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ABSTRACT

	 Companies	venturing	into	the	cellulosic	biofuels	business	will	be	
required	 to	make	portfolio	 decisions	 based	 on	 feedstock	 availability	
and	variations	 in	 biomass	 supplies.	 Fundamental	 differences	 exist	 in	
biomass	 supplies	 for	first-generation	 corn	 ethanol	 and	 second-gener-
ation	 cellulosic	 biofuels.	While	first-generation	 ethanol	 in	 the	U.S.	 is	
produced primarily from corn, a tradable commodity that is trans-
ported long distances, second-generation cellulosic biofuels are pro-
duced from cellulosic biomass and there are greater limitations due to 
transportation	distances.	As	a	result,	cellulosic	biofuels	producers	will	
be	exposed	to	local	variations	in	biomass	supplies.	Studies	have	shown	
that	 20-30%	variations	 in	 collectable	 stover	 supply	 are	 typical.	 Such	
large variations translate into business risk and impacts issues associ-
ated	with	 sustainability.	Hence,	 companies	 venturing	 into	 cellulosic	
biofuels	will	be	required	to	develop	strategies	to	reduce	the	impact	of	
feedstock	 supply	variations.	A	 sustainable	 biomass	 supply	 chain	will	
need strategies for developing supply market structures, contracting 
programs	with	 farmers,	 and	 a	 feedstock	diversification	program	 that	
reduces	 the	 impact	 of	 these	 large	 variations.	 This	 study	 focuses	 on	
identifying	potential	options	for	managers	to	consider	when	develop-
ing	 sustainable	 feedstock	 supply	 programs,	 and	 key	 trade-offs	 that	
help	reduce	costs	and	manage	feedstock	supply	risks.
 Key words:	Corn	Stover,	Supply	Variability,	Feedstock	Diversifi-
cation,	Biofuels,	Efficient	Frontier
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INTRODUCTION

 Cellulosic biofuels have gained enormous attention in recent years 
as	a	result	of	the	focus	on	climate	change.	Emphasis	has	been	placed	on	
the advancement of biofuels produced from agricultural and forestry 
residues	 [1].	 Several	 commercial-scale	 cellulosic	 biofuel	 plants	 have	
been	commissioned,	and	a	few	are	expected	to	be	operational	soon	[2].	
The	U.S.	EPA	 (Environmental	Protection	Agency)	 target	 is	 to	produce	
76	billion	liters	per	year	of	second-generation	ethanol	by	2022	[3,4].	The	
majority	of	this	is	expected	to	be	produced	from	cellulosic	biofuels.
	 In	 the	U.S.,	 corn	 stover	 is	 considered	 to	 be	 the	 largest	 source	
of	 agricultural	 residues	 for	 use	 in	 cellulosic	 biofuel	 production	 [5].	
However,	 one	 of	 the	 fundamental	 challenges	with	 cellulosic	 biomass	
is	 long-distance	 transport	 and	 storage	 [6–13].	Unlike	 corn	 ethanol,	
cellulosic	 biorefineries	will	 be	 required	 to	 source	 the	 biomass	 locally,	
exposing	them	to	regional	supply	constraints	[11,12,22,23].
	 The	dependence	on	regional	supply	will	 in	 turn	 limit	 the	ability	
for	 cellulosic	 biorefineries	 to	diversify	 their	 supply	portfolios.	 In	 the	
absence of a feedstock strategy and an optimal contracting strategy be-
tween	 the	biorefinery	and	 the	 farmers,	 these	regional	supply	demand	
imbalances	in	biomass	supply	will	transform	into	significant	variations	
in biomass price and biofuel supply, potentially creating sustainability 
issues	for	cellulosic	biofuel	business.	This	is	explained	in	Figure	1.

Figure 1. Importance of feedstock strategy for sustainable development of 
cellulosic biofuel.
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	 In	this	article,	we	examine	strategies	for	mitigating	the	impact	of	
these variations using supply market structure, contracting strategy 
with	 farmers,	 and	 feedstock	diversification	 strategies.	 These	will	 aid	
in	 designing	 biomass	 supply	 chains,	 devising	 biorefinery	 operation	
plans, and developing national strategies and policies to facilitate the 
development	of	a	sustainable	cellulosic	biofuel	industry.

ASSESING	BIOMASS	DIVERSIFICATION

Annual Variations in Biomass Availability
	 Variations	in	biomass	supply	using	corn	stover	supply	in	the	U.S.	
provide	 an	 interesting	 example	 for	 feedstock	variability.	 Since	 stover	
yield	is	proportional	to	corn	grain	yield,	we	use	a	stover-to-grain	ratio	
of	1.0	based	on	previous	studies	[3,4,6,9,17,18].	Using	corn	production	
data	 from	 the	U.S.	Department	 of	Agriculture	 (USDA)	 [19],	we	 can	
quantify	total	corn	stover	production	in	the	U.S.	Because	100%	of	corn	
stover	 cannot	 be	 collected,	 a	minimum	amount	 of	 stover	 is	 required	
to	 be	 left	 on	 the	 field	 for	 soil	 and	water	 conservation	purposes	 and	
to	maintain	 organic	matter	 in	 the	 soil	 (SOM)	 [4,18,20].	Assuming	 the	
minimum	amount	 of	 stover	 left	 on	 the	field	 as	 3.5	 (t	 ha-1),	 historical	
variations	 in	 collectable	 stover	 supply	within	 a	 50	 km	 radius	 for	 the	
U.S.	county	of	McClean	in	Illinois	is	shown	in	Figure	2.

Strategies to Mitigate Biomass Supply Variations
	 Figure	2	shows	that	a	biorefinery	dependent	on	corn	stover	sup-
ply	for	biofuel	production	could	be	exposed	to	significant	variations	in	
supply.	Strategies	available	to	mitigate	the	impact	of	such	large	supply	
variations	are	discussed	next.

Biomass Supply Market Structure
	 Regional	 biomass	 supply	will	 be	 likely	 be	dominated	 by	 a	 few	
farmers,	while	the	demand	will	be	dominated	by	few	major	biorefiner-
ies.	Hence,	it	is	possible	that	the	market	structure	can	take	the	form	of	
oligopoly	 facing	an	oligopsony	[21,22].	Presence	of	such	oligopolistic-
oligopsonistic	structures	is	common	in	the	agricultural	sector	[22].	The	
risks of operating in an oligopolistic-oligopsonistic unconstrained mar-
ket	 is	high	volatility	and	unstable	pricing	 [22].	To	avoid	 the	exposure	
from the high price volatility in, an optimal biomass supply market 
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Figure 2. Collectable corn stover within a 50 km radius using 2000-2014 data 
for the corn producing county of McClean in Illinois. The dotted line shows 
the average.

structure	is	required.	Considering	the	large	variations	in	biomass	sup-
ply,	 the	optimal	 supply	market	 structure	could	be	a	fixed	price	 struc-
ture,	 using	 a	 larger	 than	 average	 supply	 region.	Contracting	 a	 larger	
supply	region	with	fixed	price	contracts	could	significantly	reduce	the	
exposure	 from	volatility	 in	 supply,	 but	would	 also	 increase	 supply	
costs	since	a	larger	supply	region	would	need	to	be	maintained.	There-
fore,	 biorefineries	 should	 evaluate	 the	 trade-offs	 between	 risk	 reduc-
tion	versus	the	additional	cost	of	maintaining	a	larger	supply	region.
	 This	 is	 graphically	 represented	 in	 Figure	 3,	where	 RAvg is the 
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radius	 required	 for	meeting	 the	 biorefinery	 capacity.	However,	 due	
to	 year-to-year	 variation	 in	 stover	 supply,	 the	 biorefinery	 contracts	 a	
larger	supply	region	R2	or	R3.

Figure 3. Biorefinery supply radius to meet capacity requirements.

Biomass Contracting Strategy Between Farmers and Biorefineries
	 Under	fixed	price	 long-term	 supply	 agreements,	 the	 biorefinery	
pays	 a	fixed	price	 for	 the	 quantity	 of	 collectable	 stover	 from	partici-
pating	 farmers.	 Establishing	fixed	price	 agreements	 requires	 a	 sound	
understanding	of	 trade-offs.	The	 total	biomass	cost	 results	 from	 intri-
cate relationships among factors that include biomass transport costs, 
farmer participation, the cost of variation in biomass supply, capacity 
of	 the	 biorefinery,	 and	 alternative	 feedstock	 availability.	Owners	 of	
biorefineries	will	 need	 to	 understand	 the	 relationships	 among	 these	
variables	and	should	consider	optimizing	the	value	chain	costs	holisti-
cally.	Focusing	on	one	variable	and	not	evaluating	these	relationships	
holistically	 leads	 to	 the	possibility	of	suboptimal	solutions.	 In	consid-
ering	the	risks	associated	with	each	strategy,	biorefineries	can	consider	
using	principles	 of	Modern	Portfolio	 Theory	 and	 evaluate	 based	 on	
Return	Over	Unit	Risk	 (i.e.,	 changes	 in	biomass	 supply	variations	 for	
the	premiums	paid	to	reduce	risks).

Feedstock Diversification Strategy
	 The	 concept	 of	 risk	 reduction	 through	diversification	 can	be	 ex-
plained	using	 the	 principles	 of	Modern	 Portfolio	 Theory	 [23–26].	 If	
the	correlation	coefficient	between	diversifying	feedstocks	 is	 less	 than	
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+1.0,	 the	 variance	 of	 the	 diversified	 feedstock	will	 be	 less	 than	 the	
variance	 of	 any	 individual	 feedstock.	 This	 explains	 how	diversifica-
tion	 reduces	 variations	 in	 overall	 feedstock	 supplies.	 In	 the	 case	 of	
cellulosic	 biomass,	 constraints	with	 long	distance	 transport	 of	 bulky	
biomass	materials	 and	 their	 storage	 requirements	 limit	 the	 ability	 for	
feedstock	diversification.	Regardless,	 some	 level	 of	 diversification	 is	
still	 achievable.	 In	 the	U.S.	 corn	belt,	 biorefineries	 can	diversify	 corn	
stover	with	switchgrass,	a	native	perennial	grass	that	has	the	potential	
as	a	dedicated	energy	crop	using	marginal	cropland	[27–29],	and	pro-
duces	comparable	ethanol	as	corn	stover	[30].	Wheat	straw	is	another	
alternative	 for	 feedstock	diversification	 [31–34].	 In	Figure	4,	we	 show	
the	historical	yield	for	corn	stover,	wheat	straw	and	hay	(as	a	proxy	for	
switchgrass	since	historical	data	is	not	available	for	switchgrass).
	 The	impact	of	feedstock	diversification	on	reduced	biomass	sup-
ply	variations	 is	 evaluated	using	USDA	2000-2014	yield	data	 (t	 ha-1)	
of	 corn	 stover,	wheat	 stover	 and	hay	 stocks	 for	 the	mid-western	U.S.	
state	 of	 Iowa.	 The	 variations	 are	 analyzed	 by	 first	 using	 100%	 corn	
stover,	and	then	assessing	a	scenario	using	diversified	feedstock	port-
folio,	 using	 50%	 corn	 stover,	 25%	wheat	 stover	 and	 25%	hay.	Results	
show	undiversified	 corn	 stover	 as	 having	 a	 17%	variation,	while	 the	
diversified	 feedstock	has	10%	variations.	This	 results	 in	a	40%	reduc-
tion	in	biomass	supply	variations	through	diversification	of	feedstock.	
Biorefineries	 should	 also	 consider	 the	 cost	 of	diversifying	 feedstocks	
and	develop	optimal	diversification	considering	risk	reduction	vs.	pre-
miums	paid.

CONCLUSIONS

 High year-to-year variations in the supply of cellulosic biomass 
create	challenges	for	the	cellulosic	biofuel	industry.	Through	this	study	
we	identify	strategies	that	biorefineries	can	use	to	reduce	the	impact	of	
these	variations.
	 Establishing	 an	 optimal	 supply	market	 structure	 between	 bio-
refineries	 and	 farmers	would	 reduce	 the	 exposure	 from	price	 volatil-
ity	under	 oligopoly-oligopsonist	market	 structures.	 Biorefineries	 and	
farmers	 can	use	 fixed	price	 structures	 and	maintain	 a	 larger	 supply	
region	 to	 reduce	 exposure	due	 to	 feedstock	 supply	disruptions,	 thus	
reducing	financial	risks.
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	 When	 establishing	 fixed	 price	 contract	 agreements	with	 par-
ticipating	 farmers,	 biorefineries	 should	 consider	using	a	biomass	 cost	
function	that	minimizes	biomass	costs	by	evaluating	trade-offs.	Using	
the	 principles	 of	Modern	 Portfolio	 Theory,	 the	 ideal	 framework	 for	
such	contracts	should	consider	the	Cost	of	Unit	Risk	reduction.
	 Diversifying	 feedstocks	 is	 an	 effective	 strategy	 to	minimize	 the	
impact	of	supply	variations.	This	assessment	determined	that	diversi-
fication	of	corn	stover	with	wheat	straw	and	hay	reduces	variations	in	
biomass	supply	by	more	than	40%.
 These results have important implications for biomass supply 
chain design, policy, and national-level assessments for cellulosic bio-
fuel	 production.	Developing	 biomass	 densification	 technologies	 and	
long term storage technologies that enable long distance transportation 
of	cellulosic	materials	biomass	will	allow	managers	to	create	more	ef-
fective	feedstock	diversification	strategies.
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