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Industrial efficiency is important for the development of regional 
economic policies. Based on a network data envelopment analysis 
(DEA) methodology which considered undesirable outputs and links 
between sub-processes, we studied the overall industrial efficiency, 
pollution governance efficiency and industrial production efficiency of 
China's largest five urban agglomerations (Beijing-Tianjin-Hebei, Yang­
tze River Delta, Middle Reaches of Yangtze River, Pearl River Delta, and 
Chengdu-Chongqing) during 2000-2014. Our results show that: 

1) The overall industrial efficiency grows in a wave form. Yangtze 
River Delta and Beijing-Tianjin-Hebei occupy the highest two po­
sitions in overall industrial efficiency. Environmental governance 
in Pearl River Delta is the most effective. Both overall industrial 
efficiency and environmental governance efficiency in Chengdu­
Chongqing are at the lowest position. 

2) The poor efficiency of environmental pollution governance is the 
key factor that limits the industrial efficiency of the five urban 
agglomerations. The sources of the inefficiencies of the pollution 
governance sub-process are the inefficiencies of desirable outputs. 

Increasing the efficiency and technical levels of industrial pollu­
tion treatment is an important measure to improve the ecological envi­
ronment of urban areas and the overall industry efficiency, which will 
ultimately promote more sustainable urban economic and environmen­
tal development. 

INTRODUCTION 

According to the Eleventh Five Year Plan of National Economic 
and Social Development of China (March 2006), urban agglomerations 
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are the primary form of urbanization and have a leading role in pro-
moting inter-regional cooperation. It was proposed in the 2010 China 
Development Report that three mega agglomerations, namely Beijing-
Tianjin-Hebei, Yangtze River Delta and Pearl River Delta, would be 
given development priority. The Middle Reaches of the Yangtze River 
and Chengdu-Chongqing agglomerations were also approved by the 
State Council of China in April 2015 and April 2016, respectively. So 
far, there are five major urban agglomerations. Statistics indicate that 
between 2000 and 2014, the total gross regional product (GRP) of the top 
five urban agglomerations (TFUA) has increased to 5.9 trillion renminbi 
(RMB) yuan, growing at an annual average rate of 1.3% and account-
ing for 53% of China’s GDP in 2014. This indicates that the TFUA are 
increasingly important for economic growth and development.
	 The rapid expansion of urban agglomerations has led to a series of 
unsustainable problems including urban resource shortages and envi-
ronmental pollution. By the end of 2014, the amount of three types of in-
dustrial waste discharge from 91 cities in the TFUA were 9.4, 0.055 and 
0.045 billion tons, respectively, accounting for 48.3%, 34.6% and 36.4% of 
China’s total emissions. The total investment by the TFUA for industrial 
pollution treatment has increased 38.8% from 46.7 billion in 2000 to 64.9 
billion RMB yuan in 2014. As leaders of Chinese economic growth, there 
are questions relating to industrial efficiency and environmental im-
pacts. What is the level of the TFUA’s overall industrial efficiency? How 
are laws of environmental governance efficiency evolving. What are the 
main sources of inefficiency? These questions need to be considered and 
analyzed. Their solutions reflect the practical significance of our study 
and are provided in this chapter.

Literature Review
	 The concept of efficiency comes from physics and can be traced 
to its introduction during the first industrial revolution. Färe et al. in 
1989 explored the evaluation of environmental efficiency [1]. Since then, 
many studies on environmental efficiency emerged and different types 
of evaluation models and methods were introduced [2]. These included 
total factor productivity (TFP), the environmental performance index 
(EEI), life cycle assessments (LCA), stochastic frontier analysis (SFA), 
data envelopment analysis (DEA), sustainable value (SV), among oth-
ers [3-8]. The DEA is a nonparametric method of operations research 
often used to estimate production frontiers and to empirically assess 
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the efficiency of decision making systems. This widely used analysis 
methodology requires neither uniform index dimensions nor advance 
determination of indicator weights, and handles multi-inputs and 
outputs flexibly [9]. To clarify the development tract of DEA efficiency 
evaluation, Table 1 compares common DEA models. 

Traditional DEA methodologies (i.e., the early Chames, Cooper 
and Rhodes model and its extensions) fail to consider undesirable out­
puts in the study of environmental efficiency; therefore, the results tend 
to deviate from the actual values. Numerous researchers and analysts 
have placed undesirable outputs into analytical frameworks to reflect 
the impact of resource and environmental constraints on industrial ef­
ficiency [10-12]. Most of these DEA models were radial and oriented, 
leaving redundant input and output indicators unanalyzed. To this end, 
Zhou et al., and Mahdiloo and Saen used a non-radial DEA method 
to estimate environmental performance [13-14]. Zhao and Song used 
a four-stage DEA technology to eliminate the external environmental 
impacts on efficiency values [15]. Shi combined Banker-Charnes-Cooper 
(BCC) and the stochastic frontier approach (SFA) to propose a three­
stage DEA model, determining that scale inefficiency was the dominant 
factor restraining the control efficiency of industrial wastewater on 
provincial levels in China [16]. Using the modified three-stages boot­
strapped DEA model, Liu et al. determined that governance efficiency 
in Chinese local governments exhibited a "wavy shape" and deterio­
rated [17]. 

Though these studies were non-radial and non-oriented, treat­
ing the evaluated systems as "black boxes," they failed to reflect the 
impact of the intermediate product. The slacks-based measure (SBM) 

Table 1. Evolution of DEA model for environmental efficiency evaluation. 

Consider 
Radial/ Oriented I Consider 

Consider Consider links 
Models undesirable 

Non-radial Non-oriented slacks 
intermediate bet.veen 

outputs l!.rocess [!_rocesses 

Traditional 
N N/A N/A N N N 

DEA 
Radial DEA y Radial Oriented N N N 

Non-radial y Non-radial Non-oriented y N N 
DEA 

Multistage y Non-radial Non-oriented y N N 
DEA 

SBM y Non-radial Non-oriented y y N 

Network DEA y Non-radial Non-oriented y y y 
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approach effectively deals with this problem [18]. Song et al., Hadi-
Vencheh et al., and Lan and Chen applied a SBM model to calculate 
the efficiency of environmental governance [19-21]. Castellet and 
Molinos-Senante emphasized the significant manpower and energy 
cost saving potentials in sewage treatment plants through a weighted 
relaxation measure model [22]. Nevertheless, the links between adja-
cent production processes were often ignored and underestimated the 
efficiency of environmental governance [23]. By dividing the whole 
process of decision making units (DMUs) into several sub-processes, 
the network DEA method produces more accurate results [24,25]. Ac-
cording to Lozano and Gutiérrez, the network DEA method obtains 
reliable results due to its higher discrimination capacity compared to 
one-process DEA methods [26].

Even with identical network structures, there will be a variety of 
network DEA models with varying conclusions that result from vari-
ables evaluated as DMUs and parameter settings (see Table 2). Given 
the limited data available, the existing network DEA literature mainly 
focuses on measuring provincial environmental efficiency, failing to 
distinguish both overall and governance efficiency among urban ag-
glomerations in terms of efficiency level, evolution law, and the main 
sources of inefficiencies. Understanding this is the theoretical signifi-
cance of our study.

Models and Indicators: The Network DEA Model
	 Consider n DMUs, which has K divisions (or sub-processes). In 
division k of DMU i (DMUi), βk desirable outputs yk

i = (y1, y2,…,yβk)  yk
i 

= (y1, y2,…,yβk) ϵ R+βk and yk gk undesirable outputs bk
i = (b1, b2,…,bYk) 

ϵ R+Yk  are produced by using αk inputs xk
i = (x1, x2,…,xαk) ϵ R+

ak. τ(k,h) 
representing both the intermediate outputs of division k and the inter-
mediate inputs of the division h. The number of intermediate products 
is represented by δ(k,h).  According to Tone and Tsutui [18], the possible 
production set of the network DEA {(xk, yk, bk, τ(k,h)} can be described as: 

	 xk ≥ ∑n
t=1 xk

i λ
 k

i (k=1, 2…K)     yk ≥ ∑n
t=1 yk

i λ
 k

i (k=1, 2…K)

	 τ(k,h) = ∑n
i=1 τt

 (k,h)
 λ

 k
t (Ɐ(k,h))   τ(k,h) = ∑n

i=1 τ(k,h)
t λ

 k
t (Ɐ(k,h))	 (1)

	 eλk=1(Ɐk), λk ≥ (Ɐk)

	 where eλk=1(Ɐk) indicates the variable return scale (VRS). 
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Table 2. 
Representative research of environmental efficiency in China based on DEA. 

Models I Methods Research object Key points Ref 

DEAand Environmental pollution There is large redundancy in Guo and 
Conditional control efficiency in pollution control investment of Zheng (2009) 
Generalized Henan province in Henan, which has a declining scale [27] 
Minimum 2000-2007 return. 
Variance Method 
Four-stages DEA Environmental The overall efficiency of the central Zhao and Song 
and governance efficiency of and eastern was significantly better (2013) [15] 
Bootstrap-DEA China in 2010 than the west, and the western scale 
model efficiency is better. 
NetworkDEA Industrial governance Environmental technology efficiency Song eta!. 
and the two-sided efficiency in 1998-20 I 0 measured by traditional method (2013) [19] 
panel Tobit model in China underestimates the environmental 

governance efficiency. 
BCC and Tobit Environmental The local government's efficiency is Zhang and Li 
model governance efficiency of very low; Fiscal decentralization and (2014) [28] 

China in 2003-2010 public awareness have significant 
negative impact on environmental 
treatment efficiency. 

Three-stage DEA Treatment efficiency of The Treatment efficiency of Tone (2001) 
model industrial water pollution industrial water pollution is only [29] 

of China in 2012 0.682, and the scale inefficiency is 
the essential element to hinder the 
improvement of treatment 
efficiency. 

ISBM model and Ecological management The changes in technical progress Hou (2015) 
ISBM-Luenberger efficiency in China from and scale efficiency were the main 
productivity index 2003 to 2012 driver for China's ecological 

management TFP changes. 
Network DEA Industrial production Industrial production efficiency is Wang and Luo 
based on RAM efficiency and higher than environmental (2015) [30] 
model environmental governance efficiency. The 

governance efficiency in insufficiency and inefficiency of 
China from 2001 to 2010 investment in pollution treatment is 

the main reason that resulting in low 
environmental governance 
efficiency. 

Super-SBM Efficiency of air pollution There are small differences in Lan and Chen 
model abatement in China efficiency of air pollution abatement (2015) [21] 

between 2002 and 2011 between provinces. 

Modified DEA Environmental spending There seems more efficiency loss Liu et al. 
efficiency of 29 provinces after excluding the exogenous and (2016) [17] 
from China in 2007-2013 random factors, and efficiency score 

appears wave shape in the time 
period and is being worsen. 

Super Efficiency of industrial air The overall treatment efficiency of Fan and Jiang 
DEA-Malmquist pollution treatment in industrial air pollution is not high. (2016) [31] 
model China during 2006-2013 Input redundancy and output 

insufficient exist at the same time in 
industrial sectors. 
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	 Equation 1 becomes the constant return scale if this constraint 
is neglected. In addition, there are always two types of links between 
two divisions. First, the free link (the connection can be disposed freely 
while maintaining the cohesion between the inputs and outputs) with 
the equation expressed as:

	 τ(k,h) λh = τ(k,h) λk (Ɐ(k,h))  			  (2)

Second, the fixed links (the connections remain unchanged) with the 
formula expressed as:

	 τo
(k,h) = τ(k,h)λh, τo

(k,h) = τ(k,h)λk (Ɐ(k,h))	  (3)

	 where the subscript o means “overall.”

	 In accordance with the majority of relative literature, the free link 
is considered in the current study. Then, the network DEA model con-
taining undesirable outputs can be formulated as:

		  1 - ∑k
k=1 pk[(1/αk) ∑αx

α=1 sk-
αo/xk

αo]
θ* = Min.	 ——————————————————————	 (4)
		  λ

k
,s

k-
α,s

k+
β,s

k-
γ   1 - ∑k

k=1 pk[1/( βk + γk)]∑βx
β=1

		  (sk+
βo/yk

βo)+∑yx
y=1(sk-

yo/bk
yo)

	 xk
αo = xk

αoλ
k + sk-

αo
	 yk

βo = yk
βoλ

k - sk+
βo

	 bk
γo = bk

γoλ
k + sk-

γo
	 epk = 1, eλ k = 1, pk ≥ 0, λk ≥ 0, sk-

αo ≥ 0, sk+
βo ≥ 0, sk-

γo ≥ 0 (Ɐk)   

	 where sk-
αo, sk+

βo, sk-
γo represent the slack vectors of inputs, desir-

able outputs and undesirable outputs respectively.

	 The objective function θ* equals the unit when all of the slack 
variables are zero, indicating the most effective state of the DMU. The 
parameter pk is the weight of division k, for the simplest situation, sup-
posing pk=1/K, implying the uniform weights of all divisions.
	 Further, we have

	 xk
 = (xk

1, xk
2, …, xk

n) ϵ Rα
k
xn

	 yk
 = (yk

1, yk
2, …, yk

n) ϵ Rβ
k
xn    

	 bk
 = (bk

1, bk
2, …, bk

n) ϵ Rγ
k
xn		  (5)
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Equation (4) can be solved by being transformed to linear programming 
according to Charnes and Cooper [32]. 

Models and Indicators:
The Decomposition of Industrial Inefficiency
	 Based on the non-radial and non-oriented network DEA model 
above, we can obtain the efficiency of the overall industry and the divi-
sions by using the input-output slack as follows:

		 1 - ∑k
k=1 pk[(1/αk) ∑αx

α=1 sk-*
αo/xk

αo]
 θo

  =		  ———————————————————
		  1 - ∑k

k=1 pk[1/( βk + γk)]∑βk
β=1 

		  (sk+*
βo/yk

βo)+∑yx
y=1(sk-*

yo/bk
yo) 

		  1 – (1/αk) ∑αk
a=1 (sk-*

αo/xk
αo)

 θo
  =		—————————————————————————————	(Ɐk)	 (6) 

		 1 + [1/( βk + γk)] [∑βk
β =1 (sk+*

βo/yk
βo) + ∑yx

y=1(sk-*
yo/bk

yo)]    

	 where sk-*
αo, sk+*

βo, sk-*
yo represents the optimal solution resulting 

from Equation (4).

Furthermore, the inefficiency can be decomposed in reference to Cooper 
et al. [33] as:

Input inefficiency θx
  = 1/αk [∑αk

a=1 (xk
αo-sk-*

αo)/ xk
αo]	  (7) 

Desirable output inefficiency θy
  = [1/βk [∑βk

β=1 (yk
βo+sk+*

βo)/yk
βo]] -1

		  (8)

Undesirable output inefficiency θb= [1/γk [∑γk
γ =1 (bk

γo+sk-*
γo)/bk

γo]] -1 
		  (9)

	 In Equations (7, 8 and 9), the smaller the value of θx, θy, θb, the low-
er the efficiency of inputs and outputs. θx, θy, θb will reach the maximum 
value of 1 when sk-*

αo, sk+*
βo, sk-*

yo  equals zero, which indicates that the 
input-output is the most efficient.

Indicators Design
	 Consider the industrial efficiency of a two-stage production shown 
in Figure 1.
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Figure 1. The two-stage industrial process.

	 In the first sub-process (product production), utilizing the input 
variables including labor Lp (represented by employment population of 
industry), capital K (represented by average annual net value of fixed 
assets, converted to year 2000 constant price according to the price in-
dex of fixed assets) and energy E (consumption of industrial energy), 
we obtain desirable output Y (gross industrial output, converted to year 
2000 constant price according to the price index of industrial producer), 
and undesirable outputs (emissions of industrial wastewater Wp, indus-
trial sulfur dioxide Sc, soot and dust Fp).
	 In the second sub-process (pollution treatment), input variables 
contain environmental protection staff Lc (the employment population 
of water conservancy, environment, and public management as proxy 
variables), investment in industrial pollution control I, and technology 
innovation in pollution control T (represented by scientific operating 
expenditure). Variables I and T were both converted to 2000 constant 
prices according to the industrial producer’s price index. Only desirable 
outputs such as the amount of industrial wastewater treatment Wc, the 
removal of industrial sulfur dioxide Sc, the removal of industrial soot 
and dust Fc, urban green coverage area Ga, and the coverage rate Gr are 
considered. There is no undesirable output during this process.
	 As the keystone of this study is the industrial efficiency of 91 prefec-
ture level cities in the TFUA (see Table 3), the industrial data of those cities 
in 2000-2014 are selected as the research sample. Data are mainly derived 
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Table 3. List of the 91 prefecture level cities in the TFUA. 

Urban 
Agglomerations 

Beijing· Tianjin-Hebei 

Yangtze River Delta 

Middle Reaches of 
Yangtze River 

Pearl River Delta 

Chengdu-Chongqing 

Cities 

Beijing, Tianjin, Shijiazhuang, Tangshan, Qinhuangdao, Handan, Xingtai, Baoding, 
Zhangjiakou, Chengde, Cangzhou, Langfang and Hengshui. 

Shanghai, Nanjing, Wuxi, Xuzhou, Changzhou, Suzhou, Nantong, Lianyungang, 
Huai'an, Yancheng, Yangzhou, Zhenjiang, Taizhou4, Suqian, Hangzhou, Ningbo, 
Wenzhou, Jiaxing, Huzhou, Shaoxing, Jinhua, Quzhou, Zhoushan, Taizhou2, Lishui, 
Hefei, Wuhu, Huainan, Ma'anshan and Chuzhou. 

Wuhan, Huangshi, Yichang, Ezhou, Jingmen, Xiaogan, Jingzhou, Huanggang, 
Xianning, Changsha, Zhuzhou, Xiangtan, Hengyang, Yueyang, Changde, Yiyang, 
Loudi, Jingdezhen, Jiujiang, Xinyu, Yingtan, Ji'an, Yichun, Fuzhou and Shangrao. 

Guangzhou, Shenzhen, Zhuhai, Foshan, Jiangmen, Zhaoqing, Huizhou, Dongguan 
and Zhongshan. 

Chongqing, Chengdu, Zigong, Deyang, Mianyang, Suining, Neijiang, Leshan, 
Nanchong, Meishan, Guang'an, Dazhou and Ziyang. 

from the 2001-2015 China City Statistical Yearbook, the Statistical Yearbook of 
each city, and the Statistical Bulletin ofNational Economic and Social Develop­

ment. Interpolation is used to deal with the missing data. The statistical 
summary of 15 variables is listed in Table 4. 

During 2000-2014, there existed significant differences among the 
TFUA in gross industrial output, pollution emissions (taking industrial 
so2 emission as an example) and investment in environmental gover­
nance (see Figure 2). 

Figure 2 conveys the following: 

1) Considering relative levels of industrial production for the TFUA, 
pollution emissions and environmental governance investment 
for Beijing-Tianjin-Hebei and Pearl River Delta are ranked highest. 
Yangtze River Delta is ranked second, and the Middle Reaches of 
the Yangtze River rank lowest. 

2) From the level of development, the trends of industrial growth and 
pollution emissions vary. As is shown in Figures 2(a) and 2(b ), the 
gross industrial output between Beijing-Tianjin-Hebei and Pearl 
River Delta is similar, but industrial S02 emissions of the former 
are much higher than the latter. The growth rate of S02 emis­
sions of Middle Reaches of Yangtze River is higher than that of 
Chengdu-Chongqing, although industrial development of the two 
agglomerations is similar. 



26 Strategic Planning for Energy and the Environment 

Table 4. The descriptive statistics of input-output variables. 

Variables Mean Standard Minimum Maximum Count 
Deviation 

Employment population of 24.8 34.0 1.5 279 1,365 
industry (104 people) 

Average annual net value of 377.7 638.2 16.5 5,501 1,365 
urban fixed assets ( 108 RMB 
Yuan) 

Consumption of industrial 1,226.1 1709.2 10.4 15,382 1,365 
energy ( 1 04 tons) 

Gross industrial output ( 1 08 608.8 653.5 52.1 4,716 1,365 
RMB Yuan) 
Emissions of industrial 12,326.3 13,824.2 232.0 91,260 1,365 
wastewater ( 1 04 tons) 

Emissions of industrial sulfur 16.1 2l.l4 0.3 154 1,365 
dioxide ( 1 04 tons) 

Emissions of industrial soot and 184.4 766.4 0.2 17,357 1,365 
dust ( 104 tons) 

Employment population of 0.9 1.2 0.01 10 1,365 
water conservancy, environment 
and public management (104 

people) 

Investment in industrial 6.1 17.2 0.02 178 1,365 
pollution control (108 RMB 
Yuan) 

Scientific operating expenditure 3,337 1,0291 30 75,101 1,365 
(104 RMB Yuan) 

Amount of industrial wastewater 11,208 12,925 57 88,072 1,365 
treatment ( 1 04 tons) 

Removal of industrial sulfur 8.8 16.2 0.0 145.0 1,365 
dioxide ( 1 04 tons) 

Removal of industrial soot and 181.0 765.6 0.1 17,353 1,365 
dust ( 104 tons) 

Urban green coverage area (ha) 5,872.2 9,204.7 16.0 83,729 1,365 

Urban green coverage rate (%) 36.9 9.1 0.4 92.9 1,365 
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3)	 The pollution emissions and investment in pollution control were 
disproportionate. Comparing Figures 2(b) with 2(c), given the 
comparable investment in environmental treatment, SO2 emis-
sions in Pearl River Delta were better controlled when compared 
to Beijing-Tianjin-Hebei. The Middle Reaches of Yangtze River 
produced similar SO2 emissions at a much lower cost when com-
pared with Yangtze River Delta and Pearl River Delta.

RESULTS 

Temporal Differences in Industrial Efficiency
Considering the temporal dimension, industrial efficiency has 

evolved across urban agglomerations (see Figure 3). From 2000 to 
2014, the total industrial efficiency for the TFUA and each agglom-
eration fluctuated within a narrow range. The industrial production 
efficiency showed an increasing trend after rapid development in the 
previous three years while the pollution control efficiency decreased 
sharply at first and then gradually flattened. For most of the 15-year 
period, pollution control efficiency moves between the overall indus-
trial efficiency and industrial production efficiency in the TFUA with 
the exception of the Pearl River Delta. There the pollution control ef-
ficiency is higher than the other two types of efficiencies during almost 
the entire period.

Spatial Differences in Industrial Efficiency
	 Considering the spatial dimension, the distribution of indus-
trial efficiency among the agglomerations is also variable (see Figure 
4). The Yangtze River Delta has the highest overall efficiency, while 
Chengdu-Chongqing has the lowest. The rank of industrial produc-
tion efficiency for five urban agglomerations is similar to that of over-
all efficiency. Pearl River Delta leads in pollution control efficiency, 
followed by Yangtze River Delta and Beijing-Tianjin-Hebei. Chengdu-
Chongqing ranks lowest in overall industrial efficiency and industrial 
production efficiency among the TFUA. The industrial efficiency of 
TFUA is proportionate to their economic development, which is con-
sistent with the conclusions of previous research and shows the reli-
ability of the model described by Equation (4).
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Figure 4.
TFUA industrial and pollution control efficiencies (2000-2014).

	 The spatial difference of industrial efficiency is reflected not only 
within each urban agglomeration but among them. Using Yangtze River 
Delta as an example (see Figure 5), the industrial efficiency for 30 cities 
in this region can be classified as three gradients. 

Figure 5. Comparison of industrial efficiency within Yangtze River Delta 
(2000-2014) decomposition of inefficiency.
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	 Gradient 1—Urban agglomerations with the highest overall and 
sub-process efficiencies above 0.8 which include Shanghai, Hang-
zhou, Wuxi, Suzhou,  Ningbo, Chuzhou and Zhoushan.

	 Gradient 2—Urban agglomerations with moderate efficiencies be-
tween 0.5 and 0.8 which include 10 cities from Shaoxing to Taizhou 
2. 

	 Gradient 3— The remaining urban agglomerations. 

	 The industrial efficiencies and economic levels of these cities are 
commensurate to a degree. While the industrial production efficiency in 
Wenzhou is very high, its pollution control efficiency is only 0.341, so it 
is classified as Gradient 3. Suqian is categorized in Gradient 3 due to its 
low overall efficiency and industrial production efficiency (only about 
0.2), though its pollution control efficiency is high (0.859).
	 To explore the suppression of industrial efficiency, the decomposi-
tion of inefficiency was performed using Equations 7, 8 and 9, and the 
inefficiency in the overall process and the sub-processes was obtained 
(see Table 5).
	 The conclusions derived from the data in Table 5 are interesting. 
For the industrial production sub-process, undesirable output is most 
inefficient, indicating that pollution emissions during this stage have 
not been well controlled. For the pollution control sub-process without 
undesirable output, input efficiency is much higher than efficiency of 
desirable output, which suggests that desirable output (i.e., treatment 
of industrial wastes and urban greening) is inefficient. Finally, affected 
by the pollution control sub-process, the efficiency of desirable output 
through the overall industrial process is substantially lower than input 
efficiency—the lowest among three types of efficiencies. While coun-
terintuitive, this indicates that inefficiency of pollution control is the driving 
force for inefficient industrial productivity.

Further Analysis
By combining Figure 2 with the data from Figures 4 and 5, we can 

better explain the differences and sources of pollution control efficiency 
among urban agglomerations. For example, Figure 2 shows that Beijing-
Tianjin-Hebei and Pearl River Delta have similar industrial develop-
ment and environmental investment, while SO2 emissions in the former 
region are much higher than those in the latter. Intuitively, the pollution 
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Table 5. Industrial inefficiency of urban agglomerations (2000-2014). 

Middle 
Pearl 

TFUA 
Beijing-Tianjin- Yangtze Reaches of 

River 
Chengdu-

Hebei River Delta Yangtze 
Delta 

Chongqing 
River 

Input 
Inefficiency 0.865 0.882 0.877 0.887 0.763 0.854 

Inefficiency of 
Industrial Desirable 

0.996 I 0.997 0.993 I 0.993 
production Output 
sub-process 

Inefficiency of 
Undesirable 

0.546 0.644 0.618 0.562 0.495 0.39 
Output 

Input 
Inefficiency 0.814 0.795 0.826 0.848 0.74 0.799 

Inefficiency of 
Pollution Desirable 

0.31 0.391 0.383 0.283 0.33 0.195 
control Output 

sub-process 

Inefficiency of 
Undesirable - - - - - -Output 

Input 
Inefficiency 0.845 0.845 0.858 0.871 0.763 0.831 

Inefficiency of 
Overall Desirable 

0.338 0.422 0.413 0.312 0.356 0.216 
Industrial Output 
Process 

Inefficiency of 
Undesirable 

0.546 0.644 0.618 0.562 0.495 0.39 
Output 

control in Beijing-Tianjin-Hebei should be less efficient compared to the 
latter, and this is confirmed in Figure 4. 

The industrial pollution emissions in the Middle Reaches of Yangtze 
River are growing faster than those in Chengdu-Chongqing region (see 
Figure 2). While this would suggest lower pollution control efficiency in 
the Middle Reaches, it is higher. The reason may be that the inputs such 
as environmental investment during the pollution control sub-process 
in Middle Reaches of Yangtze River are less than those in Chengdu­
Chongqing agglomeration. The desirable outputs of the Middle Reaches 
region are higher; both input efficiency and output efficiency are shown 
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in Table 5, and hence resulted in greater pollution control efficiency. 
Furthermore, by contrast with Yangtze River Delta and Pearl River 

Delta, Middle Reaches of Yangtze River show large amounts of SO2 
emissions and very low environmental investment (see Figure 2). It 
seems that pollution control in this agglomeration should be more ef-
ficient, which is proved to be contrary to the evidence (see Figure 4). 
This may be due to the fact that desirable outputs, such as treatment of 
industrial wastewater (55.0 million tons) is about half of that in Yangtze 
River Delta (101.4 million tons) and Pearl River Delta (112.9 million 
tons). Industrial soot, dust removal and green coverage are much less 
than the other two regions. This indicates less desirable pollution gov-
ernance and thus the lower pollution control efficiency.

The empirical results indicate that the efficiency of regional pollu-
tion control cannot be accurately modeled by relying solely on either 
industrial pollution emissions or investments in pollution control. By 
combining these indicators with desirable outputs and undesirable out-
puts, more practical environmental decisions are possible.

CONCLUSIONS

In this chapter, the overall industrial process consists of two sub-
stages—industrial production and pollution treatment. By using the 
network DEA model, considering undesirable outputs, and the indus-
trial data of 2000-2014 from the TFUA, the overall industrial efficiency, 
industrial production efficiency and pollution governance efficiency are 
estimated. The evolution trends and spatial differences among urban 
agglomerations are also analyzed. Industrial inefficiency is decomposed 
and calculated using inefficiencies, desirable output inefficiencies and 
undesirable output inefficiencies. The primary difference of pollution 
governance efficiency among urban agglomerations is illustrated.

This study shows that since 2000, the industrial production ef-
ficiency of the TFUA has increased remarkably. However, the overall 
industrial efficiency did not improve substantially due to fluctuations 
in pollution governance efficiency. Among the TFUA, Beijing-Tianjin-
Hebei and Yangtze River Delta were in leading positions in overall 
industrial efficiency and industrial production efficiency, while Pearl 
River Delta has the highest pollution treatment efficiency. Meanwhile, 
all efficiencies in Beijing-Tianjin-Hebei and Middle Reaches of Yangtze 
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River increased steadily, which varies from the TFUA regions. Gener-
ally, there is potential for industrial efficiency to be improved in Middle 
Reaches of Yangtze River and Chengdu-Chongqing compared with 
other urban agglomerations.

It was determined by decomposition of inefficiency that input ef-
ficiency is always higher than desirable output efficiency, either in the 
overall process or in the pollution governance sub-process. The desir-
able output efficiency is lower when insufficient desirable outputs in the 
pollution governance sub-process offsets the desirable outputs in the 
industrial production sub-process. Therefore, raising the level of pollution 
treatment improves the overall industrial efficiency.

Due to the constraints of data availability, this study was limited 
in the selection of industrial input and output indicators. There remain 
questions that need to be analyzed in-depth. For example, what are the 
main factors that affect the efficiency of industrial pollution control? 
During the process of industrial transfer and optimization, how can the 
synergy of environmental policies within an urban agglomeration or 
among urban agglomerations be optimized? We plan to focus on these 
extended problems in our future research.

Note: If there was no special description, all of the mean values men-
tioned in this chapter use the geometric mean to eliminate the influence 
of extreme values.
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