
A Metrics Framework for Evaluating
Microservices Architecture Designs

O. Al-Debagy∗ and P. Martinek

Department of Electronics Technology, Budapest University of Technology and
Economics, Hungary
E-mail: omeraldebagy@gmail.com; martinek@ett.bme.hu
∗Corresponding Author

Received 13 September 2019; Accepted 09 April 2020;
Publication 12 June 2020

Abstract

Microservices are becoming a more popular software architecture among
companies and developers. Therefore, there is a need to develop methods
for quantifying the process of measuring the quality of microservices design.
This paper has created a novel set of metrics for microservices architec-
ture applications. The proposed metrics are the Service Granularity Metric
“SGM”, the Lack of Cohesion Metric “LCOM”, and the Number of Opera-
tions “NOO”. The proposed metrics measure the granularity, cohesion, and
complexity of individual microservices through analyzing the application
programming interface “API”. Using these metrics, it is possible to evaluate
the overall quality of the design of microservices applications. The proposed
metrics were measured on 5 applications with different sizes and business
cases. This research found that the value for the SGM metric needs to be
between 0.2 and 0.6. Besides, the value of LCOM metric for a microservice
needs to be between 0 and 0.8 with less than ten operations per microservice.
These findings can be applied in the decomposition process of monolithic
applications as well.

Keywords: Microservices, software metrics, lack of cohesion, service
granularity, service complexity.

Journal of Web Engineering, Vol. 19_3-4, 341–370.
doi: 10.13052/jwe1540-9589.19341
© 2020 River Publishers



342 O. Al-Debagy and P. Martinek

1 Introduction

Nowadays, many companies are migrating to microservices architecture
because of the advantages that this architecture is providing, such as ease
of maintenance, flexibility in implementing different technologies, more
scalability, and better IT governance [1]. Nevertheless, there is still no clear
approach on how to evaluate the design of microservices applications in
order to create exceptional designs [2]. Although other software architectures
and approaches have different methods and metrics to evaluate their design,
microservices architecture have no dedicated metrics; therefore, this research
is presenting different software metrics in order to evaluate the design of
microservices applications.

Software metrics are used to measure software quality, which is an essen-
tial method to make the quality of software quantifiable [3, 4]. Applications
are becoming more complex and sophisticated. Besides, they need to be
updated regularly due to the demands of customers. Hence, the need for
software metrics is essential to estimate the cost of these developments and
the later maintenance of them. There are different types of software metrics
in the literature for different types of architectures and environments, such as
cohesion, coupling, complexity, granularity, etc.

Newman mentioned in his book, titled “Building microservices: design-
ing fine-grained systems”, that good service design should focus on high
cohesion and loose coupling. So a good service needs to have several func-
tions that are related to each other, and communicate with other functions
as loosely as possible, based on Newman’s description of a good design [5].
Another aspect that can affect the performance of microservices is the size
of the application or the size of these services, which can be referred to as
granularity [6]. Therefore, cohesion and granularity metrics are considered in
this paper.

Cohesion is “the degree of conceptual consistency within an object” [7].
In object-oriented programming, cohesion refers to the degree in which data
and methods in a class are related to each other. Software with high cohesion
tends to be more favored compared to software with low cohesion, because
high cohesion software refers to qualities such as reliability, understandabil-
ity, robustness, and reusability. Thus, microservices applications needs to be
cohesive in order to provide good performance to the users.

Service granularity is the range of functionalities provided by a service
[8]. Different services have different levels of granularity. Business logic and



A Metrics Framework for Evaluating Microservices Architecture Designs 343

requirements can affect the granularity of service operations in a service-
oriented architecture. Fine-grained services can increase the reusability of
business logic significantly. Also, fine-grained services can improve cohe-
sion, coupling, and better understanding of the design. Nevertheless, fine-
grained services lead to increased traffic on the network, and the processing of
identifying and working with errors more challenging. However, these issues
can be solved with a faster and more stable network [9].

As a result of the lack of empirical research on the evaluation metrics
for microservices design, and the need for an approach to identify the
goodness of a microservices application. Also, the topic of microservices is
still young especially evaluation metrics for microservices [10]. Therefore,
these points motivated this research work. This research presented a set of
evaluation metrics to measure the quality of microservices design and validate
the measurement of these metrics against several microservices applications
design. The proposed metricsprovide guidelines for developers in the process
of decomposing monolithic applications into microservices applications.

2 Literature Review

Elhag et al. [11] introduced a set of metrics for evaluating the design of
service-oriented design. They introduced two types of metrics, the first type
called basic metrics, and the second type is called derived metrics. The basic
metrics include number of services, number of operations, provider, con-
sumer, and importance of provider. Derived metrics includes coupling metric,
cohesion metric, and complexity metric. The results of their paper show the
significance of these metrics and how these metrics can be calculated. These
metrics were evaluated theoretically but the paper lacks empirical evaluation.

In Perepletchikov et al. [12] research, the authors introduced the effects
of cohesion metrics on maintainability prediction. The metrics that they pre-
sented were Service Interface Data Cohesion, which measures the cohesion
of service by finding which operations are using the same input parameters.
A service is considered highly cohesive when all the operations in a service
share the same input parameters. The second metric is Service Interface
Usage Cohesion, which works by finding the number of clients that are using
specific operations in the service. The service is considered highly cohesive if
all the service operations get invoked by all the clients or service consumers.
The third metric of Perepletchikov et al. paper [12] is Service Sequential
Usage Cohesion which is similar to the previously mentioned metrics but it
takes the dependency between the service operations into consideration, for



344 O. Al-Debagy and P. Martinek

example, the service is considered cohesive if the output of one operation
is the input of another operation. The fourth metric is Strict Service Imple-
mentation Cohesion, which measures the cohesiveness of a service based on
the exposure of its operations through the interface. Thus, it is presenting
the relatedness between implementation elements. The fifth metric is Loose
Service Implementation Cohesion, which is similar to Service Sequential
Usage Cohesion, except it also considers the indirect connection between
elements in the measurement. The last metric is Total Interface Cohesion of a
Service, which is the normalized sum of all the previously mentioned metrics,
which it represents the total cohesiveness of a service. They used property-
based software engineering measurement framework proposed by Briand
et al. [13] to validate their metrics, which consist of several mathematical
properties to define complexity, cohesion, coupling and size of software.
These metrics are similar to the cohesion metrics that are proposed by this
paper because both of them are derived from metrics that are used for object-
oriented programming. Perepletchikov et al. [12] research was not validated
empirically which can be considered a limitation.

The process of application decomposition through measuring cohesion
between the services interface is presented in Athanasopoulos et al. [14].
The first metric is Message Level Cohesion, which measures the similarities
between the messages that are used by operations, so two operations are
related if the input and output messages of these operations are similar. The
other metric is Conversation Level Cohesion, which measures the cohesion
between operations on the premises that the output of one operation is similar
to the input of the other operation. Thus, two operations are similar if the input
of one of them is similar to the output of another operation. The next metric
is Domain Level Cohesion, which measures cohesion between operations if
these operations have similar functionalities. In other words, two operations
are considered related to each other if the names of these operations share
same domain-level terms. In their paper, Athanasopoulos et al. [13] found a
decomposition method for decomposing application based on the cohesion
level of the services interface, and their method of measuring the cohesion
between these services are interesting to the work of this research. Because
they used similar methodology to the proposed method of this research
paper, this method is analyzing the interface of services in order to find the
quality of application design. But Athanasopoulos et al’s metrics are used
for web services while this research’s metrics are proposed for microservices



A Metrics Framework for Evaluating Microservices Architecture Designs 345

architecture. Furthermore, this research provides other metrics for microser-
vices architecture, such as granularity and complexity, that Athanasopoulos
et al. did not provide.

In research done by Heinrich and Zimmermann [15], they propose four
different granularity metrics in order to decide if services are fine-grained
or coarse-grained. Their research focused on a service-oriented architecture,
while this research paper focuses on microservices architecture. The first met-
ric is Width metric, which works based on the number of direct and indirect
functions that a service is providing. The value of this metric is between 1
and 0, where a value close to 0 refers to coarse-grained service granularity,
while a value close to 1 refers to a fine-grained service granularity. Secondly,
the Depth metric is instinctively interpretable and uses the decomposition
layer where the services can be found, and this feature makes these metrics
different than Width metric. Also, its value is between 0 and 1, where 0
refers to coarse-grained services and one refers to fine-grained services.
The third metric is a combination of the previous two metrics, Width and
Depth. This combination improves the measurement of these metrics because
it combines the advantages of them. The last metric is Size, where each
function is calculated independently using its lines of code. Again, similar
to previous researches, this research is focusing on one aspect of service-
oriented applications rather than more than one. Also, they did not provide
proper validation for their metrics.

A research done by Alahmari et al. [16] presents a framework to evaluate
service granularity in a service-oriented architecture. This framework con-
sists of several metrics to measure the granularity of services. The metrics
for data granularity score which consists of assigning a weight for different
data types in parameters; for example, simple data type parameter has 1
as a weight, user-defined data type has 5, and complex data types have
10 as a weight. The value of this metric is between 0 and 1. The closer
to 1 it is, the more coarse-grained the services are. Another metric from
this framework is Functional Granularity Score, which works by assigning
different weights for different types of operations; for example, assigning 1
as a weight if the service operation has only CRUD “create, read, update,
and delete” operations, assigning 5 if the operation perform business logic,
and assigning 10 as a weight if the operation performs business logic and has
CRUD operations. Finally, Service Operations Granularity “SOG” metric is
the product of multiplying ODG “Operational Data Granularity” and OFG
“Operational Functional Granularity” metrics of each operation, which is
the metric that gives the measurement of the granularity between services.



346 O. Al-Debagy and P. Martinek

In order to get the granularity of the whole application, they calculated the
average of SOG scores of the services. This research paper is implemented a
similar version of Alahmari et al. metrics with some modifications in order to
be suitable for microservices architecture design. Their case study was rather
small consisting of one application with 14 operations.

An important measurement for assessing the complexity of any software
is the number of methods that it has. Weighted Methods per Class “WMC”
is a metric used for object-oriented programming in order to find a number
of methods used by a specific class. The hypothesis of this metric is that a
class with a higher number of methods is more prone to errors compared to
classes with fewer methods [17]. In their research they used the complexity
of the methods, which they used the number of methods as the complexity
metric for classes [18]. Therefore, the number of operations per microservice
has been considered as a complexity metric for the microservices application.

The Lack of Cohesion metric measures the cohesiveness of a class in an
object-oriented environment by finding the similarity between methods and
fields within a class [19]. The Lack of cohesion method by Chidamber and
Kemereris defined as the number of methods in a class that does not have
any common fields between each other minus the number of methods in the
class that has at least one common field [20]. A revised version of the Lack
of Cohesion was introduced by Henderson-Sellers [13] in order to normalize
it. A revised version of Henderson-Sellers’s lack of cohesion metric is used
in this paper, in order to be suitable for microservices design.

In a research [22] done by Coscia et al.used metrics to calculate the
quality of software design using WSDL documents of Web Services. Further-
more, they presented a statistical correlation analysis showing the correlation
between object-oriented metrics and WSDL metrics. Also, they used 11
different metrics for calculating service implementations. For example, they
used WMC and LCOM, which are similar to some metrics that are presented
in this research.

Taibi and Systa [23] proposed a decomposition method using a data
driven approach based on process mining through utilizing log files as a data
source. Their decomposition method consisted of 6 steps. The first step is
execution analysis path. The next step is the frequency analysis of the execu-
tion path. The third step is removing circular dependencies. The fourth step
is identifying decomposition options. The fifth step is ranking the decompo-
sition options based on metrics. The final step is selecting the decomposition
option. They used coupling and the number of classes as metrics for step 5.
They proposed a coupling metric to validate the proposed microservices by



A Metrics Framework for Evaluating Microservices Architecture Designs 347

their decomposition method. Moreover, evaluating microservices with more
metrics, such as cohesion and granularity, can provide more information
regarding the application, which this point can be considered a limitation to
the research of Taibi and Systa [23].

Jin et al. [24] proposed new cohesion and coupling metrics to evaluate the
design of microservices. These metrics evaluate the design of microservices
through analyzing the interface and classes of the source code. They intro-
duced two metrics for calculating cohesion at domain level and message level.
Also, three coupling metrics were defined through identifying the interaction
between the microservices. Their approach for calculating the cohesion met-
ric is different than the lack of cohesion metric that was proposed in this
paper, because they used source code as base for their metric, while our
proposed LCOM uses APIs.

A complexity metric for microservices applications was presented by
Santos and Silva [25]. This metric was used to evaluate the proposed
microservices while migrating from monolithic applications. They calculated
the complexity of each functionality in the application. The proposed metrics
measures the complexity through the cost of the decomposition process. So,
two metrics were proposed for complexity, first, complexity of a functionality,
and second, complexity of a decomposition. In order to evaluate their metrics,
they used correlation with other metrics, similar to the approach that we used
to this research paper.

A literature review [10] was done by Bogner et al., which investi-
gates different metrics for measuring maintainability used in service-oriented
architecture and their applicability in a microservices architecture. They
characterized the researches that they found into 4 different categories which
were size, complexity, coupling, and cohesion. In their research they found
only one metric that is related to size, which is Weighted Service Interface
Count “WSIC” which represents the number of available operations through
the service API. Then they discussed the applicability of these metrics on
microservices applications. Though they did not apply any of the obtained
metrics on any specific microservices application.

Comparing the presented metrics of this research with the metrics that
are available in the literature, it is apparent that there is a small number of
researchers working on metrics that are dealing with microservices archi-
tecture. Furthermore, the scope of the proposed metrics is different than
the available metrics in the literature. For example, this research provided a
metrics framework that focus on granularity, cohesion, and complexity, while



348 O. Al-Debagy and P. Martinek

other papers are focusing on each metric alone or different combinations of
other metrics.

The mentioned papers in the literature review fall into three groups
based on the approaches they used to measure their metrics. The first group
is the researches that used service interfaces to obtain their metrics mea-
surements. This group focuses on measuring the metrics without accessing
the source code, and this group includes [12, 14, 16], and [22]. A second
group is the researches that used source code as their medium to obtain
the metrics measurements, and this group includes these researches [23–
25]. The third group consists of only single research [15], which utilized a
graph definition to measure their defined metrics. Lastly, there are two other
researches [10, 11], which did not fall into any of the mentioned groups,
because they used theoretical approaches of evaluation instead of empirical
methods. The approach that our research used falls under the first group
because it uses API to measure the proposed cohesion, complexity, and
granularity metrics for microservices applications.

Table 1 presents a comparison of the metrics presented in the literature
review section. This table consists of the authors of the papers and the
metrics that these papers focused on such as cohesion, complexity, coupling,
or granularity. Also, the architecture of the architectural style that the listed
metrics targets like Service Oriented Architecture “SOA”, microservices, or
others. Additionally, the approach that the research used to obtain the metrics.

3 Proposed Microservices Metrics

This section of the paper presents the metrics for measuring the cohesiveness,
granularity, and complexity of the services in a microservices application
by obtaining operations of the services from the application programming
interface “API” and extracting several information from these operations such
as input parameters, output responses, and type of operations. Using the
extracted information from the API, several metrics were created to measure
the quality of a microservices application, and these metrics were Lack of
Cohesion Metric “LCOM”, Service Granularity Metric “SGM”, and Number
of Operations “NOO”.

3.1 The Lack of Cohesion Metric “LCOM”

LCOM measures the cohesiveness or, in other words, the similarity between
the operations in specific service and if these operations are related to each



A Metrics Framework for Evaluating Microservices Architecture Designs 349

other. In this research, the LCOM metric is based on Henderson-Sellers’s lack
of cohesion metric for object-oriented programming. It consists of finding
how many times a specific parameter has been used in a specific microservice,
divided by the product of the number of operations multiplied by the number
of unique parameters, see Equation 1 below.

LCOM = 1−
∑n

i=1MF

M × F
(1)

where MF is the occurrence of a parameter in a specific microservice, M is
the number of operations in a specific microservice, and F is the number of
unique parameters in a microservice.

Furthermore, finding the average of LCOM in order to get the lack of
cohesion for the whole microservices application, and the value of LCOM
must be between zero and unity. The closer to unity, the more the applications
lack cohesion, which leads to more complexity and in return may lead to
more errors in the application. Therefore, zero is considered the perfect score
for this metric which means the microservice has operations that are entirely
related to each other and fully cohesive. Equation 2 gives the LCOM average

Table 1 Presented publications
Papers Focus Architecture Approach
Elhag et al. [11] coupling, cohesion and

complexity
SOA Theoretical

Perepletchikov
et al. [12]

cohesion SOA Service Interface

Athanasopoulos
et al. [14]

cohesion Web Services Service Interface

Heinrich and
Zimmermann [15]

granularity SOA Graphs

Alahmari et al. [16] granularity SOA Service Interface
OrdialesCoscia
et al. [22]

cohesion- and
complexity

Web Services Service Interface

Bogner et al. [10] size, complexity,
coupling, and cohesion

Microservices Theoretical

Taibi and Systa [23] coupling Microservices Source Code
Jin et al. [24] cohesion and coupling Microservices Source Code
Santos and Silva [25] complexity Microservices Source Code
This research Cohesion, complexity,

and granularity.
Microservices API



350 O. Al-Debagy and P. Martinek

Boards

+id
+createdBy
+title
+updatedBy
+updatedDate
+description
+creation
+update

+getBoardUsingGET()
+saveBoardUsingPOST()
+listAllBoardsUsingGET()

Authentication

+email
+token

+doAuthUsingPOST()

Tasks

+boardId
+id
+title
+createdBy
+createdDate
+updatedBy
+updatedDate
+deleted
+status
+description
+creation
+update
+TaskDescription
+eventType

+listAllTasksUsingGET()
+saveTaskUsingPOST()
+updateTaskUsingPUT()
+deleteTaskUsingDELETE()
+backlogTaskUsingPUT()
+completeTaskUsingPUT()
+getHistoryUsingGET()
+scheduleTaskUsingPUT()
+startTaskUsingPUT()

1..*

Figure 1 Kanban boards application architectural diagram.

for the entire microservices application.

ALCOM =

∑n
i=1 LCOM

NS
(2)

where NS is the number of microservices in the application. This metric
can show the overall goodness of the application, and n is the number of
operations in the microservice.

An API for a small microservices application (Table 2) has been used to
show the mechanism of these metrics in detail [26]. The application consists
of three microservices and 13 operations. The name of the application is the
Kanban Board, which is a sample application written in Java; it allows users
to create Kanban boards and tasks. For further testing more applications were
used in the next section of the research.

Also, Figure 1 shows an architectural view of Kanban Boards application,
which is the application that is used to illustrate the mechanism of how the
metrics are being calculated.



A Metrics Framework for Evaluating Microservices Architecture Designs 351
T
ab

le
2

M
ic

ro
se

rv
ic

es
ex

am
pl

e
M

ic
ro

se
rv

ic
e

N
am

e
M

et
ho

d
N

am
e

D
es

cr
ip

tio
n

In
pu

tp
ar

am
et

er
s

O
ut

pu
tP

ar
am

et
er

s
B

oa
rd

s
ge

tB
oa

rd
U

si
ng

G
E

T
R

eq
ue

st
B

oa
rd

us
in

g
G

E
T

m
et

ho
d

id
cr

ea
te

dB
y,

cr
ea

te
dD

at
e,

id
,t

itl
e,

up
da

te
dB

y,
up

da
te

dD
at

e,
de

sc
ri

pt
io

n
sa

ve
B

oa
rd

U
si

ng
PO

ST
Sa

ve
B

oa
rd

to
th

e
da

ta
ba

se
us

in
g

PO
ST

m
et

ho
d.

tit
le

,c
re

at
io

n,
up

da
te

,
de

sc
ri

pt
io

n
cr

ea
te

dB
y,

cr
ea

te
dD

at
e,

id
,

up
da

te
dB

y,
up

da
te

dD
at

e
lis

tA
llB

oa
rd

sU
si

ng
G

E
T

R
eq

ue
st

al
lb

oa
rd

s
us

in
g

G
E

T
m

et
ho

d
cr

ea
te

dB
y,

cr
ea

te
dD

at
e,

id
,t

itl
e,

up
da

te
dB

y,
up

da
te

dD
at

e,
de

sc
ri

pt
io

n
Ta

sk
s

st
ar

tT
as

kU
si

ng
PU

T
M

ak
e

th
e

ta
sk

ac
tiv

e
us

in
g

PU
T

m
et

ho
d

id
,b

oa
rd

Id

sc
he

du
le

Ta
sk

U
si

ng
PU

T
Sc

he
du

le
a

ta
sk

us
in

g
PU

T
m

et
ho

d
id

,b
oa

rd
Id

ge
tH

is
to

ry
U

si
ng

G
E

T
R

et
re

iv
e

al
lp

re
vi

ou
s

ta
sk

s
us

in
g

G
E

T
m

et
ho

d
id

ev
en

tT
yp

e,
bo

ar
dI

d,
cr

ea
te

dB
y,

cr
ea

te
dD

at
e,

de
sc

ri
pt

io
n,

de
le

te
d,

st
at

us
,t

itl
e,

up
da

te
dB

y,
up

da
te

dD
at

e
co

m
pl

et
eT

as
kU

si
ng

PU
T

A
ss

ig
n

a
ta

sk
co

m
pl

et
ed

us
in

g
PU

T
m

et
ho

d
id

,b
oa

rd
Id

ba
ck

lo
gT

as
kU

si
ng

PU
T

B
ac

kl
og

ta
sk

us
in

g
PU

T
m

et
ho

d
id

de
le

te
Ta

sk
U

si
ng

D
E

L
E

T
E

D
el

et
e

a
ta

sk
us

in
g

D
E

L
E

T
E

m
et

ho
d

id

up
da

te
Ta

sk
U

si
ng

PU
T

U
pd

at
e

a
ta

sk
us

in
g

PU
T

m
et

ho
d

Id
,T

as
kD

es
cr

ip
tio

n,
tit

le
sa

ve
Ta

sk
U

si
ng

PO
ST

Sa
ve

a
ta

sk
us

in
g

PO
ST

m
et

ho
d

bo
ar

dI
d,

cr
ea

tio
n,

up
da

te
,d

el
et

ed
,s

ta
tu

s,
tit

le
,T

as
kD

es
cr

ip
tio

n

cr
ea

te
dB

y,
cr

ea
te

dD
at

e,
de

sc
ri

pt
io

n,
id

,u
pd

at
ed

B
y,

up
da

te
dD

at
e

lis
tA

llT
as

ks
U

si
ng

G
E

T
R

eq
ue

st
al

lt
as

ks
us

in
g

G
E

T
m

et
ho

d
bo

ar
dI

d
id

,t
itl

e,
cr

ea
te

dB
y,

cr
ea

te
dD

at
e,

up
da

te
dB

y,
up

da
te

dD
at

e,
de

le
te

d,
st

at
us

,d
es

cr
ip

tio
n

A
ut

he
nt

ic
at

io
n

do
A

ut
hU

si
ng

PO
ST

L
og

in
us

in
g

PO
ST

m
et

ho
d

em
ai

l
to

ke
n



352 O. Al-Debagy and P. Martinek

For example, LCOM for Boards microservice was 0.11, which means
this microservice has a cohesive relationship between its operations. It was
calculated as follows:

LCOM = 1− 24

3× 9
≈ 0.11

where 24 refers to the total number of all parameters, 3 is the number
of operations inside the microservice, and 9 is the total number of unique
parameters without repetition. The LCOM value for the other microservices
is zero for Authentication microservice and 0.64 for Tasks microservice. In
order to get the overall LCOM value for the whole application, we need to
calculate the average of LCOM, was calculated like this:

ALCOM =
0.11 + 0 + 0.64

3
= 0.25

The ALCOM value of 0.25 signifies that the application has a good cohesion
among its microservices as well as a high cohesion between its operations,
which means easier maintainability and increased reusability.

3.2 The Service Granularity Metric “SGM”

SGM metric consists of two different measurement metrics in order to mea-
sure the service granularity of a microservices application. These two metrics
are Data Granularity of a Service “DGS” and Functional Granularity of a
Service “FGS”.

First, DGS takes into consideration the size of the input and output data
of a specific microservice and calculates DGS for each operation in the
microservice. The measurement of “DGS” checks if the operations are using
excessive data. Fine-grained and coarse-grained parameters define the whole
idea of DGS metric. DGS is defined as follows:

DGS =
IPR∑n
i=1 FP

+
OPR∑n
i=1CP

(3)

where Input Parameters “IPR” represents the number of input parameters in
an operation, FP is the total number of input parameters in a microservice,
Output Parameters “OPR” is the number of output parameters in an opera-
tion, and CP is the total number of output parameters in a microservice. If the
value of DGS close to 1 it indicates coarse-grained data in the microservice.
While the value of DGS is close to 0 indicates fine-granular data.



A Metrics Framework for Evaluating Microservices Architecture Designs 353

The DGS metric was calculated for the Kanban Board application using
the same data available in Table 2. For example, DGS value for getBoard-
UsingGET operations was 0.57, which indicates that the microservice has a
right granularity level because it is not too fine-grained or too coarse-grained.
In order to get the service granularity metric of the microservice, we need to
calculate the DGS metric for every operation in the microservices application.
The DGS value for getBoardUsingGET operation is calculated as follows:

DGS =
1

5
+

7

19
≈ 0.57

The Functional Granularity of a Service “FGS” metric measures the func-
tional granularity of operations in a microservice. Each operation has a
different level of capability or a different level of logic. The FGS assigns
different weights to each CRUD function (create, read, update, and delete).
These weights depend on the level of data manipulation that the operation
accomplishes; for instance, a create operation has a higher weight than the
other operations because it creates new records in the database. Therefore,
create operations have a weight of 4, update operations have a weight of 3,
delete operations have a weight of 2 and read operations have a weight of
1. In order to measure the functionality granularity of each operation in a
microservice, the FGS metric is defined as follows:

FGS =
OT∑n
i=1O

(4)

where OT is the weight for a specific operation in a microservice, and O
is the summation of all the weights in a specific microservice. For example,
calculating FGS for getBoardUsingGET operation, which is a read operation,
results in a 0.17 score for the FGS metric. This value is the result of dividing
the weight of this read operation, which is 1 by the total weights of all the
operations in the microservice which is equal to 6, which is the addition of
three different operations, two of them are read operations and one is a create
operation. This FGS score was calculated as follows:

FGS = 1/6 ≈ 0.17

Finally, Service Granularity Metric “SGM” measures the overall granularity
of operation based on DGS and FGS metrics for every operation in the
microservices application. SGM was defined as it is presented in Equation
5.

SGM =

n∑
i=1

DGS × FGS (5)



354 O. Al-Debagy and P. Martinek

The SGM metric for Boards microservice of Kanban Board was calculated
as follows:

SGM = (0.54× 0.17) + (0.5× 0.67) + (0.54× 0.17) ≈ 0.49

where the value of the SGM metric for Boards microservice indicates a good
score, because the microservice is not too fine-grained or too coarse-grained,
which means this microservice has a good design.

In order to get the granularity for the whole microservices application, an
average of SGM of all the microservices is considered where SGM is greater
than zero and number of microservices are greater than zero as well, so the
Average Service Granularity Metric is defined as follows, where NS is the
number of microservices:

ASGM =

∑n
i=1 SGM

NS
(6)

where the value of ASGM for the Kanban Boards application,which is
presented in Table 2, can be calculated as follows:

ASGM = (0.25 + 0.2 + 0.49)/3 ≈ 0.31

which shows the overall granularity score for the Kanban Boards application,
which is 0.31, so in this case, it means this application has a good granularity
score.

3.3 Proposed Number of Operations Per Microservice Metric
“NOO”

The number of operations per service is the number of member operations
related to one microservice (see Eq. 7). Similar to the WMC metric [18],
which considers the number of member methods related to a specific class as
a complexity metric, higher number of methods leads to higher complexity.
In the case of microservices, number of operations related to a specific
microservice is the complexity indicator for the microservices application.

NOO =
n∑

i=1

M (7)

where M is the number of operations per service. The higher the number of
this metric, the more error the application may produce.



A Metrics Framework for Evaluating Microservices Architecture Designs 355

In Table 2, considering Boards microservice as an example, the NOO
value for this microservice is going to be 3 because it has 3 operations, which
they are getBoardUsingGET, saveBoardUsingPOST, and listAllBoardsUs-
ingGET. On the other hand, the Tasks’ microservice NOO value is 9 because
it has 9 operations. This means that Tasks microservice is more complicated
than Boards microservice, which means this can lead Tasks microservice to
produce more errors than Boards microservice.

4 Results and Discussion

In this section of the paper, we present the acquired results from calculating
the metrics scores on five different applications. Two of these applications
are considered small, one of them is medium-sized, and the other two are
large industrial applications. First the Kanban Board application [26]. The
application consisted of three microservices and 13 operations. The applica-
tion is a sample application written in Java; it allows users to create Kanban
boards and tasks. Second, The Money Application [27], which is a simple
money transfer application gives the ability to its users to create and view
banking accounts and transfer money between them. Third, Galileo is “an
analytics platform for APIs, Microservices, and Serverless Software” [28].
Fourth, PayPal [29] is a platform that enables users to facilitate payments
between customers using online transfer.

Fifth, Amazon Web Services [30] is a cloud services provider platform
offers multiple services for its users, such as content delivery networks,
database storage, computational power, and others. The data for the experi-
ments were collected from the APIs of the previously mentioned applications.
These data were the operations of each microservice, the type of these
operations were POST, PUT, DELETE, or GET, the number of parameters
of these operations, and the number of microservices for each application.

A descriptive statistics table of the metrics for all the tested applications
is presented in Table 3, which shows some interesting points regarding the
metrics. For example, LCOM values are affected by the number of operations
and the number of microservices in the application, so it means that this
metric is affected by the size of the application or the complexity. For
instance, maximum values for LCOM metric in the small and medium-sized
applications are ranged from 0.48 to 0.68, while the maximum values of this
metric in the big applications ranged from 0.88 to 0.89. This can show some
relation between NOO and LCOM metric, which means big applications
tend to be less cohesive than smaller applications. On the contrary, for the



356 O. Al-Debagy and P. Martinek

0

0.1

0.2

0.3

0.4

0.5

0.6

Kanban Money Galileo PayPal AWS

ALOCM ASGM

Figure 2 Comparison between ALCOM and ASGM of all the applications.

SGM metric, the maximum values for this metric range between 0.25 to 0.76
without any clear pattern. This can mean that there is an effect of the number
of parameters that the operations of the microservice have and the type of
these operations on the value of SGM.

Furthermore, some observations regarding the descriptive summary of all
applications in Table 3 were the followings:

– The highest value of metric NOO is 24, which means that the largest
number of operations per microservice is 24.

– LCOM with the lowest value of 0, which may refer to a microservice
with only one operation. Therefore, it has a high cohesion because it has
a single operation in the microservice.

The final results of these metrics are ANOO, ALCOM, and ASGM, which
are showing the overall value of these metrics for the whole applications.
Table 4 presents these metrics for all the tested applications, where we noticed
that ALCOM ranged from 0.25 to 0.53. For ASGM, the range of these metrics
starts from 0.35 and ends by 0.58. From Table 4, we can see that the size of
the application has an effect on the cohesion between the microservices of
the application. The higher the number of microservices, the less cohesive
the application will be.

Figure 2 presents a comparison between ASGM and ALCOM of all the
five applications, which can show that ALCOM increased when the size
of the applications increased, while ASGM decreased while the size of the



A Metrics Framework for Evaluating Microservices Architecture Designs 357

T
ab

le
3

D
es

cr
ip

tiv
e

su
m

m
ar

y
of

al
lt

he
ap

pl
ic

at
io

ns
an

d
ca

lc
ul

at
ed

va
lu

es
fo

r
al

lm
ic

ro
se

rv
ic

es
of

al
lt

es
te

d
ap

pl
ic

at
io

ns
K

an
ba

n
M

on
ey

G
al

ile
o

Pa
yP

al
A

W
S

A
ll

N
O

O
L

C
O

M
SG

M
N

O
O

L
C

O
M

SG
M

N
O

O
L

C
O

M
SG

M
N

O
O

L
C

O
M

SG
M

N
O

O
L

C
O

M
SG

M
N

O
O

L
C

O
M

SG
M

M
ea

n
4.

33
0.

25
0.

31
2.

75
0.

3
0.

55
4.

5
0.

38
0.

42
7.

13
0.

57
0.

34
6.

35
0.

53
0.

39
5

0.
54

0.
33

M
ed

ia
n

3
0.

11
0.

25
2.

5
0.

36
0.

55
4

0.
41

0.
35

5
0.

52
0.

34
5.

5
0.

58
0.

34
6

0.
5

0.
38

M
in

im
um

1
0

0.
02

1
0

0.
25

1
0

0.
25

1
0

0.
09

1
0

0.
08

1
0

0.
02

M
ax

im
um

9
0.

64
0.

49
5

0.
48

0.
86

8
0.

68
0.

67
21

0.
88

0.
52

24
0.

89
0.

73
24

0.
89

0.
76



358 O. Al-Debagy and P. Martinek

Table 4 All the metrics values of overall metrics
ALCOM ASGM ANOO # of microservice

Kanban 0.25 0.43 4.33 3
Money 0.3 0.58 2.75 4
Galileo 0.38 0.39 4.5 8
PayPal 0.57 0.35 7.13 15
AWS 0.53 0.39 6.35 52

Figure 3 Histogram of all NOO values.

application increased. Hence, there was a clear relationship between the size
of the application and its cohesiveness, while there was no clear connection
between the size and granularity of the application.

Figure 3 shows that most microservices have a small number of opera-
tions ranges between 1–10. Most microservices seem to be simple in terms
of the number of operations, which means it will provide specific abstraction
and functionality. The largest microservice has 24 operations, which is a part
of the AWS application, and it is the largest application in terms of size that
have been used in this research paper. It has 0.84 LCOM value and 0.08 SGM
value, which means too fine-grained and not cohesive design.

A microservice with a high LCOM value tends to have more diverse
functionality compared to a microservices with a low LCOM. A microservice
with high LCOM value mostly refers to a microservice that is trying to
accomplish many different objectives. Therefore, they are prone to be less
predictable than microservices with lower LCOM values. These types of
microservices can produce more errors and can be more difficult in testing, so



A Metrics Framework for Evaluating Microservices Architecture Designs 359

Figure 4 Histogram of all SGM values.

it is better to divide them into multiple, more specific microservices. Accord-
ing to Chidamber and Kemerer [31], “Low cohesion increases complexity,
thereby increasing the likelihood of errors during the development process”.
The LCOM metric can be utilized by developers as a reasonably simple
way to check whether the cohesion principle is followed in the design of
an application and recommend changes, if needed, at an earlier stage in the
design phase.

In Figure 4, a histogram shows the values of the SGM metric of all the
tested microservices applications. Most of the microservices have an SGM
value between 0.2 to 0.29. This is because most of the tested microservices
have been designed according to well-known industrial applications such as
Amazon and PayPal. Also, microservices with a single operation have a 0.25
SGM value, so if these microservices are not included in the results they will
give different results.

5 Analysis

After showing all the acquired results of the tested applications and how
the metrics are affected by different characteristics of these applications, we
need to analyse the results of these tests. First, a scatter plot presenting the
values of metrics LCOM and SGM for all the microservices found in the
five applications to identify the correlation between these metrics and the
number of operations per microservice. In Figure 5, it is clear that there is



360 O. Al-Debagy and P. Martinek

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

NOO Value per Microservice

LOCM

SGM

Figure 5 All metric values for all microservices.

Table 5 Correlation matrix
NOO LCOM SGM

NOO 1
LCOM 0.74 1
SGM −0.65 −0.37 1

a correlation between the metric NOO and the other two metrics LCOM
and SGM. In Table 5, a correlation matrix for all the microservices has been
calculated using the correlation coefficient and it shows that there is a positive
relation between NOO and LCOM, which means that the higher the number
of operations in a microservice, the higher the value of LCOM metric. Hence,
the more complex the application is, the less cohesive it will be. Therefore,
there is a negative relation between cohesiveness and complexity. On the
other hand, the relation between NOO and SGM is negative which means
the higher the number of operations in a microservice is, the lower the value
of SGM will become. Lastly, the correlation between LCOM and SGM is
negative which means the higher value of LCOM the lower the value of
SGM for a microservice. Therefore, granularity and cohesiveness are related
to each other, see Table 5.

In another experiment, removing the microservices with a single oper-
ation from the measured cases shows a different correlation between the
metrics, for example, the negative relation between SGM and LCOM was



A Metrics Framework for Evaluating Microservices Architecture Designs 361

Table 6 Correlation matrix of all metric values without single operation microservices
NOO LCOM SGM

NOO 1
LCOM 0.72517413 1
SGM −0.814979 −0.7490485 1

Table 7 Correlation matrix for all the microservices applications
ANOO ALCOM ASGM

ANOO 1
ALCOM 0.89 1
ASGM −0.69 −0.30 1

more apparent compared to the results that include all the tested microser-
vices. Table 6 shows the correlation between all the microservices without
including the results of microservices with a single operation because these
types of microservices can be considered as outliers.

Additionally, another correlation matrix among the values of the overall
microservices applications of this paper is presented in Table 7. It shows
that the correlation between the overall metrics is similar to the correlation
between the metrics of the individual microservices in each application.

In order to find the optimal scale for these metrics, density distribution
was used with the values of all metrics reading from every 82 microservices
of 5 different applications. For example, LCOM metrics range between 0
to 0.8, 17 microservices were with metrics values between 0.5 to 0.59, 18
microservices were calculated with 0.6 to 0.69 and 10 microservices with
values between 0 to 0.09, as it is shown in Figure 6. Based on that, a
microservice with 0.8 and higher LCOM and consisting of more than 10
operations needs to be divided into more microservices because this type of
microservices probably tends to be more error-prone.

The optimal scale for the SGM metric was also defined. A density dis-
tribution was applied using all the readings from 82 different microservices.
28 microservices were between 0.2 to 0.29 for the SGM metric, 11 for both
values between 0.4 to 0.49 and 0.5 to 0.59, and values between 0.3 to 0.39
were found in 10 microservices, as it is shown in Figure 7. Therefore, the
optimal range for this metric ranges from 0.2 to 0.6 for the SGM metric.



362 O. Al-Debagy and P. Martinek

Figure 6 Density distribution of LCOM.

Figure 7 Density distribution of SGM.

6 Validation

This section includes the validation process of these metrics using Weyuker’s
properties [32]. These properties are widely used and well-known in terms of
validating software metrics [20, 33–36]. Many researchers use these proper-
ties to validate object-oriented software metrics. In this research paper, there
is a version of the same properties but applied to microservices instead of
classes. These properties are:

– Property 1: there are microservices P and Q, also metric m for which
m(P ) 6= m(Q). This means it is not possible for every microservice to
have the same value for a metric.



A Metrics Framework for Evaluating Microservices Architecture Designs 363

– Property 2: there should be a finite number of microservices having an
identical metric score. If c is equal to zero or a positive number, so there
are finite microservices P for which m(P ) = c.

– Property 3: there can be two different microservices with the same
metric value such as m(P ) = m(Q)

– Property 4: if there are two microservices with the same functionality,
that does not mean they have the same metric values, for which m(P ) 6=
m(Q)

– Property 5: for any microservice P and Q, we must have m(P ) ≤
m(P ;Q) and m(Q) ≤ m(Q;P ), this means that the combination of
two microservices cannot have less metric value than one microservice.

– Property 6: for microservices P, Q, and R, if m(P ) = m(Q) that does
not mean m(P ;R) = m(Q;R). This means that the interaction between
microservices can be different depending on the functionality of these
microservices.

– Property 7: “A measure is sensitive to the permutation of classes. This
property requires that permutation of elements within the item being
measured can change the metric value.” [32] This property can be useful
in traditional software design.

– Property 8: renaming a microservice will not affect the metric values.
– Property 9: if two microservices are combined there is a possibility that

their metric value will increase, for which, m(P ) +m(Q) < m(P ;Q).

The 1st, 2nd, 3rd, 4th, 6th, and 8th properties are satisfied by all the
metrics measures because these properties are general in nature; therefore,
these properties are satisfied by many metrics. For example, property 1 states
that not all microservices metrics can have the same value, which is already
true by the results that were obtained. For property 2, there should be a fixed
number of microservices in an application, which is the general case. For
property 3, it is reasonable to have two different microservices with the same
value metric, because large systems have a lot of microservices deployed.
So, it is reasonable to assume that there might be two microservices with
similar operations and parameters. For property 4, it is possible to have two
microservices with same functionality but different metric values.

For property 6, if two microservices have the same metric value, that does
not mean that these two microservices will have the same metric value if there
will be a microservice combined with them.

For the ninth property, using the operations in Table 1, for example,
authentication microservice have only one operation with 1 NOO, 0 LCOM,



364 O. Al-Debagy and P. Martinek

and 0.25 SGM, after adding another operation to the microservice the metric
values become 2 NOO, 0.44 LCOM, and 0.6 SGM. Therefore, the ninth
property is satisfied because combining more operations will increase the
value of the metrics.

For the fifth property, we can use the previous example of the ninth
property. Adding a different operation to the authentication microservice
gives different metrics values, which are 2 NOO, 0.5 LCOM, and 0.44
SGM. These values are higher than the values of the microservice without
combining any other operation to the microservice, and these values are
different from the combination of other operations with the authentication
microservice. Therefore, the fifth property is satisfied by all the metrics too.

Property 7 is not satisfied with the proposed metrics. Because this prop-
erty is related to traditional software design methods, so it is not applicable in
a microservices architecture. This exception has been found in other research
papers [20, 33–36].

7 Conclusion

This research has created and developed a new set of software metrics
for microservices architecture. It proposes software metrics to measure the
granularity, cohesion, and complexity of individual microservices based
on the application programming interface and evaluates different levels of
granularity, cohesion, and complexity using a quantified scale. Using this
quantification allows software developers to evaluate the overall quality met-
rics in microservices application. Also, the relations between the proposed
metrics have been investigated and it was shown that there was a clear
negative relationship between cohesion and complexity. Also, there is another
relation between LCOM and SGM. It appears to be a negative relation. The
granularity metric depends on the number of operations and the number of
attributes in these operations as well as the type of these operations. The
complexity of the microservices applications in this research paper depends
on the number of operations per microservice. Finally, the proposed metrics
were validated using Weyuker’s properties, which are well-known proper-
ties for validating software metrics in object-oriented programs but in this
research paper these properties were modified to apply for microservices
applications. The proposed metrics satisfied all the properties except the 7th

property which could not be applied in a microservices environment.
In conclusion, it was defined that the value of the LCOM metric for a

microservice needs to be between 0 and 0.8 with less than 10 operations



A Metrics Framework for Evaluating Microservices Architecture Designs 365

per microservice. If the value of LCOM is higher than 0.8 and NOO value
is higher than 10, this microservice needs to be decomposed into multiple
microservices. Also, the value for SGM metric needs to be between 0.2 and
0.6, because we do not need too fine-grained or too coarse-grained microser-
vices that leads to exhausting the resources of the system. Too fine-grained
microservices can be identified when having a high value of NOO, usually
higher than 10, and having a low value of SGM, usually lower than 0.2.

References

[1] R. Chen, S. Li, and Z. Li, ‘From Monolith to Microservices:
A Dataflow-Driven Approach’, in 2017 24th Asia-Pacific Software
Engineering Conference (APSEC), Dec. 2017, pp. 466–475, doi:
10.1109/APSEC.2017.53.

[2] P. D. Francesco, I. Malavolta, and P. Lago, ‘Research on Architecting
Microservices: Trends, Focus, and Potential for Industrial Adoption’, in
2017 IEEE International Conference on Software Architecture (ICSA),
Apr. 2017, pp. 21–30, doi: 10.1109/ICSA.2017.24.

[3] D. Kansal, T. Aher, and R. K. Joshi, ‘Sensitivity and Monotonicity in
Class Cohesion Metrics’, in Proceedings of the 12th Innovations on
Software Engineering Conference (formerly known as India Software
Engineering Conference) – ISEC’19, Pune, India, 2019, pp. 1–5, doi:
10.1145/3299771.3299794.

[4] A. AbuHassan and M. Alshayeb, ‘A metrics suite for UML model
stability’, Softw. Syst. Model., vol. 18, no. 1, pp. 557–583, Feb. 2019,
doi: 10.1007/s10270-016-0573-6.

[5] S. Newman, Building microservices: designing fine-grained systems,
First Edition. Beijing Sebastopol, CA: O’Reilly Media, 2015.

[6] D. Shadija, M. Rezai, and R. Hill, ‘Microservices: Granularity vs.
Performance’, in Companion Proceedings of the10th International Con-
ference on Utility and Cloud Computing - UCC ’17 Companion, Austin,
Texas, USA, 2017, pp. 215–220, doi: 10.1145/3147234.3148093.

[7] N. Kaur, A. Negi, and H. Singh, ‘Object Oriented Dynamic Coupling
and Cohesion Metrics: A Review’, in Proceedings of 2nd International
Conference on Communication, Computing and Networking, 2019, pp.
861–869.

[8] M. Glöckner, A. Ludwig, and B. Franczyk, ‘How low Should You Go? –
Conceptualization of the Service Granularity Framework’, in ECIS,
2016.



366 O. Al-Debagy and P. Martinek

[9] M. P. Papazoglou and W.-J. V. D. Heuvel, ‘Service-Oriented Design and
Development Methodology’, Int J Web Eng Technol, vol. 2, no. 4, pp.
412–442, Jul. 2006, doi: 10.1504/IJWET.2006.010423.

[10] J. Bogner, S. Wagner, and A. Zimmermann, ‘Automatically measuring
the maintainability of service- and microservice-based systems: a lit-
erature review’, in Proceedings of the 27th International Workshop on
Software Measurement and 12th International Conference on Software
Process and Product Measurement on - IWSM Mensura ’17, Gothen-
burg, Sweden, 2017, pp. 107–115, doi: 10.1145/3143434.3143443.

[11] A. A. M. Elhag and R. Mohamad, ‘Metrics for evaluating the qual-
ity of service-oriented design’, in 2014 8th. Malaysian Software
Engineering Conference (MySEC), Sep. 2014, pp. 154–159, doi:
10.1109/MySec.2014.6986006.

[12] M. Perepletchikov, C. Ryan, and K. Frampton, ‘Cohesion Metrics for
Predicting Maintainability of Service-Oriented Software’, in Seventh
International Conference on Quality Software (QSIC 2007), Oct. 2007,
pp. 328–335, doi: 10.1109/QSIC.2007.4385516.

[13] L. C. Briand, S. Morasca, V. R. Basili, Inputr, E-E, and Outputr,
‘Property-based Software Engineering Measurement 2 . Basic Defini-
tions Definition 1: Representation of Systems and Modules’, 1996.

[14] D. Athanasopoulos, A. V. Zarras, G. Miskos, V. Issarny, and P. Vas-
siliadis, ‘Cohesion-Driven Decomposition of Service Interfaces without
Access to Source Code’, IEEE Trans. Serv. Comput., vol. 8, no. 4, pp.
550–562, Jul. 2015, doi: 10.1109/TSC.2014.2310195.

[15] B. Heinrich and S. Zimmermann, ‘GRANULARITY METRICS FOR
IT SERVICES’, p. 19.

[16] S. Alahmari, E. Zaluska, and D. C. D. Roure, ‘A Metrics Framework
for Evaluating SOA Service Granularity’, in 2011 IEEE International
Conference on Services Computing, Jul. 2011, pp. 512–519, doi:
10.1109/SCC.2011.98.

[17] T. Gyimothy, R. Ferenc, and I. Siket, ‘Empirical validation of object-
oriented metrics on open source software for fault prediction’, IEEE
Trans. Softw. Eng., vol. 31, no. 10, pp. 897–910, Oct. 2005, doi:
10.1109/TSE.2005.112.

[18] K. E. Bennin, J. Keung, P. Phannachitta, A. Monden, and S. Men-
sah, ‘MAHAKIL: Diversity Based Oversampling Approach to Allevi-
ate the Class Imbalance Issue in Software Defect Prediction’, IEEE
Trans. Softw. Eng., vol. 44, no. 6, pp. 534–550, Jun. 2018, doi:
10.1109/TSE.2017.2731766.



A Metrics Framework for Evaluating Microservices Architecture Designs 367

[19] A. Ampatzoglou et al., ‘Applying the Single Responsibility Prin-
ciple in Industry: Modularity Benefits and Trade-offs’, in Pro-
ceedings of the Evaluation and Assessment on Software Engineer-
ing - EASE ’19, Copenhagen, Denmark, 2019, pp. 347–352, doi:
10.1145/3319008.3320125.

[20] S. R. Chidamber and C. F. Kemerer, ‘A metrics suite for object oriented
design’, IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, Jun. 1994,
doi: 10.1109/32.295895.

[21] B. Henderson-Sellers, Object-oriented Metrics: Measures of Complex-
ity. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.

[22] J. L. Ordiales Coscia, M. Crasso, C. Mateos, and A. Zunino, ‘Esti-
mating Web Service interface quality through conventional object-
oriented metrics’, CLEI Electron. J., vol. 16, no. 1, Apr. 2013, doi:
10.19153/cleiej.16.1.4.

[23] D. Taibi and K. Systä, ‘From Monolithic Systems to Microservices:
A Decomposition Framework based on Process Mining’:, in Proceed-
ings of the 9th International Conference on Cloud Computing and
Services Science, Heraklion, Crete, Greece, 2019, pp. 153–164, doi:
10.5220/0007755901530164.

[24] W. Jin, T. Liu, Q. Zheng, D. Cui, and Y. Cai, ‘Functionality-Oriented
Microservice Extraction Based on Execution Trace Clustering’, in 2018
IEEE International Conference on Web Services (ICWS), Jul. 2018, pp.
211–218, doi: 10.1109/ICWS.2018.00034.

[25] N. A. V. Santos and A. R. Silva, ‘A Complexity Metric for Microservices
Architecture Migration’, in 2020 IEEE International Conference on
Software Architecture (ICSA), Mar. 2020, pp. 169–178.

[26] C. Richardson, ‘Multi-user Kanban board built using Eventuate, DDD,
microservices, event sourcing, CQRS, and Spring Boot: eventuate-
examples/es-kanban-board’, Jan. 25, 2019. https://github.com/eventuate-
examples/es-kanban-board (accessed Jan. 25, 2019).

[27] C. Richardson, ‘Example code for my building and deploying microser-
vices with event sourcing, CQRS and Docker presentation: cer/event-
sourcing-examples’, Jan. 25, 2019. https://github.com/cer/event-sourc
ing-examples (accessed Jan. 25, 2019).

[28] C. Johnson, ‘Galileo’, ProgrammableWeb, Oct. 12, 2017. https://www.
programmableweb.com/api/galileo-rest-api-v200 (accessed Dec. 29,
2019).

[29] ‘Get Started – PayPal Developer’. https://developer.paypal.com/doc
s/api/overview/ (accessed Jul. 26, 2019).[30] ‘Amazon API Gateway’,

https://github.com/cer/event-sourcing-examples
https://github.com/cer/event-sourcing-examples
https://www.programmableweb.com/api/galileo-rest-api-v200
https://www.programmableweb.com/api/galileo-rest-api-v200
https://developer.paypal.com/docs/api/overview/
https://developer.paypal.com/docs/api/overview/


368 O. Al-Debagy and P. Martinek

Amazon Web Services, Inc. https://aws.amazon.com/api-gateway/
(accessed Jul. 26, 2019).

[30] S. R. Chidamber and C. F. Kemerer, ‘Towards a metrics suite for object
oriented design’, ACM SIGPLAN Not., vol. 26, no. 11, pp. 197–211,
Nov. 1991, doi: 10.1145/118014.117970.

[31] K. P. Srinivasan and T. Devi, ‘Software Metrics Validation Methodolo-
gies in Software Engineering’, Int. J. Softw. Eng. Appl., vol. 5, no. 6,
pp. 87–102, Nov. 2014, doi: 10.5121/ijsea.2014.5606.

[32] Y. Xiang, W. Pan, H. Jiang, Y. Zhu, and H. Li, ‘Measuring Software
Modularity Based on Software Networks’, Entropy, vol. 21, no. 4, p.
344, Apr. 2019, doi: 10.3390/e21040344.

[33] W. Harrison, ‘An entropy-based measure of software complexity’, IEEE
Trans. Softw. Eng., vol. 18, no. 11, pp. 1025–1029, Nov. 1992, doi:
10.1109/32.177371.

[34] Gursaran and G. Roy, ‘On the applicability of Weyuker Property
9 to object-oriented structural inheritance complexity metrics’, IEEE
Trans. Softw. Eng., vol. 27, no. 4, pp. 381–384, Apr. 2001, doi:
10.1109/32.917526.

[35] J. C. Cherniavsky and C. H. Smith, ‘On Weyuker’s axioms for software
complexity measures’, IEEE Trans. Softw. Eng., vol. 17, no. 6, pp. 636–
638, Jun. 1991, doi: 10.1109/32.87287.

Biographies

O. Al-Debagy started pursuing his PhD degree in 2017 at Budapest Uni-
versity of Technology and Economics. He obtained his BSc in Information
Technology from University of Kurdistan – Hewler in 2012. Then he got
his MSc in Information Systems Engineering from Cyprus International
University in 2015. He has an extended experience in web development
and technologies. Also, he was an assistant lecturer at the Lebanese French
University from 2015 until 2016. Furthermore, he worked as a web developer

https://aws.amazon.com/api-gateway/


A Metrics Framework for Evaluating Microservices Architecture Designs 369

for USAID/Iraq Governance Strengthening Project from 2016 to 2017.
Nowadays he is finishing his PhD research in microservices decomposition
methods and techniques.

P. Martinek received his B.Sc, M.Sc. and PhD degrees in Computer
Engineering from Budapest University of Technology and Economics,
Hungary. Dr. Martinek is an associate professor at the Department of Elec-
tronics Technology at BME since 2012. He is the recipient of the 2010 IBM
Faculty award. His main research area is Enterprise Application Integra-
tion (EAI), but he also studies production scheduling and optimization of
manufacturing processes by machine learning methods.




	Introduction
	Literature Review
	Proposed Microservices Metrics
	The Lack of Cohesion Metric ``LCOM''
	The Service Granularity Metric ``SGM''
	Proposed Number of Operations Per Microservice Metric ``NOO''

	Results and Discussion
	Analysis
	Validation
	Conclusion

