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ABSTRACT

	 Companies venturing into the cellulosic biofuels business will be 
required to make portfolio decisions based on feedstock availability 
and variations in biomass supplies. Fundamental differences exist in 
biomass supplies for first-generation corn ethanol and second-gener-
ation cellulosic biofuels. While first-generation ethanol in the U.S. is 
produced primarily from corn, a tradable commodity that is trans-
ported long distances, second-generation cellulosic biofuels are pro-
duced from cellulosic biomass and there are greater limitations due to 
transportation distances. As a result, cellulosic biofuels producers will 
be exposed to local variations in biomass supplies. Studies have shown 
that 20-30% variations in collectable stover supply are typical. Such 
large variations translate into business risk and impacts issues associ-
ated with sustainability. Hence, companies venturing into cellulosic 
biofuels will be required to develop strategies to reduce the impact of 
feedstock supply variations. A sustainable biomass supply chain will 
need strategies for developing supply market structures, contracting 
programs with farmers, and a feedstock diversification program that 
reduces the impact of these large variations. This study focuses on 
identifying potential options for managers to consider when develop-
ing sustainable feedstock supply programs, and key trade-offs that 
help reduce costs and manage feedstock supply risks.
	 Key words: Corn Stover, Supply Variability, Feedstock Diversifi-
cation, Biofuels, Efficient Frontier
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INTRODUCTION

	 Cellulosic biofuels have gained enormous attention in recent years 
as a result of the focus on climate change. Emphasis has been placed on 
the advancement of biofuels produced from agricultural and forestry 
residues [1]. Several commercial-scale cellulosic biofuel plants have 
been commissioned, and a few are expected to be operational soon [2]. 
The U.S. EPA (Environmental Protection Agency) target is to produce 
76 billion liters per year of second-generation ethanol by 2022 [3,4]. The 
majority of this is expected to be produced from cellulosic biofuels.
	 In the U.S., corn stover is considered to be the largest source 
of agricultural residues for use in cellulosic biofuel production [5]. 
However, one of the fundamental challenges with cellulosic biomass 
is long-distance transport and storage [6–13]. Unlike corn ethanol, 
cellulosic biorefineries will be required to source the biomass locally, 
exposing them to regional supply constraints [11,12,22,23].
	 The dependence on regional supply will in turn limit the ability 
for cellulosic biorefineries to diversify their supply portfolios. In the 
absence of a feedstock strategy and an optimal contracting strategy be-
tween the biorefinery and the farmers, these regional supply demand 
imbalances in biomass supply will transform into significant variations 
in biomass price and biofuel supply, potentially creating sustainability 
issues for cellulosic biofuel business. This is explained in Figure 1.

Figure 1. Importance of feedstock strategy for sustainable development of 
cellulosic biofuel.
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	 In this article, we examine strategies for mitigating the impact of 
these variations using supply market structure, contracting strategy 
with farmers, and feedstock diversification strategies. These will aid 
in designing biomass supply chains, devising biorefinery operation 
plans, and developing national strategies and policies to facilitate the 
development of a sustainable cellulosic biofuel industry.

ASSESING BIOMASS DIVERSIFICATION

Annual Variations in Biomass Availability
	 Variations in biomass supply using corn stover supply in the U.S. 
provide an interesting example for feedstock variability. Since stover 
yield is proportional to corn grain yield, we use a stover-to-grain ratio 
of 1.0 based on previous studies [3,4,6,9,17,18]. Using corn production 
data from the U.S. Department of Agriculture (USDA) [19], we can 
quantify total corn stover production in the U.S. Because 100% of corn 
stover cannot be collected, a minimum amount of stover is required 
to be left on the field for soil and water conservation purposes and 
to maintain organic matter in the soil (SOM) [4,18,20]. Assuming the 
minimum amount of stover left on the field as 3.5 (t ha-1), historical 
variations in collectable stover supply within a 50 km radius for the 
U.S. county of McClean in Illinois is shown in Figure 2.

Strategies to Mitigate Biomass Supply Variations
	 Figure 2 shows that a biorefinery dependent on corn stover sup-
ply for biofuel production could be exposed to significant variations in 
supply. Strategies available to mitigate the impact of such large supply 
variations are discussed next.

Biomass Supply Market Structure
	 Regional biomass supply will be likely be dominated by a few 
farmers, while the demand will be dominated by few major biorefiner-
ies. Hence, it is possible that the market structure can take the form of 
oligopoly facing an oligopsony [21,22]. Presence of such oligopolistic-
oligopsonistic structures is common in the agricultural sector [22]. The 
risks of operating in an oligopolistic-oligopsonistic unconstrained mar-
ket is high volatility and unstable pricing [22]. To avoid the exposure 
from the high price volatility in, an optimal biomass supply market 
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Figure 2. Collectable corn stover within a 50 km radius using 2000-2014 data 
for the corn producing county of McClean in Illinois. The dotted line shows 
the average.

structure is required. Considering the large variations in biomass sup-
ply, the optimal supply market structure could be a fixed price struc-
ture, using a larger than average supply region. Contracting a larger 
supply region with fixed price contracts could significantly reduce the 
exposure from volatility in supply, but would also increase supply 
costs since a larger supply region would need to be maintained. There-
fore, biorefineries should evaluate the trade-offs between risk reduc-
tion versus the additional cost of maintaining a larger supply region.
	 This is graphically represented in Figure 3, where RAvg is the 
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radius required for meeting the biorefinery capacity. However, due 
to year-to-year variation in stover supply, the biorefinery contracts a 
larger supply region R2 or R3.

Figure 3. Biorefinery supply radius to meet capacity requirements.

Biomass Contracting Strategy Between Farmers and Biorefineries
	 Under fixed price long-term supply agreements, the biorefinery 
pays a fixed price for the quantity of collectable stover from partici-
pating farmers. Establishing fixed price agreements requires a sound 
understanding of trade-offs. The total biomass cost results from intri-
cate relationships among factors that include biomass transport costs, 
farmer participation, the cost of variation in biomass supply, capacity 
of the biorefinery, and alternative feedstock availability. Owners of 
biorefineries will need to understand the relationships among these 
variables and should consider optimizing the value chain costs holisti-
cally. Focusing on one variable and not evaluating these relationships 
holistically leads to the possibility of suboptimal solutions. In consid-
ering the risks associated with each strategy, biorefineries can consider 
using principles of Modern Portfolio Theory and evaluate based on 
Return Over Unit Risk (i.e., changes in biomass supply variations for 
the premiums paid to reduce risks).

Feedstock Diversification Strategy
	 The concept of risk reduction through diversification can be ex-
plained using the principles of Modern Portfolio Theory [23–26]. If 
the correlation coefficient between diversifying feedstocks is less than 
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+1.0, the variance of the diversified feedstock will be less than the 
variance of any individual feedstock. This explains how diversifica-
tion reduces variations in overall feedstock supplies. In the case of 
cellulosic biomass, constraints with long distance transport of bulky 
biomass materials and their storage requirements limit the ability for 
feedstock diversification. Regardless, some level of diversification is 
still achievable. In the U.S. corn belt, biorefineries can diversify corn 
stover with switchgrass, a native perennial grass that has the potential 
as a dedicated energy crop using marginal cropland [27–29], and pro-
duces comparable ethanol as corn stover [30]. Wheat straw is another 
alternative for feedstock diversification [31–34]. In Figure 4, we show 
the historical yield for corn stover, wheat straw and hay (as a proxy for 
switchgrass since historical data is not available for switchgrass).
	 The impact of feedstock diversification on reduced biomass sup-
ply variations is evaluated using USDA 2000-2014 yield data (t ha-1) 
of corn stover, wheat stover and hay stocks for the mid-western U.S. 
state of Iowa. The variations are analyzed by first using 100% corn 
stover, and then assessing a scenario using diversified feedstock port-
folio, using 50% corn stover, 25% wheat stover and 25% hay. Results 
show undiversified corn stover as having a 17% variation, while the 
diversified feedstock has 10% variations. This results in a 40% reduc-
tion in biomass supply variations through diversification of feedstock. 
Biorefineries should also consider the cost of diversifying feedstocks 
and develop optimal diversification considering risk reduction vs. pre-
miums paid.

CONCLUSIONS

	 High year-to-year variations in the supply of cellulosic biomass 
create challenges for the cellulosic biofuel industry. Through this study 
we identify strategies that biorefineries can use to reduce the impact of 
these variations.
	 Establishing an optimal supply market structure between bio-
refineries and farmers would reduce the exposure from price volatil-
ity under oligopoly-oligopsonist market structures. Biorefineries and 
farmers can use fixed price structures and maintain a larger supply 
region to reduce exposure due to feedstock supply disruptions, thus 
reducing financial risks.
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	 When establishing fixed price contract agreements with par-
ticipating farmers, biorefineries should consider using a biomass cost 
function that minimizes biomass costs by evaluating trade-offs. Using 
the principles of Modern Portfolio Theory, the ideal framework for 
such contracts should consider the Cost of Unit Risk reduction.
	 Diversifying feedstocks is an effective strategy to minimize the 
impact of supply variations. This assessment determined that diversi-
fication of corn stover with wheat straw and hay reduces variations in 
biomass supply by more than 40%.
	 These results have important implications for biomass supply 
chain design, policy, and national-level assessments for cellulosic bio-
fuel production. Developing biomass densification technologies and 
long term storage technologies that enable long distance transportation 
of cellulosic materials biomass will allow managers to create more ef-
fective feedstock diversification strategies.
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