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ABSTRACT 

 The residential sector accounts for large share of total annual en-
ergy use in the Nordic countries due to the extremely cold climates and 
high household heating demand. Most domestic energy consumption in 
the Nordic countries is for space heating and providing hot water. The 
purpose of our study was to forecast the annual energy consumption of 
the Nordic residential sectors by 2020 as a function of socio-economic 
and environmental factors, and to offer a framework for the predictors 
in each country.  
 Our research models the domestic energy use in Nordic countries 
based on social, economic and environmental factors. Applying the mul-
tiple linear regression (MLR), multivariate adaptive regression splines 
(MARS), and the artificial neural network (ANN) analysis methodolo-
gies, three models have been generated for each country in the Nordic 
region. Using these models, we forecasted the Nordic countries domes-
tic energy use by 2020 and assessed the causal links between energy 
consumption and the investigated predictors. The results showed that 
the ANN models have a superior capability of forecasting the domestic 
energy use and specifying the importance of predictors compared to the 
regression models. The models revealed that changes in population, un-
employment rate, work force, urban population, and the amount of CO2 
emissions from the residential sectors can cause significant variations in 
Nordic domestic sector energy use.
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INTRODUCTION 

 Europe’s Nordic countries include Denmark, Finland, Norway, 
Iceland and Sweden.  Due to social perspectives and the desire for 
secure energy supplies, renewable energy utilization has an important 
role in the development of energy policies. According to the Internation-
al Energy Agency (IEA), the Nordic countries were responsible for 186.2 
megatons of annual CO2 emissions during the early 1990s which was 
reduced 17% by 2014. Despite European Union (EU) efforts to decrease 
the CO2 emissions of the Nordic countries, their share has increased by 
0.3%, due mainly to increased emissions by Norway and Iceland. After 
the EU established goals to reduce greenhouse gas emissions that con-
tribute to global warming, the countries approved treaties and adopted 
the EU’s domestic sector policies on sustainable development.
 EU policies recognize that renewable energy and energy efficiency 
are key to lowering fossil fuel dependency and meeting their short-term 
and long-term goals [1-4]. As a consequence of these efforts, IEA and 
World Bank data shows that the share of CO2 emissions from residen-
tial buildings and commercial and public services declined from 13.6% 
in 1990 to 4.2% in 2014. Though fossil fuel prices have declined in the 
recent years, the Nordic countries (except Iceland and Norway) have 
decreased emissions. The Nord Pool, the region’s primary electricity 
market operator, facilitated regional de-carbonization. Renewable ener-
gy technologies (e.g., wind power in Denmark and hydropower in Nor-
way and Sweden) provide abundant supplies of electricity for the Nord 
market. By balancing the market’s generated power, the Nord Pool has 
simplified regional electricity accessibility. The Nordic countries, except 
Denmark, invested heavily in energy-intensive industries. Regardless, 
they have substantially increased their shares of electricity and biomass, 
reduced their shares of industrial and residential sector fossil fuel use 
during the past two decades, and enhanced their economic and energy 
security [5].
 Denmark is one of the world’s leaders in energy efficiency. Based 
on IEA reports, the country has decoupled gross domestic product 
(GDP) from energy consumption and CO2 emissions [1]. Danish wind 
power has a key role in the Nordic electricity market. The country 
invested heavily in electrification due to dependency on renewables, 
particularly wind power. In 2015, Denmark’s share of wind generated 
electricity was 42%—the world’s highest [5]. Denmark consumed 538.8 
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PJ of energy in 2014, and the domestic sector was responsible for 31% of 
total final consumption (TFC) [6].  
 Mean building energy use per person rose by 0.2% per year be-
tween 1990 and 2014 in the Nordic countries. IEA experts explained the 
increase due to growth in the services sector. After approving the EU’s 
Energy Performance of Buildings Directive (EPBD), the Nordic gov-
ernments revised their energy consumption policies for buildings and 
developed new standards and requirements for their residential sectors 
[7]. 
 Denmark’s share of residential and commercial sector total CO2 
emissions declined from 12% in 1990 to 8% in 2014. During this period, 
the shares of renewables and wastes in residential energy consump-
tion increased from 8.4% to 20.2%. Many Danish households are not 
simply power consumers, but also produce electricity using household 
windmills and solar panels [8]. Due to their climatic conditions, Den-
mark’s building energy use has high demand for heating energy [9]. 
The Danish, Finnish, and Swedish governments provide energy system 
flexibility by using combined heat and power (CHP) systems with heat 
storage, a strategy adopted just after the 1973 oil crisis [10]. At that time, 
90% of Denmark’s energy demand was satisfied by imported fossil fuels 
despite the country having substantial North Sea oil and gas reserves. 
Using district heating and implementing energy efficiency measures al-
lowed Denmark to become a net oil exporter [11]. 
 Finland’s total energy consumption in 2014 was 1,027.7 PJ. Finland 
has second highest per capita Nordic energy use after Iceland, which ac-
counts for almost a quarter of the region’s energy consumption. Among 
IEA countries, Finland consumes a median amount of energy [2]. Fin-
land’s industrial sector (particularly the energy-intensive pulp and paper 
industries) accounts for the largest share of its energy use. Finland’s 
domestic energy sector was responsible for 20.6% of TFC in 2014 [12]. 
Between 1990 and 2014, Finnish building floor area increased 40%, energy 
use per m2 increased by 127%, and the county’s per capita total building 
final energy consumption increased by 60% [5].  Finland’s residential sec-
tor share of total CO2 emissions decreased from 12.2% in 1990 to 4% in 
2014, while the share of renewables in its TCF increased 8%. 
 In an effort to comply with carbon-neutral district heating policies, 
a third of Finland’s residential buildings were using district heating by 
2012. The government also encouraged families to live in apartments 
rather than detached houses by pricing the cost of district heating for 



31Summer 2018, Vol. 38, No. 1

detached houses much higher than for apartments [13]. Compactly 
designed apartments and structures consume less heating energy since 
they have lower conductive heat transfer [14]. Finally, increasing urban 
density facilitates the utilization of district heating for residential build-
ings which enhances energy efficiency.
 Iceland has the lowest population among the Nordic countries 
and the lowest total annual energy consumption. However, the country 
has the world’s highest per capita electricity use due to its low popula-
tion density, electricity use by its aluminum industry and its extremely 
cold climate. The total energy use of Iceland in 2014 was 114.6 PJ. The 
shares of its industrial and residential sectors were 51.4% and 13.7% 
respectively [15]. Geothermal energy is used to meet the county’s high 
demand for space heating and electricity generation. Geothermal power 
plants generate more than a quarter of Iceland’s electricity and supply 
almost two-thirds of its primary energy use. About 85% of Iceland’s 
total primary energy supply in 2014 was from indigenous renewable 
resources [16]. Iceland does not belong to the Nord Pool due to the 
distances between Iceland and Norway or Denmark [17]. However, the 
Nord pool supported the Icelandic Electricity Grid (Landsnet) in estab-
lishing a market for electricity based on the use of the Elbas system and 
continuous trading [18].
 The TFC of Norway in 2014 was 842.1 PJ, and the share of its 
residential sector energy use was 19.1% [19]. Due to energy-intensive 
industries and high building heating demand, the country has a high 
per capita electricity use second only to Iceland [20]. While Norway’s 
government attempted to decrease the share of buildings in total CO2 
emissions by 6.3%, the share of renewables in the TCF was relatively 
constant from 1990 to 2013 and declined in 2014. In Norway, 81% of 
residential energy use in 2013 was from electricity. The share of district 
heating in Norwegian energy consumption in 2013 was only 2%. Lack-
ing district heating availability, in 2012 the primary heating source for 
more than 70% of Norwegian households was electricity. There are large 
variations in housing energy composition in Norway. While only 5% of 
households living in Oslo used heat pumps in 2012, the corresponding 
value for Hedmark/Oppland was about 40% [21,22]. 
 The total energy consumption of Sweden was 1,335 PJ in 2014 
and the share of its residential sector was 20.8% [23]. The economy of 
Sweden relies heavily on energy-intensive industries, including steel 
manufacturing, pulp, paper, and heavy vehicle production. The country 
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substantially decreased its industrial and residential sector fossil fuel 
usage while increasing the use of renewables such as biomass and solar 
thermal. The Swedish government has also invested heavily in the nu-
clear energy. The share of its domestic buildings in total CO2 emissions 
declined by 14.7% between 1990 and 2014. The EU’s present policy is to 
decrease the share of nuclear power for electricity generation in Nordic 
countries from 22% in 2013 to 6% by 2050, with Sweden developing low-
carbon energy solutions other than nuclear power after 2030 [5]. A large 
part of final energy consumption in Sweden is used for space heating 
in buildings. In 2013, the energy use for space heating and hot water in 
residential buildings was 11% less than in 2000. This reduction was due 
to the improved energy efficiency of heating appliances, particularly 
heat pumps, and district heating energy intensity [24].
 By 2014, over 21% of total energy consumption in the Nordic coun-
tries was consumed by the residential sectors. However, the domestic 
sector in the EU was responsible for 24% of TFC. Because of the high en-
ergy demand for space heating in the Nordic countries, the correspond-
ing governments were partially successful in applying their domestic 
sector energy efficiency policies [5].
 Assessing residential sector energy trends is more difficult when 
compared to sectors such as transportation and industry. The issues are 
mainly due to the variety of buildings with different characteristics, the 
variable behavior of building occupants, and the lack of comprehen-
sive data sets to model domestic energy use [25]. Understanding the 
detailed characteristics of the domestic sector is essential to clarify the 
interrelated and complex features of end-use energy consumption in 
the Nordic countries. The purpose of our study was to forecast the an-
nual energy consumption of the Nordic residential sector by 2020 as a 
function of socio-economic and environmental factors, and to provide a 
framework for specifying the importance of each country’s predictors. 
Determining factors that influence residential energy consumption is es-
sential for policy-makers to adopt the best ways to lower energy use and 
CO2 emissions. Hence, we discuss the determinants of domestic energy 
use chosen in this study to model residential energy consumption. We 
next introduce statistical methodologies for modeling, including MLR, 
MARS concept and the ANN approach [26]. Based on these methods, 
we generated three models for each country and compared their po-
tential for predicting energy use and understanding the importance of 
investigated predictors.
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Determinants of Domestic Energy Consumption 
Research shows the importance of assessing the factors that affect 

domestic sector energy use and evaluating their interactions [27,28]. 
Policy-makers have recognized many parameters influencing domestic 
end-use energy consumption, which are classified as socio-economic 
factors, dwelling factors and appliance factors. Jones et al. [29] in a com
prehensive literature review introduced these factors (see Figure 1). 

Nwnber of occupants 

Tenure type 

Age of occupants 

Unemployment rate 

Family composition 
Socio-Economical Factors 

Disposable income 
Dwelling Factors 

Dwelling type and age 

Numbers of rooms and floors 
Appliance Factors 

Floor area 

HVACtype 

Appliance use and ownership status 

Power demand of appliances 

Figure 1. Determinants of residential sector energy use. 

Previous studies revealed that there is a direct relationship be
tween energy use, especially electricity use, and residential sector size 
[30-37]. The larger the population, the higher the energy consumption. 
Researchers showed that single occupancy dwellings in Ireland con
sume 19% less electricity weekly compared to two person households 
[36]. In another study, Zhou and Teng found that for every additional 
household member in China, electricity consumption increases by 8% 
[38]. 
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In our study, we used the annual population of Nordic countries as 
a parameter demonstrating the size of the domestic sector. This choice 
was mainly due to the lack of reliable data on the actual number of 
residents in some of the investigated countries. Using annual dwelling 
stock data helped overcome this problem. The population of the Nordic 
countries has risen by 13% (about 3 million) since 1990. The Nordic 
Council reported that during this period the populations of Iceland 
and Norway increased by 28% and 21% respectively. Births overtaking 
deaths and immigration outstripping emigration are the main causes of 
population growth during the last two decades [39]. Table 1 contains the 
population of Nordic countries between 1990 and 2015. 

Table 1. The population of Nordic countries between 1990 and 2015. 

Source: Worldbank.org. 

Country 
Population Population Population Population Population Population 

1990 1995 2000 2005 2010 2015/16 

Sweden 8,558,835 8,826,939 8,872,109 9,029,572 9,378,126 9,798,871 

Denmark 5,140,939 5,233,373 5,339,616 5,419,432 5,547,683 5,676,002 

Finland 4,986,431 5,107,790 5,176,209 5,246,096 5,363,352 5,482,013 

Norway 4,241,473 4,359,184 4,490,967 4,623,291 4,889,252 5,195,921 

Iceland 254,826 267,468 281,205 296,734 318,041 330,823 

Another important social parameter influencing energy consump
tion is the age structure of the population. Some researchers claimed 
that this factor influences both the macro and micro level energy use, 
especially in the transportation and residential sectors [40-46]. Other 
studies evaluated the impact of age structure on total annual C02 emis
sions and residential sector shares [47-51]. These studies emphasized 
the importance of age structure as one of the determinants of energy 
consumption. We evaluated the impact of this parameter on the Nordic 
region's domestic sector end-use energy consumption. We considered 
that people of different ages have different disposable income levels and 
accordingly variable rates of energy consumption. Children and older 
persons use less energy in comparison to mature adults because of dif-
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ferences in their activities. The percentage of people aged between 15 
and 64 was used as an age structure factor in our study. Table 2 shows 
this data from 1990 to 2015. It is important to understand the effects of 
this parameter on the Nordic residential energy use. The Nordic Council 
declared that the ratio of old to young people is increasing due to lower 
birth rates and longer life spans. Nordic countries have among the high
est birth rates among European countries. Finland has the oldest age 
structure and the county's life expectancy has risen to 84 over the last 
two decades. Forecasts predict that more than 8% of the Nordic peoples 
will be over the age of 80 by 2040 [39]. 

Table 2. The share of population aged between 15 and 64 (work force). 

Source: Worldbank.org. 

%of total %of total %of total %of total %of total %of total 
Country labor force labor force labor force labor force labor force labor force 

1990 1995 2000 2005 2010 2015/16 

Sweden 64.3 63.7 64.3 65.3 65.3 62.8 

Denmark 67.4 67.4 66.7 66.1 65.4 64.2 

Finland 67.3 66.8 66.9 66.7 66.4 63.2 

Norway 64.8 64.6 64.8 65.6 66.2 65.7 

Iceland 64.4 64.3 65.1 66.2 66.9 66.0 

Disposable income influences domestic energy consumption. Pre
vious studies showed that disposable income directly impacts electric
ity consumption [33,35,36,52,53]. Leahy and Lyons found that Ireland's 
income elasticity compared to electricity consumption by appliances 
was 4% [36]. Though Nordic countries commonly use district heating 
systems in urban areas, the increase in disposable income may enhance 
the utilization of individual heating facilities in the domestic sector and 
increase the TFC. For Norway and Iceland, this likely results in wider 
use of electricity for heating [5]. Therefore, we used the annual growth 
rate of household disposable income as a determinant of residential en
ergy consumption. 

The level of urbanization is an important determinant of domestic 
energy usage, effectively influencing policies regarding socio-economic 
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progress [43,54-58]. As people migrate from rural to urban areas, they 
engage in urban activities and work for the industrial, commercial or 
service sectors. This initially enhances industrial production and GDP, 
since the migrated people often require new infrastructure which in
creases development. This increases urban energy consumption and 
C02 emissions. Increasing energy use can create urban heat island 
(Uill) effects if offsetting energy efficiency measures are not implement
ed. Muye et al. showed that the migration of rural residents to urban 
areas in China increases emissions since use of biofuels, electricity, coal, 
and liquefied petroleum also increases [59]. People living Nordic coun
tries use district heating and geothermal energy in urban areas which 
has a positive impact on the region's domestic energy use. We evaluated 
the impacts of the percentage of urban population on Nordic residential 
energy consumption. According to the Nordic Council, the population 
growth in the urban and suburban areas was greater than elsewhere. 
During the past two decades, many peripheral areas lost population to 
the cities increasing urbanization [39]. Table 3 provides urban popula
tion percentages for the Nordic countries from 1990 to 2015. 

Among social factors, there is less study on the causes and ef
fects of educational levels on residential energy consumption. Aixiang 
assessed the link between energy consumption, the number of tech
nological scientists, the number of people studying in the tertiary edu
cation level, and the amount of the research and development (R&D) 

Table3. 
Percentages of urban population in Nordic countries (1990 to 2015/16). 

Source: Worldbank.org. 

%of %of %of %of %of %of 
Country urban urban urban urban urban urban 

population population population population population population 
1990 1995 2000 2005 2010 2015/16 

Sweden 83.1 83.8 84.0 84.3 85.1 85.8 

Denmark 84.8 85.0 85.1 85.9 86.8 87.7 

Finland 79.4 81.0 82.2 82.9 83.6 84.2 

Norway 72.0 73.8 76.1 11.5 79.1 80.5 

Iuland 90.8 91.6 92.4 93.0 93.6 94.1 
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funding in China [60]. The results indicated that improving energy 
efficiency in China’s Jiangsu province highly depends on education 
levels and technology. Given the dramatic increase in the percentage 
of Nordic people with tertiary education, the study evaluates the im-
pact on the residential energy consumption.
 Along with the impressive improvement in educational levels 
and population increases over the last two decades, the domestic per 
capita energy use of the Nordic countries was relatively constant. This 
indicates the importance and effectiveness of educational develop-
ment and spending in R&D in these countries. All of the Nordic coun-
tries, except Norway (investing 1.7%), invested more than the 2% EU 
average in R&D [61]. The Nordic Council estimated that 35% to 50% of 
Nordic people aged between 15 and 74 studied at the secondary edu-
cation level and 22% to 34% at the tertiary educational level. Among 
the Nordic countries, Norway and Finland have the most population 
with tertiary education and Denmark has the least [62]. 
 Resident employment status influences end-use energy consump-
tion of households affecting the level of disposable income [29]. Unem-
ployed people with low incomes lack potential to enhance their energy 
consumption. Studies on the relationships between energy consump-
tion and rates of unemployment consistently report that there is no 
significant link between these two factors [63-65]. Nevertheless, we con-
sidered the parameter as one of our independent variables. One of the 
EU targets for labor is an employment rate of 75% for the working age 
group of 15 to 64 by 2020.  It appears that the Nordic countries with the 
exception of Finland can partially meet this target [66]. Table 4 shows 
the unemployment rates between 1991 and 2014.
 The last two determinants of domestic energy consumption con-
sidered in our study involved environmental issues. The link between 
energy use and the first parameter, CO2 emissions, was investigated 
in previous studies which indicated that there is a direct relationship 
between them [56,67,68]. Table 5 shows the percentages of CO2 emis-
sions by the residential sector between 1990 and 2013. As the last pa-
rameter, this study analyses the link between the annual percentage of 
renewables and waste in household energy consumption to clarify how 
the enhancement of the parameter over the last two decades has influ-
enced end-use energy consumption.
 The work’s inspiration comes from Fumo and Biswas, who used 
regression analysis to predict domestic sector energy use [69]. They 
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Table 4. 
The unemployment rate in the Nordic countries (share of total labor forces). 

Source: Worldbank.org. 
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claimed that for bottom-up approaches to developing a model for do
mestic energy use, the statistical methods are more simple and useful in 
comparison to engineering approaches. Among the statistical method
ologies, regression analysis showed a promising potential to model sec
tor energy use. Using statistical approaches, we first predict domestic 
end-use by 2020, and then discuss the importance of the predictors for 
Nordic countries. The number of models and types of methods in our 
study vary. We compare the capabilities of traditional and advanced 
statistical methodologies to model residential sector energy demand in 
the Nordic countries mostly based on the social factors. 

Methodology 
The statistical approaches, including regression, conditional de

mand analysis, and neural network are capable of linking a response 
variable with one or more predictor variables. The response variable in 
this study is residential energy consumption in Nordic countries. All 
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Table 5. 
Percentage of C02 emissions from the Nordic countries residential sector. 

Source: Worldbank.org. 
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of the previously mentioned predictors are defined as continuous vari
ables. 

Using this model, we can estimate domestic sector energy use for 
the Nordic countries. We generated three models for each country based 
on the MLR analysis, MARS concept and the ANN approach [70,71]. 
Forecasting with these methods requires a prediction set, provided with 
another methodology. For this purpose, the additive Holt-Winter (HW) 
algorithm is used. 

Additive Holt-Winter 
The additive HW method is a version of the HW algorithm which 

is capable of forecasting historical data despite trendy behavior [72]. 
The series of formulas are: 
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	 ŷt + ht = Ɩt + hbt + st-m+hm+ 

 Ɩt = α(γt – st-m) + (1- α) (Ɩt-1+bt-1) 

 bt = β* (Ɩt – Ɩt-1) + (1- β*)bt-1

 st =γ(γt – Ɩt-1– bt-1) + (1- γ)st-m

The error correction equations are:

 Ɩt = Ɩt-1+ bt-1 + αet 

 bt= bt-1 + αβ*et

 st = st-m + γet

 et = γt – (Ɩt-1+ bt-1+ st-m) =  γt – ŷtǀt-1

 Where Ɩ is level, b is trend, s is the seasonal component, α, β, and γ 
are smoothing parameters, m is the period of seasonality, e is error, and 
y is the observation [73].

Multiple Linear Regression
 The multiple linear regression (MLR) methodology is one of the 
traditional modeling approaches capable of explaining the variations in 
a response variable using the change in predictors. The MLR models a 
dependent variable as a function of independent factors and estimates the 
regression coefficient for each predictor [70]. The regression coefficients 
represent the value at which the response variable changes when the in-
dependent variables change. The MLR model has the following form:

	 γ = b1x1 + b2x2 +…+ bnxn + c

 In this equation, bi is the regression coefficient. The less the degree 
of variability of the residual values in relation to the overall variability, 
the greater the prediction accuracy model. This ratio is referred as the 
coefficient of determination, named R2, and represents the capability of 
the model in fitting the input data as a function of the target variable. 
The importance value of determinants for the MLR is the t-statistic cor-
responding to the regression coefficient estimate of each independent 
variable [74].

Multivariate Adaptive Regression Spline
 The nonparametric regression technique, MARS, is a form of the 
stepwise linear regression developed by Jerome Friedman in 1991 [75]. 
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The model is much simpler in comparison to other approaches such as 
neural network and random forest. However, the MARS was derived 
from linear regression methodology; it can organize nonlinear links 
between the target and predictors. This methodology has been used by 
other researchers to predict building energy efficiency.
 The MARS is popular for its flexible models and automatically ad-
justing the models to propose the most reasonable interaction between 
the response and dependents. It uses linear basis functions such as (x-t)+ 
and (t-x)– in combination to propose the final equation as a polynomial 
function. The + sign means the MARS only considers the positive part 
of defined linear functions. Therefore,

 (t-x)–  =  {x-t, Ʌx˂t  0, otherwise
 (x-t)+  =  {x-t, Ʌx˃t  0, otherwise

 The variable t represents the knot location of predictor x. The gen-
eral form of a MARS model is,

 γ = f(x) = βo +∑1
i=1 βi h (xi)

 In this equation, hi(x) is a function from set C, containing the 
candidate reflected pairs function. βi is the coefficient estimated with 
standard linear regression. MARS considers the values as weight rep-
resenting the importance of the dependent variables. During forward 
stepwise, the MARS chooses those basis functions from set C which 
effectively reduces the residual error in each step. Then the methodol-
ogy applies a backward procedure to prune the model by eliminating 
basis functions with the smallest increasing effect in the least squares. 
It uses a generalized cross validation (GCV) error function to evaluate 
the goodness of fit, considering the residual error and model complexity 
[74]. The formula for the GCV function is:

 GCV = [∑1
i=1 (γi – f(xi))2] ÷ [1- (1+cd)/I] 2

 For this formula, I is the number of cases in the dataset, d is the de-
gree of freedom, and c is the penalty factor for choosing the basis func-
tions from set C. For all MARS models in our study, the degree of inter-
action is 6, the penalty is 3, and the threshold value is zero. To determine 
the variable importance, we computed the reduction in GCV for each 
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dependent variable added to the model [74]. Then the reductions were 
summed for each corresponding continuous predictor to determine 
their importance. Using this methodology, the dependent variables not 
included in the pruned final model have a zero importance.

Artificial Neural Network
 The artificial neural network (ANN) is a simple modeling ap-
proach often used by policy-makers. An ANN system comprises highly 
interconnected nodes called neurons [71]. For generated optimal net-
works, ANN tools effectively map patterns of input parameters onto 
the patterns of corresponding output variables by training the nodes 
and making them suitable for an alternative series of patterns. When 
the model is generated, the ANN applies the model to a new input pat-
tern to forecast the proper output pattern. Among the various types, this 
study uses a feed forward ANN with a backward propagation learning 
algorithm for training the model. The formula is: 

 bj = f (∑1
i=1 wij αi –Tj)

 For this formula, bj is the output vector, ai is the input vector, wij is 
the weighting between neurons i and j, Tj is the internal threshold, and f 
is a hyperbolic tangent transfer function. To improve the performance of 
the model, the ANN uses the following equations to adjust the thresh-
old values and the weight factors [76].

 Tj
new = Tj

old  + ɳ(∑δpj)+ αΔTj
old

 wij
new = wij

old  + ɳ(∑δpjOpi)+ αΔwij
old

 In these equations, η is the learning rate in the model, α is the 
momentum coefficient of the backward propagation learning algo-
rithm, while ∆T and ∆w	are the previous change of threshold values 
and weight factors. O and p are the outputs and respective patterns. 
We normalized all of each pattern’s data with values between -1 and 1, 
generated the initial weight factor with a random selection between -0.2 
and 0.2, and set threshold values to zero.
 Understanding the importance of variables using ANN is compli-
cated compared to the previous approaches. One of the best solutions to 
this problem is to perform a sensitivity analysis of the model. We used 
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the weight method sensitivity analysis, proposed by Garson, and ap-
plied by Montaño and Palmer to feed forward neural networks [77,78]. 
The formula for this methodology is:

 Qik = [∑L
j=1((wij/∑N

r=1wrj)vjk)] ÷ [∑N
j=1(∑L

j=1 ((wij/∑N
r=1wrj)vjk))]

 In this equation, wij is the connection weight between the input 
neuron i and the hidden neuron j, and vjk is the connection weight be-
tween the hidden neuron j and the output neuron k. Qik is the variable 
importance.
 The overall performance of each model is measured using the coef-
ficient of determination (R2), calculated by:

 R2 = 1 – [∑N
i-1(γi – f(xi)]2 ÷ [∑N

i-1(γi – ӯ)]2

 For this equation, f is the estimated function, y is the observations, 
and N is their quantity.

Denmark
 Performing the forecasting model process, three models were 
generated for Denmark. The ANN model showed superior performance 
in comparison to the other regression methodologies. The R2 of ANN, 
MARS, and MLR was 0.99, 0.8 and 0.61 respectively. Although the ANN 
model estimated that Denmark’s residential energy use will experi-
ence a parabolic trend between 2015 and 2020, the regression models 
showed an approximately constant trend. However, there is a large dif-
ference between the estimated values. Considering that the final energy 
consumption of Denmark’s domestic sector in 2014 was 165,630 Tj, the 
ANN model provides a more reasonable estimate of 2015 energy con-
sumption. Figure 2 shows the forecasted trend of energy use between 
2015 and 2020.
 Research by Williams and Gomes indicated that predictors are 
highly affected by the type of model [74]. Figure 3 shows the weighted 
mean normalized importance of predictors. We used the R2 of each 
model to determine the weighted mean of each predictor. The sensitiv-
ity analysis of Denmark’s neural network model revealed that house-
hold disposable income, share of population aged 15 to 64, unemploy-
ment rate, and share of CO2 emissions in total annual emissions have 
the greatest effects on energy consumption. For the MARS model, the 
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Figure 2. Forecasted trends for energy use (Tj) in Denmark's domestic sector. 

population growth rate had the highest importance; the share of C02 

emissions and the other significant predictors of ANN model ranked in 
the mid-range. The MLR model showed that the growth of population 
and household disposable income have the greatest effects on energy 
use. Hence, the three models agreed that the growth of disposable in
come, unemployment, population growth, and the percentage of people 
aged from 15 to 64, have significant effects on Denmark's residential 
energy use. An elasticity analysis indicted that household disposable in
come, gross enrollment ratio, and the percentage of the population aged 
from 15 to 64 are more effective in comparison to the other parameters 
(see Figure 4). 

Finland 
For Finland, all three models have an acceptable R2. The coeffi

cient of determination for the ANN, MARS, and MLR models was 0.99, 
0.6 and 0.66 respectively. The difference between the R-value of the 
ANN model and the other two models is surprising. The 2014 energy 
consumption of Finland's domestic sector was 212,020 Tj. Among the 
models, the MLR had the most reasonable estimation for 2015, and the 
MARS model predicted the worst one. Based on the ANN and MLR 
forecasts, the energy use in the domestic sector will decline between 
2015 and 2020. This considers that energy use declined between 1991 
and 2014. However, the MARS estimated that the energy consumption 
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would increase slightly during this period. Hence, the MARS method
ology was unable to efficiently forecast Finland's energy use. Figure 5 
shows the estimated values for energy use between 2015 and 2020 for 
Finland's residential sector. 
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Figure 5. Forecasted trends for energy use (Tj) in Finland's domestic sector. 

The MARS performed poorly in regard to determining predictor 
importance. The model revealed that changes in the share of renewables 
has the most effect on domestic sector energy consumption. The ANN 
and MLR models presented conclusive evidence that the parameter 
has an insignificant effect. The two models achieved a consensus on 
the effectiveness of the unemployment rate, the percentage of popula
tion aged 15 to 64, and population growth. The elasticity analysis also 
showed that urban population, age structure, and population growth 
have the most importance. 

Finland's residential sector energy consumption fluctuated widely 
between 1991 and 2014. While energy use dropped 3.9% in 1993, it 
increased 3.6% in 1994. A similar situation also occurred in 2000 and 
2001. Most economists believe that the global economic crisis in 2008 
deeply affected Finland's economy in 2009 and 2010. During this period, 
Finland's residential energy use increased 15% while declining 12.5% 
in 2011. These fluctuations affected the performance of the regression 
models. Alternatively, the elasticity analysis results seem to contrast, 
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since domestic energy use experienced sharp fluctuations, and some 
of the predictors changed gradually over the last two decades. The 
proportion of people aged 15 to 64, as the active people in Finland, has 
gradually declined between 1991 and 2014. At the same time, the total 
population and the urban population increased by 9.5% and 5.9% re-
spectively. Consequently, the age structure in Finland positively effects 
energy consumption, and surprisingly, the growth of total population 
and urban population had a negative effect. 
 There is evidence that in some of the heavily urbanized countries 
(e.g., Ireland, Denmark and the UK), electricity usage from apartments 
and semi-detached houses is much less than for detached houses 
[36,79,80]. The transformation of Finland’s social structure by urban-
ization between 1990 and 2015 created opportunities for people to live 
in more compact quarters such as apartments. During this period, the 
number of attached houses and blocks of flats increased by 248% and 
34% respectively. With the country’s low population density (17 inhab-
itants per km2) and its high demand for space heating, greater urban-
ization combined with increased biomass usage in CHP systems sub-
stantially improved domestic sector energy efficiency. Figure 6 shows 
the weighted average importance of the dependent variables. Figure 7 
shows the elasticity of energy use to the predictors for Finland’s domes-
tic sector.

Iceland
 The three methodologies efficiently modeled the energy consump-
tion in Iceland’s residential sector. The ANN model and MARS model 
had R-values of 0.99, and the value for the MRL model was 0.96. While 
all three models had an equal estimation for energy use in 2015, the 
MARS model predicted an increasing trend for the following years, 
and the ANN and MLR models predicted a nearly constant distribu-
tion for energy use in the following years. The historical data showed 
that domestic energy use increased 46% between 1991 and 2014. Based 
on the MARS forecasting model, energy consumption increases 6.1% 
from 2015 to 2016. This difference between the forecasted values after 
2017 occurred because the MARS model was mistaken in choosing the 
most suitable predictors. Figure 8 shows the forecasted domestic sector 
energy use in Iceland through 2020.
 All of the models agreed on the effectiveness of the percentage of 
urban population and population aged 15 to 64. Figure 9 shows the av-
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Figure 8. Forecasted trends for energy use (Tj) in Iceland's domestic sector. 

erage normalized weighted importance of the dependent variables for 
Iceland. 

The elasticity analysis (see Figure 10) shows that the gross enroll
ment ratio and unemployment rate are insignificant determinants of 
Iceland's domestic energy use; yet based on the MARS model the two 
parameters had the most importance. The MLR and ANN models indi
cated that the residential sector share of total C02 emissions and share 
of renewables in the final energy consumption were significant. How
ever, the two parameters were not used in the MARS proposed model. 

Sweden 

Although the proposed variables efficiently modeled Sweden's 
residential energy use, the forecasted values for energy use by 2020 
offer entirely different trends (see Figure 11). The R-value of the ANN, 
MARS, and MLR models was 0.99, 0.9 and 0.76 respectively. The ANN 
model forecasted declining energy use while the MLR model predicted 
no change for Sweden's residential end-use energy consumption be
tween 2015 and 2020. The MARS model predicted a slightly increasing 
trend for this period. 

There has been some fluctuation in level of Sweden's domestic 
energy consumption during the last two decades. The biggest changes 
occurred in 1996 and 2010, when unemployment rates were very high. 
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In places with high unemployment rates and poor weather conditions, 
people tend to spend more time indoors which increases energy use. 
Figure 12 shows the weighted normal importance of the predictors and 
Figure 13 shows the elasticity of energy use to those predictors. All three 
models, particularly the MARS, indicated the importance of unemploy
ment as a determinant of energy consumption. Nonetheless, the sector 
set a record low for energy use in 2014, consuming 277,710 Tj, the least 
amount in the past two decades. Hence, the fluctuations in historical 
data adversely affected the models, and forecasted predictors with the 
AHW algorithm. This caused Sweden's forecasts to be incorrect. The 
ANN model predicted that Sweden's residential energy consumption 
would decline 61% by 2020, the MARS model forecasted that it would 
increase 20%, and the MLR forecasted that it will be constant. The mod
els represent high R-squares, making judgments about their forecasting 
capabilities seemingly impossible. Regardless, the models achieved 
consensus on the effectiveness of some parameters-age structure, un
employment rate, dwelling stock and C02 emissions from residential 
buildings-and for the others there were differences between their mag
nitudes and ranks. 
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Figure 11. Forecasted trends for energy use (Tj) in Sweden's domestic sector. 
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Norway 
Similar to the previous models, the ANN model had the highest 

performance considering the R2 while the MLR model had the low
est. The R-values for the ANN, MARS and MLR models were 0.91, 0.8 
and 0.58 respectively. The final2014 energy use of Norway's domestic 
sector was 160,606 Tj. Hence, the ANN model, followed by the MARS 
model provided the most reasonable estimate of 2015 energy use. Both 
forecasted similar slightly decreasing trends for energy consumption 
between 2015 and 2020. Figure 14 shows the estimated values of en
ergy consumption in Norway's domestic sector. The historical data also 
show a downward trend in domestic sector per capita energy consump
tion. However, the total energy use of households increased slightly 
between 1991 and 2014, particularly after 2008. Despite the effects of the 
global economic crisis on energy consumption, the number of detached 
houses and farmhouses equipped with heat pumps increased by 18% 
between 2009 and 2014. The increase in the number of detached houses 
and farmhouses during this period adversely affected residential sector 
energy use. The Norway Statistics data show that residents living in 
these houses invested in heat pump technologies. 

The proportion of the population living in Norway's urban areas 
increased 8% between 1991 and 2014. According to the ANN and MARS 
models, variations in urban population have the greatest impact on 
residential energy use (see Figure 15). The elasticity analysis revealed 
that small changes in the age structure, urban population, population 
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Figure 14. Forecasted trends for energy use (Tj) in Norway's domestic sector. 



10
0 

"'
 

90
 

.!!
 

,Q
 ·2 

80
 

~
 

70
 

.... 0 
60

 
~
 !$ 

50
 

! 
40

 

i 3
0 

=
 

=
 2

0 
~
 

~
 

10
 0 

N
on

w
y 

P
op

ul
at

io
n 

G
ro

w
th

 
P

op
ul

at
io

n 
ag

es
 

U
tb

an
 p

op
ul

at
io

n 
G

ro
ss

 e
nr

oh
ne

nt
 

U
ne

m
pl

oy
m

en
t,

 
H

ou
se

ho
ld

 
S

ha
re

 o
f 

S
ha

re
 o

f 
C

0
2

 
(%

) 
15

-6
4 

(%
 o

ft
o1

al
) 

(%
o

f 
to

ta
l)

 
ra

ti
o,

 te
rt

ir
uy

, b
ot

h 
to

ta
l(

%
 o

f t
ot

al
 

D
is

po
sa

bl
e 

R
en

ew
ab

le
s 

in
 

E
m

is
si

on
s(

%
) 

se
xe

s 
("/

o)
 

la
bo

r 
fo

rc
e)

 
In

co
m

e 
G

ro
w

th
 

H
ou

se
ho

ld
 

(%
) 

C
on

su
m

pt
io

n(
%

) 

Pr
ed

ic
to

rs
 

F
ig

u
re

 1
5.

 T
h

e 
m

ea
n

 w
ei

g
h

te
d

 im
p

or
ta

n
ce

 o
f 

p
re

d
ic

to
rs

 fo
r 

N
or

w
ay

's
 m

od
el

s.
 

C1
1 

(X
J 

en
 if ~
 

c;- 'l::J
 f ~- '6- -;
 

t1
:l ;;
 "' <>

il "' § "'- ;;:=
. 

"' t1:
l 

;;
 

<:
l ~- ;;
 " "' it 



59Summer 2018, Vol. 38, No. 1

growth, gross enrollment ratio, and unemployment rates have consid-
erable impacts on residential energy consumption. The elasticity values 
of energy consumption to the predictors are provided in Figure 16. 
These parameters are significant in the ANN and MARS models. The 
two methods efficiently modeled Norway’s residential energy use and 
similarly forecasted energy consumption to 2020. Despite neglecting 
the share of renewables, the predictors have a close importance value in 
both models. Norway’s models were generated using eight predictors, 
since valid data were unavailable for the growth rate of dwelling stocks. 

Discussion
 Three different methodologies were used to model the energy 
use of the Nordic domestic sectors. Among them, the ANN method ef-
ficiently modeled domestic energy use for all of the countries based on 
the investigated predictors. Forecasting energy use by 2020, the ANN 
and MLR models offered similar trends for all of the residential sectors, 
except for Sweden. While showing acceptable performance, the MARS 
model could not reasonably forecast residential sector energy use by 
2020, except for Norway’s domestic sector. The study indicated that the 
MARS is mainly suitable for high input dimensional problems. There is 
a big disadvantage to using these approaches for forecasting energy use. 
They require an additional method (i.e., the AHW) to forecast historical 
data for future years which affects forecasting precision. Precision fore-
casting needs to consider shorter interval data. 
 The main purpose of our study was to determine the effects of so-
cial and environmental factors on energy use. To this end, we conducted 
the forecasting analysis mainly to validate the results of models and 
evaluate their potential to model residential sector energy consumption. 
The models revealed that changes in some of the investigated factors 
(total population growth rate, unemployment rate, age structure, urban 
population, and the share of CO2 emissions from the residential build-
ings) have significant effects on annual residential energy use. Over 
the past two decades the population of the Nordic countries increased 
by 13.3%. Most of this growth occurred in the urban areas. The gov-
ernments further developed urban areas, enhancing dwelling stocks, 
especially apartments and attached houses. Since the Nordic countries 
commonly use CHP systems to meet their heating requirements, urban 
development policies effectively impact changes in residential sector 
energy use. Compact apartments and attached houses using CHP and 
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geothermal systems are typically more energy efficient than detached 
houses.  
 In the past, the Nordic countries were heavily dependent on im-
ported fossil fuels for their transportation systems and energy intensive 
industries. Their share of fossil fuels in residential end-use energy con-
sumption was relatively high. This was a direct cause of energy supply 
problems faced by the countries after the oil crisis in 1973. Afterwards, 
they heavily invested in renewable energy technologies. Sweden and 
Denmark have established leadership roles in sustainable energy sys-
tems. According to the IEA in 2013, the share of renewables in the final 
energy consumption of Sweden was greater than 33%. Historical data 
offer the following for the period between 1991 and 2014:

• Denmark’s residential sector relies heavily on solid biofuels and 
solar thermal energy; their shares have increased.

• Finland’s domestic sector uses resources similar to Denmark. Since 
the Danes live in lower latitudes and have greater solar resources, 
they have 8.4 times as much solar thermal infrastructure. 

• Swedish households also use primary solid biofuels, biogases and 
solar thermal. 

• The share of renewables in the domestic sectors of Iceland and 
Norway have declined during this period. Iceland uses geother-
mal resources for primary energy which generated consistent 
power until 2013 and declined afterwards. Norway’s domestic 
sector relies on renewable resources including solid biofuels and 
hydro-electricity for heating demand. Energy supply systems 
must rely on multiple resources to maintain resiliency. Norway 
and Iceland need new renewable resources to respond to their 
large residential sector energy demand.

 Promoting policies for more compact cities with carbon-free ener-
gy systems supports the objectives of improved energy security, health, 
economic development and sustainability in Nordic countries. There 
are strong arguments to phase out nuclear power plants, particularly in 
Sweden. The overall mean weighted normalized importance of popula-
tion growth and share of urban population indicate the importance of 
these relationships.
 While past studies showed that unemployment rates are not sig-
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nificant, ours shows that this parameter effectively and indirectly influ-
ences residential energy consumption in some Nordic countries [63-65]. 
We also found a close relationship between energy use in residential 
energy consumption and age structures in Nordic countries. This means 
Nordic countries with young populations need to invest more in resi-
dential sector energy efficiency and renewable energy. The rapid growth 
of young populations affects unemployment rates by increasing the 
size of the labor force. The results showed that the other independent 
variables are less important in the proposed models. Table 6 provides a 
summary of the importance of variables in different categories.

CONCLUSIONS

 This study forecasted domestic sector end-use energy consumption 
in Nordic countries by 2020, investigating the causal links among energy 
consumption, total population growth, urban population growth, age 
structure, education level, unemployment rate, dwelling stock, share of 
CO2 emission, and the share of renewable energies in domestic sectors. 
Time variations of these parameters is mainly due to changes in the hu-
man development index (HDI), developing the economy and urban ar-
eas, and the level of investment in renewable and sustainable energies.
 The three models offer good performance when considering their 
R2, led by the ANN, followed by MARS, and finally the MLR model. 
Recently developed models like the ANN and MARS provided better 
performance than the traditional MLR. Although Fumo and Biswas 
[69] indicated on the performance of statistical approaches, our study 
revealed that by using these methods, it is difficult to obtain accurate 
predictions of Nordic domestic sector energy consumption because of 
the following reasons:

• The MLR approach only looks for the linear relationship between 
the dependent variable and predictors. Using quantile regression 
might provide a better solution for this problem in future studies. 

• Another factor limiting the performance of the MLR is the assump-
tion of the predictors being completely independent variables. 
While there are close relationships between most of the predictors 
in this study, the results also showed that using multilevel models 
like the ANN may enhance prediction accuracy.
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Table 6. Importance of investigated predictors in different models and countries. 
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• Though the MARS method makes no assumptions about the types 
of relationships between domestic energy use and predictors, this 
method (like the MLR) assumes no link between predictors in the 
corresponding model. 

• The ANN method is a data-driven approach and needs no as-
sumptions regarding the type and form of model. The methodolo-
gy has disadvantages. Despite its impressive performance for pre-
diction, it is difficult to interpret the generated model. The model 
is susceptible to over-training, which may cause instability in the 
obtained results. Accurate forecasting with the ANN requires a 
thorough understanding of the model. Using artificial intelligence 
networks is recommended for future studies.

 Regardless of these drawbacks, our study revealed interesting infor-
mation about the determinants of domestic energy use in Nordic coun-
tries. Despite the view of previous works about the effects of unemploy-
ment rates on domestic energy use, the sensitivity analysis showed that 
the parameter had a large effect on Nordic residential energy consump-
tion between 1990 and 2014. The other important determinant is the share 
of residential sector CO2 emissions. Except for Denmark, this factor has 
a key role in the models generated for Nordic countries. The other three 
major predictors are population growth, proportion of population in ur-
ban areas, and the share of people aged from 15 to 64 (work force). In 
most of the generated models, the work force parameter and the unem-
ployment rates had similar normalized importance, led by the second, 
which demonstrates a close relationship between the two parameters. 
 The proportion of populations living in urban areas is a primary 
determinant of domestic energy use in Nordic countries. High regional 
heating demand and the use of district heating and geothermal energy 
enhances the importance of concentrating populations in Nordic countries. 
Using energy-efficient boilers in combination with inexpensive carbon-
free energy in district heating systems has improved energy efficiency in 
the Nordic domestic sector during the last two decades. 
 The Nordic governments should heavily invest in residential 
infrastructure to accommodate an additional 3.9 million residents by 
2050, plus further develop urban areas, district heating systems, and 
geothermal technologies to maintain or improve levels of energy. The 
issue raises an alarm for country’s like Norway with little investment in 
district heating systems during the last two decades.  Electricity is not 
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the best future energy source for heating in Norway. A better option is 
for these countries to invest in small and medium CHP systems, espe-
cially in rural areas. Larger cities should enhance the capacity of large 
CHP and district heating systems, since these systems are more energy-
efficient and environmentally friendly for Nordic climates.
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