweet in tweepy.Cursor(api.search, q=QUERY).items():
tweet.user.follow()

814 A. Millimaggi and F. Daniel

The code uses the tweepy library to interact with Twitter and implements
two actions: search and follow. The search action is reified by the search user
pattern (which exact feature is used for the search is unknown as the content
of QUERY is not visible). The follow action is reified by the Unconditioned
follow pattern, as line 2 follows all users without applying any filter on the
users. /

Example 2. The following three lines of code show a concrete implementa-
tion of the blacklist-based mention pattern:

def mentions(count, max_seconds_ago, id_blacklist) :
return [mention for mention in api.mentions_timeline
(count=count)

if not mention.id in id_blacklist]

The code defines a function that returns all the ids of the users that
have mentioned the bot in prior tweets (expressing some form of interest
in the bot) and whose ids are not contained in the list of banned ids
id_blacklist. /

Incidentally, these examples are also representative of two recurrent types
of patterns across multiple actions: for all those actions that somehow endorse
a user or a tweet (follow, like, mention, retweet), the analysis identified pat-
terns that do so unconditionally or that do so by first checking if the involved
user is blacklisted or not. Independently of these examples, the analysis also
identified other recurrent types of patterns for these actions that endorse
users only if they are whitelisted. Other notable patterns implement massively
repeated actions like mass like and mass retweet, which aggressively endorse
content by given users, or specially targeted actions like targeted mention
and targeted chat, which instead carefully select the users to interact with
(e.g., suicide candidates) and send them particularly tailored messages (e.g.,
to point to help and prevent suicide).

4.4 Effects of Actions: Assessing Potential Harmfulness

Considering again the unconditioned, blacklist and whitelist patterns, it is
important to acknowledge that they implement different levels of sensibility
of risk as perceived by the developer. Unconditionally retweeting content
expresses either a high level of trust in the users who produce the retweeted
content, or it expresses a lack of awareness of the risks that retweeting for
example offensive, denigrating or obscene content may have on the reputation

On Twitter Bots Behaving Badly 815

of the bot owner. Either way, it becomes evident that each pattern may have
a different effect or impact on the users a bot interacts with.

In our prior work [10], we identified 12 major types of abuses bots have
committed in the past (see the top-right list in Figure 3) and that have pro-
duced harm (remember Section 2.1). The first half of these abuses are legally
prosecutable in most democratic countries (see, for example, New Zealand’s
Harmful Digital Communications Act of 2015 [15]). The typical question
that remains unanswered when harm occurs is why the respective abuse was
committed.

Some bots intentionally create spam messages, e.g., to influence political
elections [3], but then there are bots like Microsoft’s AI-based chatbot Tay
that got trained by multiple colluding users, e.g., to offend Jews (http://bit.ly
/2DCdqM4). Evidently, the bot was not ready for orchestrated attacks. From
the outside, it is generally not possible to tell why abuse happens. This article
provides a look inside the code that drives bots, and attempts a technical
explanation for some of the abuses. In fact, patterns may have the following
effects:

• Enable an abuse, if they implement logic that by design performs an
abuse. For example, the phantom follow pattern enables mimicking
interest for opportunistic reasons, e.g., to be followed back by users,
or the mass retweet pattern enables artificially boosting the visibility of
a user.
• Prevent an abuse, if they implement logic that aims to prevent the

bot from performing an abuse. The blacklist-based follow pattern, for
instance, prevents interactions with unwanted users, while the tweet with
opt-in pattern prevents spamming users not interested in the bot.
• Be vulnerable to content abuse, if they implement interactions with users

and/or content that may be inappropriate. The unconditioned follow
pattern, for instance, causes the bot to follow users that may have
inappropriate usernames or spread inappropriate content. The vulner-
ability may arise when endorsing content or users or when feeding
user-provided content to AI algorithms without proper prior checks (see
the example of Tay).
• Be vulnerable to trust abuse, if they forward, store or analyze content

retrieved from users. The store persistently pattern is an example of this
threat. A user sharing, for instance, sensitive information via personal
messages is vulnerable if stored data are leaked to unintended audiences.

http://bit.ly/2DCdqM4
http://bit.ly/2DCdqM4

816 A. Millimaggi and F. Daniel

Like

Tweet

Mention

Retweet

Chat

Follow

Pause

Store

Unconditioned like

Whitelist-based like

Blacklist-based like

Mass like

Fixed-content tweet

AI-generated tweet

Trusted source tweet

Unconditioned mention

Opt-in mention

Targeted mention

Whitelist-based mention

Blacklist-based mention

Unconditioned retweet

Whitelist-based retweet

Blacklist-based retweet

Mass retweet

Unconditioned chat

Fixed-content chat

AI-generated chat

Talk with opt-in

Targeted chat

Unconditioned follow

Whitelist-based follow

Blacklist-based follow

Phantom follow

Mimic human

Satisfy API contraints

Store persistently

Action Pattern In
va

d
e

sp
ac

e

D
is
cl

os
e

se
ns

iti
ve

 fa
ct

s

D
en

ig
ra

te
B
e

gr
os

sl
y

of
fe

ns
iv
e

B
e

in
d
ec

en
t
or

 o
b
sc

en
e

B
e

th
re

at
en

in
g

M
ak

e
fa

ls
e

al
le

ga
tio

ns

D
ec

ei
ve

S
p
am

S
p
re

ad
 m

is
in

fo
rm

at
io

n

M
im

ic
 in

te
re

st

Enables Prevents Vulnerable to content abuse Vulnerable to trust abuse

A
b
u
s
e

Figure 3 Potential effects of actions and patterns on the users in online communications:
patterns either enable, prevent or are vulnerable to abuses. For example, following an account
with a denigrating or offending username may perpetuate and endorse the denigration or
offense.

On Twitter Bots Behaving Badly 817

These four effects may translate into human users of the social network
getting harmed or not. But harm in this context has two sides: if a user gets
harmed through interaction with a bot, this may also affect and possibly harm
the owner of the bot himself. If a bot threatens someone or discriminates
people, the owner may become subject to legal prosecution. If it leaks private
data, it may be suspended by the social network, as this violates the usage
policies.

Figure 3 graphically summarizes for the patterns in Table 2 (except the
search patterns without side-effects) which abuses they may enable, prevent
or risk to commit. It is meant to create awareness in bot developers of the
effects the code they write may have once their bot is deployed and interacting
with people.

It is important to note that the analyzed dataset features only a few
bots that implement patterns that aim to prevent abuses, which testifies a
generally low awareness of the problem and commitment to mitigate risk
by developers. Specifically, only 5 repositories implement blacklist-based
patterns, 2 control if the user is verified by a whitelist (implementing multiple
patterns), 6 use opt-in verification, 4 use a trusted source for tweets, and 8 use
fixed content instead. Finally, we did not find any indication of effects of the
identified patterns on the abuse invade space (it refers to bots invading spaces,
e.g., online discussion groups or social networks, that are not meant for bot
participation), as Twitter is generally open to bots.

5 Large-Scale Analysis: Automated Recognition
of Code Patterns

While the patterns described above have an informative and educational
value on their own, they can also be used as input for the implementation
of an automated classifier to systematically search for patterns in bot code
repositories. We call this classifier Pattern Recognizer (PR).

The implementation of the PR has taken inspiration from the work by
Santanu and Atul [13], who proposed a framework for the extraction of
generic fragments from code. In their work, they designed a pattern language
for C and PL/AS (a variant of PL/1, a programming language developed
by IBM), while the underlying approach is applicable to any language. The
pattern language is an extension of the target programming language. The
extension makes use of wildcards, which are special symbols used to match
code elements. Patterns written with this language are transformed into an
Abstract Syntax Tree (AST), which is used to build a special finite state
automaton (FSA) that, in turn, takes as input the AST of the program of

818 A. Millimaggi and F. Daniel

interest. If the FSA reaches a final state, one or more patterns have been
recognized.

We have adapted the work by Santanu and Atul to the special case of pat-
tern search in Python-based bot code repositories and implemented the code
patterns described in the previous section. We summarize the implementation
and report on the application of the PR in the following.

5.1 Pattern Language

The first ingredient of the PR is the pattern language to formally describe
the patterns of interest. This language is an extension of the standard Python
language. It has all the syntactic elements of Python plus the addition of some
wildcards, which are special symbols used to match one or more instances
of syntactic elements. For example, the wildcard corresponding to a variable
matches every instance of a variable in a program, regardless of the respective
name. Ideally, a pattern language is equipped with a wildcard for each
syntactic element; in this work, we limit the wildcards to the elements that
are needed for the recognition of the code patterns identified in the previous
section. The specific wildcards implemented are detailed in Table 3.

Writing effective patterns can be a complex endeavor. To write a pattern,
it is good to observe that a pattern is not a monolith but that it can be seen as
a combination of building blocks that can be written independently and then
combined. For example, retweeting a tweet can be seen as a sequence of the
following blocks:

1. Retrieve tweets
2. Loop over the tweets
3. For each tweet, retweet it

Assuming that a program contains a function retrieve_tweets() that
returns a list of tweets, the retweeting logic above could be written as follows:

_VAR_TWEETS_ = retrieve_tweets
_STAT_MULTI_
for _VAR_TWEET_ in _VAR_TWEETS_:

api.retweet(_VAR_TWEET_)

5.2 Pattern Recognition

For the PR to be able to parse and match patterns, it needs a representation
of both the program to be scanned and the pattern to be searched for. The

On Twitter Bots Behaving Badly 819

Table 3 Wildcards of Python-based pattern language for abuse code pattern specification

Name Symbol Description

Generic Variable _VAR_ matches any variable
Generic Multi Variable _VAR_MULTI_ matches any variable, with any

number of attribute accesses and
function calls

Generic Function Definition _FUN_() matches any function definition

Generic Function Call _FUN_() matches any function call

Generic Assignment _ASSIGN_ matches any assignment

Generic Number _NUM_GT_n_LT_m matches any number. The tokens
“_GT_” and “_LT_” are optional
and specify whether the number
must be greater than n or smaller
than m

Generic Argument _ARG_ matches a generic argument in a
function call

Generic Arguments _ARGS_ matches any number of argu-
ments in a function call

Generic Statement _STAT_ matches a generic statement

Generic Multi Statement _STAT_MULTI_ matches any number of consecu-
tive generic statements

representation used here for this purpose is an Abstract Syntax Tree (AST),
i.e., a tree where each node is an abstract syntactic unit of the program. To
build the AST of the program and the pattern we use a built-in module of
Python called “ast” (https://docs.python.org/3/library/ast.html) that, given a
Python program in input, produces the respective AST in output. In particular,
the output is a list of nodes, where each node has a list, the so-called body,
that contains all its children. Figure 4 illustrates an example of AST for a
simple function definition.

Of course, the AST provided by the Python module does not have nodes
representing the wildcards of our pattern language. We thus constructed a
new module on top the built-in library, in order represent also wildcards.

The automaton used to identify patterns is a standard Finite State Automa-
ton (FSA) where each state represents a Python statement1. The automaton
take as input the AST of the pattern to be searched for and the AST of the

1Supported statements are: generic expressions, conditional statements, while, for,
continue, return, break, delete, asynchronous function definitions, function definitions,
class definitions, asynchronous for loops, try/except statements, asynchronous with
statements, with statements, lambda statements, yield statements, yield from statements.

https://docs.python.org/3/library/ast.html

820 A. Millimaggi and F. Daniel

Figure 4 Example of an AST for the definition of a generic function add(a,b)

program to be scanned. While the FSA goes from one state to another of
the pattern’s AST, the automaton scans the AST of the scanned program. In
other words, every time it performs a transition, it passes to the next statement
of the program. Each state of the automaton is a final one, and it outputs
a result. All of them but one output a negative result, if the comparison
between the statement represented by the state and the current statement
of the scanned program gives a negative output. The comparison is done
splitting the statements into their basic syntactic units, and comparing them.
For “standard” units, the comparison is a strict check for equality, while when
the comparison is between a wildcard and a “standard” unit, the check is
done following the rule of wildcards explained above. So, if the comparison
between statements has a positive output, the automaton goes to the next state.
The only state that can output a positive result is the last one. If the automaton
reaches the last state, and the last comparison is positive, then it outputs the
piece or the pieces of code that match the given pattern.

On Twitter Bots Behaving Badly 821

The source code of the PR can be found on Github at [URL hidden for
review].

5.3 Analysis

We now describe the implementation of a set of code patterns and apply the
pattern recognizer to the full dataset of Python bot code repositories retrieved
in Section 3, going beyond the 60 repositories analyzed manually.

5.3.1 Pattern implementation
Before talking about the actual implementation of patterns for pattern search,
it is important to note that the problem is very complex and not solvable
in general. In Section 4.3 we intentionally provided a conceptual, abstract
representation of the abusive code patterns we encountered in our analysis,
in order to make that knowledge reusable across code repositories and pro-
gramming languages. In order to search for patterns, it is instead necessary to
provide a representation of the patterns that is able to capture programming
language-specific syntax and solutions.

The analysis of our manually labeled dataset has shown that for each
pattern there is a large variety of ways the patterns may be implemented –
too many varieties to be manageable if we wanted to capture them all.
The following analysis is thus based on patterns that we considered simple
enough and affordable (in terms of implementation time needed) and, hence,
represents a best effort analysis. Out of the patterns described in Section 4.3,
we implemented the following patterns: unconditioned / blacklist-based /
whitelist-based / phantom follow, unconditioned / blacklist-based / whitelist-
based / mass retweet, unconditioned / blacklist-based / whitelist-based / mass
like, satisfy API constraints, and mimic human. Refer to the Appendix for the
details of the implementation in the developed pattern language.

The implementation of the patterns, is based on three techniques: observa-
tion of dataset, creative thinking, and reification of abstract Python libraries.
Observing the dataset means manually reading code projects (the 60 projects
we derived the patterns from), look at how the patterns are implemented, and
infer specific descriptions in the pattern language. The challenge is specifying
patterns that are as abstract as possible, while still able to capture specific
cases. Creative thinking means reflecting on how else develops could achieve
the realization of the patterns, in terms of basic actions, and describing these
actions in the pattern language. The challenge here is going beyond what
is visible in the code and bringing in own programming expertise. Reifying

822 A. Millimaggi and F. Daniel

Python library calls is needed to take into account that the interactions
with the Twitter API may be performed using different libraries, whose use
however does not affect the meaning of patterns. The APIs and libraries
contemplated are:

• Tweepy (http://docs.tweepy.org/en/v3.5.0/api.html)
• Python Twitter API (https://github.com/sixohsix/twitter/tree/master)
• Python-Twitter (https://python-twitter.readthedocs.io/en/latest/twitter.

html)
• TwitterAPI (https://github.com/geduldig/TwitterAPI)
• Twython (https://twython.readthedocs.io/en/latest/api.html)

5.3.2 Dataset and metrics
The study presented in this section is based on two different datasets: the first
dataset, which we call the gold dataset, is the one used to manually derive the
patterns and is composed if 60 projects; the second dataset, which we call the
test dataset is a dataset of 786 projects randomly chosen from the results of
the bot code repository search on Github described in Section 3.

The metrics used to evaluate the state of the art are:

• True Positives, TP = # correctly identified patterns
• False Positives, FP = # incorrectly identified patterns
• False Negatives, FN = # incorrectly not identified patterns

• Precision, P =
TP

TP + FP

• Recall, R =
TP

TP + FN

• Number of projects implementing a pattern, NP =
TP + FN

Total# of projects

TPs, FPs and FNs were assessed manually by going through the source
code of the projects looking for code patterns.

5.3.3 Results
Table 4 reports the performance of the pattern recognizer using the gold
dataset from which we derived patterns discussed in the previous sections
of this article. In line with our manual analysis, the most implemented
operational patterns (patterns involving tweeting, following or liking) are
the unconditioned patterns. They simply look for tweets or users using
keywords and they retweet or like the tweets, or follow the users or the
authors of the tweets. Few bots implement filters (blacklist or whitelist),

http://docs.tweepy.org/en/v3.5.0/api.html
https://github.com/sixohsix/twitter/tree/master
https://python-twitter.readthedocs.io/en/latest/twitter.html
https://python-twitter.readthedocs.io/en/latest/twitter.html
https://github.com/geduldig/TwitterAPI
https://twython.readthedocs.io/en/latest/api.html

On Twitter Bots Behaving Badly 823

Table 4 Results of automated pattern recognition using the gold dataset. Percentages of NP
refer to the size of the gold dataset (60 repositories)

Pattern TP FN FP P R NP

Unconditioned Follow 14 4 0 100% 88% 16 (26.7%)

Blacklist-based Follow 2 1 0 100% 67% 3 (5%)

Whitelist-based Follow 1 1 0 100% 50% 2 (3.3%)

Phantom Follow 1 1 0 100% 50% 2 (3.3%)

Unconditioned Retweet 11 3 0 100% 79% 14 (23.3%)

Blacklist-based Retweet 1 3 1 50% 25% 4 (6.7%)

Whitelist-based Retweet 0 0 0 0 0 0

Mass Retweet 1 0 0 100% 100% 1 (1.7%)

Unconditioned Like 10 1 0 100% 91% 11 (18.3%)

Blacklist-based Like 0 0 0 0 0 0

Whitelist-based Like 0 0 0 0 0 0

Mass Like 1 0 0 100% 100% 1 (1.7%)

Satisfy API Constraints 16 6 0 100% 72.7% 22 (36.7%)

Mimic humans 4 6 0 100% 40% 10 (16.7%)

phantom follow or mass patterns. For four of the implemented patterns, the
PR was not able to retrieve any specific instance, although we know that at
least one representative of the pattern must be present in the gold dataset.
Excluding these patterns (for which it is not possible to calculate P/R), the
macro-averages [16] of the precision/recall values are 95.5% and 69.3%,
respectively. Globally (micro-average), the precision is 98.4% and the recall
is 70.5%.

Table 5 reports the results of the same experiment with the full test dataset
(786 bot repositories). The first result that can be noticed looking at the
numbers is that the number of projects that implement any of the patterns is
generally low. The patterns which have the highest presence are the temporal
ones (satisfy API constraints and mimic human). This tells us that being
limited by Twitter’s API constraints is one of the most important concerns
of bots.

Regarding the operational patterns, they are not as widespread as
expected. Reading the code of bots to validate the results, we discovered a
plausible reason, which is that most of the bots are designed to post simple
tweets on Twitter, while bots which make use of retweet, follow, and like
are a minority. This is somewhat surprising. Among the operational patterns,
the majority of the bots use again the unconditioned patterns. Looking at

824 A. Millimaggi and F. Daniel

Table 5 Results from test dataset. In round parenthesis there is the quantity of projects
corresponding to the percentage

Pattern TP FN FP P R NP

Unconditioned Follow 46 24 6 88.4% 65.7% 50 (6.4%)

Blacklist-based Follow 4 2 0 100% 67% 6 (0.7%)

Whitelist-based Follow 1 1 0 100% 50% 2 (0.25%)

Phantom Follow 4 18 0 100% 18% 22 (2.8%)

Unconditioned Retweet 50 15 5 90.9% 76.9% 65 (8.3%)

Blacklist-based Retweet 1 1 1 50% 50% 2 (0.25%)

Whitelist-based Retweet 0 2 3 0 0 2 (0.25%)

Mass Retweet 1 0 0 100% 100% 1 (0.13%)

Unconditioned Like 32 12 5 86.4% 72% 44 (5.6%)

Blacklist-based Like 13 1 1 93% 93% 14 (1.8%)

Whitelist-based Like 0 2 0 0 0 2 (0.25%)

Mass Like 0 0 0 0 0 0

Satisfy API Constraints 198 16 0 100% 92.5% 214 (27.2%)

Mimic human 84 11 0 100% 88.4% 95 (12.1%)

blacklist-based and whitelist-based patterns, we can see that the bots which
implement them are a minority. Only the blacklist-based like is implemented
by more than the 1% of the bots. This result provides evidence that there is
still a lack of awareness among developers that unconditioned patterns may
expose the bot to unwanted and unexpected consequences or that prevention
is simply not a priority.

A small but significant part of the bots do implement the phantom follow
pattern. This was instead expected, as Twitter poses severe limits on the
amount of users that can be followed. It is therefore a good rule for a bot
to unfollow users who don’t follow back, in order to be free to follow other
users, hoping that they will eventually follow back (which is the typical goal
when following other users). The mass pattern is the least supported one.
Almost no one is interested in targeting specific users and liking or retweeting
all of his/her tweets, which is positive.

Considering the performance of the PR on the test dataset, the small
number of samples doesn’t allow us to drive final conclusions about the
quality of the system, but still the precision and recall obtained in this test
are promising and deserve a discussion. Looking at Table 5, the precision
is generally very high, except for blacklist-based retweet: the macro-average
of the pattern-specific precision values is 77.6%. This means that when the

On Twitter Bots Behaving Badly 825

system outputs a positive result for a certain pattern, it is very likely that
that pattern is really implemented in the repository. The micro-average of the
precision is instead 95.4%, which is in line with the micro-precision obtained
also with the gold dataset.

The recall of the system has no precise trend. The macro-average across
patterns is 59.5%, which is lower as with the gold dataset (expected). So,
while the recall can be high for some of the patterns, like blacklist-based like
or mimic human, on average the system is likely to return some false positive
when searching for patterns. The micro-average for the recall is 80.5%, which
is again in line with the performance of the PR on the gold dataset. The
decrease of the macro-average can be explained by the fact that some patterns,
e.g., the whitelist-based ones, perform poorly and, hence, lower the average.
Globally, the micro-average remains however high.

6 Related Works

As already hinted at in the introduction, the topic of social bots has so far been
approached mostly from the perspective of telling humans and bots apart, that
is, with the intention of detecting bots. The work that is most closely related
to this aspect is Botometer, formerly known as BotOrNot [7, 8], an online
tool that computes a bot-likelihood score for Twitter accounts and allows one
to tell bots and genuine user accounts apart. The tool builds on more than
1000 features among network, user, friends, temporal, content and sentiment
features, and uses a random forest classifier for each subset of features. The
training data used is based on bot accounts collected in prior work by Lee
et al. [12], who used Twitter honeypots to lure bots and collected about 36000
candidate bot accounts following or messaging their honeypot accounts.

Some works go further and turn their focus to specific types of social
bots and, thereby, harms. For instance, Ratkiewicz et al. [14] studied the
phenomenon of astroturfing, i.e., political campaigns that aim to fake social
support from people for a cause, and showed that bots play a major role in
astroturfing activities in Twitter. Cresci et al. [6] specifically focused on the
problem of fake followers. They constructed a dataset of human accounts
(manually and by invitation of friends) and bought fake followers from online
services like http://fastfollowerz.com. The work compares two types of
automatic classifiers, classifiers based on expert-defined rules and feature-
based classifiers (machine learning), and shows (i) that fake followers can
indeed be spotted and (ii) that black-box, feature-based classifiers perform

http://fastfollowerz.com

826 A. Millimaggi and F. Daniel

better than white-box, rule-based classifiers. In addition, the work also pro-
duced a publicly available, labeled dataset that can be used for research
purposes. Varol et al. [17] propose a bottom-up approach to the identification
of bots with similar online behavior. The classifier used is the one adopted
by Botometer, while the dataset used also included a manually annotated
collection of Twitter accounts. After classifying accounts into bot or not, the
authors further clustered the bot accounts into three types of bots: spammers,
self promoters, and accounts that post content from applications. Chu et al. [5]
coined the term cyborg to refer to bot-assisted humans in social networks and
used a manually labeled dataset of 6000 randomly sampled Twitter accounts
and a random forest classifier plus entropy measures to classify accounts into
bots, cyborgs and humans.

In terms of datasets analyzed for bot detection, Beskow and Carley [2]
propose four tiers of data for the classification of Twitter accounts: single
tweet text (tier 0), account + one tweet (1), account + full timeline (2),
and account + timeline + friends timelines (3). The assumption is that bot
detection is achieved using feature-based classification or AI algorithms. In
fact, with their tool bot-hunter, the authors study different machine learning
techniques for tier-1 datasets. Differently from these classification-based
approaches, Cao et al. [4] describe SybilRank, a tool for the detection of
sybil accounts (bots) in social networks by analyzing the social graph (of
Facebook, in the specific study). The study in this article focuses on a
different type of dataset, i.e., code, to understand the internals of bots, not
their externally visible behavior or traces.

Little or no work has been done so far on the analysis of harms and
abuses, as proposed in this article. Perhaps the work by Varol et al. [17]
can be seen as an ethical alarm: it estimates that between 9% and 15% of
all accounts in Twitter are likely automated accounts and shows that bots are
able to apply sophisticated communication tactics, distinguishing between
humans and bots.

7 Discussion and Outlook

This article proposes an original perspective on bots for online communica-
tion: instead of looking at messages or network activity, which is the typical
practice in literature, it analyzes the code that produces them. To the best of
our knowledge, this is the first study of its kind in this area.

On Twitter Bots Behaving Badly 827

7.1 Summary of Findings

The study contributes to the state of the art in a twofold fashion: a manual,
qualitative study characterizing the problem and an automated, quantitative
study backing the qualitative study with suitable evidence.

The qualitative study identified 31 patterns that implement different
variants of 9 communication actions from a dataset of 60 GitHub Twitter bot
repositories (approximately 75–80 hours of manual code inspection). Then,
it discussed the effects the patterns may have at runtime and provides a sys-
tematic mapping of patterns to potential abuses as a reference for developers.
The hope is that the awareness of potential abuses may help prevent bots from
causing psychological, legal, economic, social and democratic harm.

This allows us to finally come back to the why question, which is still
open, and attempt a technical interpretation of why abuses may happen. In
fact, it seems plausible to assume: (i) that bots that explicitly enable abuses
intentionally try to do harm or at least accept the possibility to do so; (ii) bots
that are vulnerable to content abuse by other users may unintentionally cause
harm, while still being responsible for the content they endorse or spread;
and (iii) bots that are vulnerable to trust abuse, if they leak data, may do so
intentionally (e.g., it they sell data) or unintentionally (e.g., if intruders steel
data). Regarding this last case, we did not find any hint for intentional leaks in
our dataset. These ethical aspects are particularly relevant to web engineering
if we consider that many understand bots as the apps of tomorrow. As a
possible usage scenario, social network providers that host third-party bot
code (e.g., Facebook) could use these patterns to implement early warning
systems to prevent harm.

The quantitative study carried out using the automated pattern recognizer
is based on the implementation of 14 out of the 31 identified patterns and
was applied to 786 Python bot code repositories taken from GitHub. The
key findings are, first of all, that it is possible to automatically identify code
patterns inside generic code repositories (very good precision and recall val-
ues) and that: (i) the key concern by bot developers is tricking Twitter’s API
constraints to maximize bot productivity, and (ii) preventing vulnerabilities
using blacklists or whitelists is not a major concern to developers, which may
expose the bots to content abuse. Whether this lack of preventive mechanisms
is intentional or not remains an open question; in any case, it expresses some
level of negligence.

828 A. Millimaggi and F. Daniel

7.2 Limitations

The findings of this article stem from a careful, manual systematic code
review. They are thus limited by nature. As for the internal validity, the
study suffers of course from the limited size of the dataset; perhaps more
repositories would have allowed us to identify more patterns. Also, the
open-source nature of the projects may provide a limited view on the possible
patterns, as developers of intentionally malicious bots may not share their
code. The focus on Python was needed to keep the dataset manageable.
The careful, randomized selection of repositories aimed to increase internal
validity. As for the external validity, different programming languages and
communication platforms may behave differently. However, the core of the
actions and patterns proposed in this article are similar in other platforms and
programming languages. These may differ in platform-specific functionali-
ties (e.g., poking a user in Facebook), but the abstractions of this article make
the actions and patterns portable.

As for the pattern recognizer, which we consider a first attempt at
automating the manual work above, we would like to note that recognizing
patterns is based on two distinct ingredients: the formal specification of the
patterns and their interpretation and matching against the source code of the
bot repositories. This latter is based on the prior work by Santanu and Atul
[13] and works satisfactorily. The tricky part are the patterns, whose general
implementation, as explained earlier, is very hard and represents a best effort.
This is of course a limitation that affects the recall of the pattern recognizer.
Inspecting more pattern examples and implementing more patterns would
help increase recall, yet this would still represent a lower bound for the recall,
as you can always do more and better.

Regarding the precision of the pattern recognizer, the key current limita-
tion is that is works only at a syntactic level and neglects possible semantics of
the code. If a pattern, for instance, specifically looks for variables that contain
tweets, the current implementation matches just variables of any name and
meaning; it is not able to discriminate variables based on their name (e.g.,
“tweets” vs. “users”) or based on how variables have been initialized (e.g., by
assigning values returned from a specific API call that produces tweets). This
limitation may produce false positives in the search.

It is important to note that the quantitative study and the implementation
of patterns are both based on a manual analysis of code and are, therefore,
at most able to represent a subset of the patterns that may actually present
abusive behaviors. All findings are thus to be read as lower bounds of the

On Twitter Bots Behaving Badly 829

phenomenon. For instance, our dataset did not include bots making use of
deep learning or reinforcement learning to evolve behavior over time. These
types of bots thus require a dedicated analysis.

7.3 Outlook

In order to assist developers in finding good pattern representations and to
partly automate the process of pattern authoring, we are considering using
machine learning algorithms to find a pattern representations from code sam-
ples and to find representations of lower-level, building blocks that can again
be combined into patterns. There are studies in literature on the construction
of a representation of source code using machine learning. For instance, Alon
et al. [1] built a system that builds a vector representation of source code that
can also give meaning to the code. We are considering building on that effort
in our future work, and we are considering taking into account code semantics
to improve the precision of the pattern recognizer. Of course, also expanding
the horizon of the investigation beyond Twitter and Python represents a likely
future development.

Appendix: Implementation of Potentially Abusive
Code Patterns

In the following paragraphs, the implementation of the patterns used in the
study described in Section 5 is described, including details and examples in
pattern language and Python.

Mimic Human Behaviour

This pattern has been elaborated using the assumption that a real user usually
interposes long pauses between actions on a social network. When using the
adjective “long”, we intend an order of magnitude of minutes. So, to mimic
the behaviour of real people, a bot must stop his activity from time to time
for a long period of time.

Example of description in pattern language
sleep(random._VAR_MULTI_._FUN_(_NUM_GT_3000, _NUM_GT_3000)

This description is intended to look for calls of the sleep function, which
take as argument an amount of time in seconds that is a random number
between two numbers greater than 3000.

830 A. Millimaggi and F. Daniel

Example of implementation in Python
if wait_time > 0:

print("Choosing time between %d and %d -
waiting %d seconds before action" %
(min_time, max_time, wait_time))
time.sleep(wait_time)

Satisfy API Constraints
If a bot doesn’t want to pretend to be human, but it wants only to do the
maximum number of actions it can, without being limited by Twitter, it will
continuously check if it has reached the limits imposed by Twitter, and it will
pause the script in these cases. An alternative and less effective way for the
bot to avoid to be limited is to sleep a small amount of time after each action
it does.

Example of description in pattern language
if _VAR_1 < _VAR_2:

_STAT_MULTI_
_VAR_MULTI_sleep(_ARGS_)

The pattern has the following meaning: search a piece of code that is
a generic condition that tests if a variable is less than another variable
and whose body is a call to the sleep function. The reasoning behind the
elaboration of this pattern is that if the bot is checking if a variable is less
than other, it is probably checking if the number of actions it has done is less
than the permitted ones.

Example of implementation in Python
if ratelimit[2] < min_ratelimit:

time.sleep(200)

Unconditioned Follow, Like, and Retweet

These three patterns are grouped together because they have been elaborated
using the same reasoning. The same applies to blacklist-based patterns and
mass patterns. These patterns are the simplest ones: if the bot doesn’t use
a blacklist or a whitelist to filter users and tweets, it is doing an uncondi-
tioned action. So, the system first checks blacklist-based and whitelist-based
patterns, and, if it doesn’t find matches for them, it uses a description that

On Twitter Bots Behaving Badly 831

includes only the action of retweeting, liking, or following. If it finds a
match for those base patterns, it can conclude that the bot is performing
unconditioned actions.

Example of description in pattern language
_VAR_MULTI_.create_friendship(_ARGS_)

In this example, we use the description to look for pieces of code where
there is a simple call to a function of the API that allows the bot to follow a
Twitter account.

Example of implementation in Python
try:

api.create_friendship(my_id, follow)
except:

print(‘Already requested %s’ % current_screen_name)

Blacklist-based Follow, Retweet, and Like

Performing blacklist-based actions basically means filtering out the users to
follow and the tweets to like or retweet.

Example of description in pattern language
_VAR_USERS_ = set(_VAR_1) - set(_VAR_2)
_VAR_MULTI_
for _VAR_USER_ in _VAR_USERS_:

_STAT_MULTI_
_VAR_MULTI_.create_friendship(_ARGS_)

In this example, the filter is implemented using a set difference. The idea
behind this description is that if the bot is taking out something from the set of
users to follow, probably it is filtering out unwanted users, so it is blacklisting
users.

Example of implementation in Python
RTUsers = set(RTUsers) - set(blacklisted_users)
...
for f in RTUsers:
try:

api.create_friendship(f)

832 A. Millimaggi and F. Daniel

Phantom Follow

Performing a Phantom Follow means removing the friendship relation with a
user once it is no longer needed. Usually, bots follow users to get their atten-
tion, obtain their friendship, and thereby raise their numbers of followers.
When users have followed back the bot, there is no need to follow them any
longer, on the contrary, the bot has to unfollow them to be free to follow new
users. So, from time to time, the bot takes the list of its friends, and unfollows
a part or all of them.

Example of description in pattern language
_VAR_FRIENDS_ = _VAR_MULTI_.friends_ids(_ARGS_)
_STAT_MULTI_
for _VAR_FRIEND_ in _VAR_FRIENDS_:

_STAT_MULTI_
_VAR_MULTI_.destroy_friendship(_VAR_USER_)

In this example, we look for a piece of code where there is the collection
of the friends of the bot, followed by a loop over friends where, for each
friend, the bot unfollows him/her.

Example of implementation in Python
my_following = api.friends_ids(my_id)
...
unfollowed = 0
count = 0
for following in my_following:

...
try:

if skipMutuals:
if following not in my_followers:

api.destroy_friendship(my_id,
following)

else:
api.destroy_friendship(my_id,

following)
unfollowed+=1
count+=1

On Twitter Bots Behaving Badly 833

Mass Like and Retweet

To massively like or retweet a post, a bot has to collect a bunch of tweets
from a specific user, and, then, attempt to like or retweet all of them. The
Twitter API offers a method to collect the tweets of specific users, and, in
turn, libraries offer the same methods.

Example of description in pattern language
_VAR_TWEETS_ = _VAR_MULTI_.get_user_tweets(_ARGS_)
_STAT_MULTI_
for _VAR_TWEET_ in _VAR_TWEETS_:

_STAT_MULTI_
_VAR_MULTI_.retweet(_ARGS_)

In this example, we look for pieces of code where there is, first, the
collection of the tweets of the user, and, then, a loop over the tweets where
there is the attempt to retweet the tweets.

Example of implementation in Python
tweets = TwitterAPI.get_user_tweets(twitter_object,

screen_name,paginate_older_attribute)
...
if (len(tweets) > 0):
for tweet in tweets:

try:
TwitterAPI.bot_retweet(twitter_object,

str(tweet[‘id_str’]))
TwitterAPI.bot_like(twitter_object,

str(tweet[‘id_str’]))

References

[1] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec:
Learning distributed representations of code. Proceedings of the ACM
on Programming Languages, 3(POPL):40, 2019.

[2] David M Beskow and Kathleen M Carley. Bot-hunter: A tiered approach
to detecting & characterizing automated activity on twitter. In SBP-
BRiMS 2018, 2018.

834 A. Millimaggi and F. Daniel

[3] Alessandro Bessi and Emilio Ferrara. Social bots distort the 2016 us
presidential election online discussion. First Monday, 21(11), 2016.

[4] Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago Pregueiro.
Aiding the detection of fake accounts in large scale social online ser-
vices. In Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation, pages 15–15, 2012.

[5] Zi Chu, Steven Gianvecchio, Haining Wang, and Sushil Jajodia. Detect-
ing automation of twitter accounts: Are you a human, bot, or cyborg?
IEEE Transactions on Dependable and Secure Computing, 9(6):811–
824, 2012.

[6] Stefano Cresci, Roberto Di Pietro, Marinella Petrocchi, Angelo Spog-
nardi, and Maurizio Tesconi. Fame for sale: efficient detection of fake
twitter followers. Decision Support Systems, 80:56–71, 2015.

[7] Clayton Allen Davis, Onur Varol, Emilio Ferrara, Alessandro Flammini,
and Filippo Menczer. Botornot: A system to evaluate social bots. In
WWW 2016, pages 273–274, 2016.

[8] Emilio Ferrara, Onur Varol, Clayton Davis, Filippo Menczer, and
Alessandro Flammini. The rise of social bots. Communications of the
ACM, 59(7):96–104, 2016.

[9] Tony Hey, Stewart Tansley, Kristin M Tolle, et al. The fourth paradigm:
data-intensive scientific discovery, volume 1. Microsoft research
Redmond, WA, 2009.

[10] hidden.
[11] Barbara Kitchenham. Procedures for performing systematic reviews.

Keele, UK, Keele University, 33(2004):1–26, 2004.
[12] Kyumin Lee, Brian David Eoff, and James Caverlee. Seven months with

the devils: A long-term study of content polluters on twitter. In ICWSM,
pages 185–192, 2011.

[13] Santanu Paul and Atul Prakash. A framework for source code search
using program patterns. IEEE Transactions on Software Engineering,
20(6):463–475, 1994.

[14] Jacob Ratkiewicz, Michael Conover, Mark R Meiss, Bruno Gonçalves,
Alessandro Flammini, and Filippo Menczer. Detecting and tracking
political abuse in social media. In ICWSM, pages 297–304, 2011.

[15] The Parliament of New Zealand. Harmful Digital Communications Act
2015. Public Act 2015 No 63, 2015.

On Twitter Bots Behaving Badly 835

[16] Grigorios Tsoumakas and Ioannis Vlahavas. Random k-labelsets: An
ensemble method for multilabel classification. In European conference
on machine learning, pages 406–417. Springer, 2007.

[17] Onur Varol, Emilio Ferrara, Clayton A Davis, Filippo Menczer, and
Alessandro Flammini. Online human-bot interactions: Detection, esti-
mation, and characterization. arXiv preprint arXiv:1703.03107, 2017.

Biographies

Andrea Millimaggi is a Software Developer at GFT Technologies. His
research interests include social bot detection, social network analysis, data
science, machine learning and artificial intelligence. He received a M.Sc.
degree in information technology from Politecnico di Milano.

Florian Daniel is an Associate Professor with Politecnico di Milano, Italy.
His research interests include bots/chatbots, social data analysis and knowl-
edge extraction, service-oriented computing, business process management,
and blockchain. He received the Ph.D. degree in information technology from
Politecnico di Milano.

	Introduction
	Background
	Harm and Abuse in Human-bot Interactions
	Platform Policies and Permissions

	Dataset: Twitter Bot Code Repositories
	Data Sources and Retrieval
	Preliminary Analysis
	Final Dataset

	Identification and Analysis of Abusive Code Patterns
	Method
	Actions: How Bots Participate in Communications
	Code Patterns: How Bots Implement Their Actions
	Effects of Actions: Assessing Potential Harmfulness

	Large-Scale Analysis: Automated Recognitionof Code Patterns
	Pattern Language
	Pattern Recognition
	Analysis
	Pattern implementation
	Dataset and metrics
	Results

	Related Works
	Discussion and Outlook
	Summary of Findings
	Limitations
	Outlook

