
49Summer 2004, Vol. 24, No. 1

Database Technology and
Database-Driven
Web Applications
Fangxing Li
ABB Inc

ABSTRACT

Database technology involves the access and manipulation of in-
formation. It is critical to the development of highly efficient informa-
tion systems. It also plays an important role in the development of web-
based applications that require information processing and distribution
between web browsers and web servers. This article provides a quick
guide to database technology and illustrates common structures of da-
tabase-driven web applications.

INTRODUCTION

Like many other information systems, utility information systems
contain and process a large amount of data. Without the ability to man-
age that data efficiently, it is difficult for utilities to provide satisfactory
services to customers. The development of information technology has
answered this challenge. Databases and database management systems
(DBMS) have been broadly deployed to manage bulk data in enterprise
information systems.

Database
A database is a self-describing collection of data. The term “self-

describing” implies that the database contains not only the actual data,
but also the structure of the data (or the meta-data). [1-3]. A database
may achieve high integrity because the meta-data typically describe the
relationships among different tables. This feature of “self-describing” is

50 Strategic Planning for Energy and the Environment

the main difference between a database and a flat file that was used in
the early age of computing. A flat file does not contain any information
about the structure and relationships among different pieces of data, and
therefore is less integrated than a database.

DBMS
A DBMS is a software tool that helps users define, access, and

maintain the underlying data contained within a database. As the defi-
nition shows, a database is the collection of structured data, and a DBMS
is a software program that helps users manage the database efficiently.
Figure 1 describes the logic interaction between a user, a DBMS, and a
physical database.

There are many commercial DBMS products available from differ-
ent vendors. Microsoft’s Access is a popular example of a desktop
DBMS. Microsoft’s SQL Server is an example of an enterprise DBMS that
works across a network for multiple users. Other popular DBMSs are
IBM’s DB2, Oracle’s series of database management products, and
Sybase’s products.

DATABASE TABLES

Typically, a database is organized as a collection of multiple two-
dimensional tables. Each entry in a table is single-valued. Each row in a
table represents an instance of a real world object. Each column in a
table represents a single piece of data of each row.

Figure 2 shows two tables in a database of a utility information
system. Each row in the first table represents information about a differ-
ent metering device. Each row in the second table represents the amount
measured by a specific water meter at a given time.

DBMS

Database

Figure 1: Information flows among a user, a DBMS and a physical
database

51Summer 2004, Vol. 24, No. 1

In the first table, there is a specific column ID, which uniquely
identifies a metering device in the real world. This column is the pri-
mary key of this table. The primary key of a table may be a combination
of several columns. For example, the primary key of the second table is
the combination of ID, Measurement_Date, and Measurement_Time.
That is, the remaining columns (in this case only one column – ‘Gallons’)
are uniquely determined by the combination of the first three columns.

Metering_Equipment Table
————————————————————————————————
ID Name Utility Facility Manufacturer
————————————————————————————————
X1001 GasA1 GAS BLDG1 M101
X1002 ElecA1 ELECTRIC BLDG1 M201
X1003 WaterA1 WATER BLDG1 M301
X1011 GasB1 GAS BLDG2 M101
X1012 ElecB1 ELECTRIC BLDG2 M201
X1013 WaterB1 WATER BLDG2 M301
————————————————————————————————

Water_Consumption Table
————————————————————————————————
ID Measurement_Date Measurement_Time Gallons
————————————————————————————————
X1003 2/1/2003 12:00:00 341.23
X1003 2/1/2003 12:15:00 355.68
X1003 2/1/2003 12:30:00 362.42
X1003 2/1/2003 12:45:00 377.81
————————————————————————————————

Figure 2: Two tables in a utility information system

RELATIONAL DATABASES

As the previous definition shows, a database contains structural
information about the data as well as the actual data. How is the struc-
ture defined? Or, what is the structural model? The most popular model

52 Strategic Planning for Energy and the Environment

over the past 20 years is the relational model. Other models include the
hierarchy model and the network model, which existed for some time
but did not gain considerable market share. There are also some emerg-
ing models like the object-oriented model and the object-relational
model, both of which are gaining some market share. However, in gen-
eral the relational model is still the dominant force. Hence, this article
focuses on relational databases and related technologies.

What is a relational database? Theoretically, a relational database is
a database comprised of a set of tables that follows the rules of normal-
ization. The definition of normalization in database theory is compli-
cated if expressed in a mathematical way. For simplicity, the primary
principles of normalization can be roughly interpreted as the following
guidelines:

1. When you design a table in a database, your table should avoid
repeating groups.

2. The columns in a table depend on the primary key only.

3. There is no column depending on another column that is not part
of the primary key.

The “repeating groups” problem is illustrated by the following
example. A table is created to store all purchase orders, while each order
may have different items. The first table in Figure 3 shows an un-nor-
malized design, which can handle orders with no more than two items.
If the maximum number of items is 30, then the columns must be ex-
panded to contain 30 groups of item and quantity, i.e., from {Item1,
Qty1} to {Item30, Qty30}. This could cause a serious waste of space if
most of the other orders have less than 5 items.

The second table in Figure 3 shows a normalized design, which
involves only four columns. The column Sub_Order_ID is used together
with Order_ID to avoid the repeated grouping problem in the first table.
In other words, if two rows have the same Order_ID, then the items in
these two rows are associated with the same order. The column
Sub_Order_ID can be used to identify different items within the order.
With this design, there is no limit on the number of items within one
order. Furthermore, there is no redundant information stored and effi-
ciency is achieved.

53Summer 2004, Vol. 24, No. 1

Purchase_Order Table: Un-normalized Design
————————————————————————————————
Order_ID Item1 Qty1 Item2 Qty2
————————————————————————————————

1 Circuit Breaker 4 Transformer 1
2 Sectionalizer 2 Distributed 1

Generator
————————————————————————————————

————————————————————————————————
Purchase_Order Table: Normalized Design

————————————————————————————————
Order_ID Sub_Order_ID Item Qty
————————————————————————————————

1 1 Circuit Breaker 4
1 2 Transformer 1
2 1 Sectionalizer 2
2 2 Distributed Generator 1

————————————————————————————————

Figure 3: Two designs for a purchase order table

The term “depending on,” mentioned in the above guidelines, can
be interpreted as “being uniquely determined by.” That is, if column A
depends on column B, then the value of A is uniquely determined by the
value of B, but not vice versa. For example, if we know the social secu-
rity number (SSN) of a person, then we know his or her name, title,
address, etc. Thus, the column of name, title, or address depends on the
column SSN. However, if we know the name of a person, it is possible
that we cannot identify his or her SSN, since people may have the same
names. In the second table in Figure 3, the columns Item and Qty each
depend on the combination of the columns Order_ID and
Sub_Order_ID.

To achieve efficient database systems, the normalization rules or
the above rough guidelines should be followed. Practical tests show
that an un-normalized database may result in much poorer perfor-
mance (5+ times slower) and need much more programming involve-
ment. Although database designers may consider normalization by in-
tuition without knowing it, they should be required to explicitly fol-

54 Strategic Planning for Energy and the Environment

low the rules to ensure high performance and efficiency. The perfor-
mance and efficiency issue is particularly important for web-based da-
tabase-driven applications, since users of web-based applications may
experience longer delays than users of stand-alone applications. The
longer delays may be attributed to the following features of web ap-
pl icat ions :

• There may be many clients (users) concurrently accessing the
server.

• The users may be geographically distributed across the country.

SQL

SQL is a standard to create, retrieve, and manipulate a relational
database. Originally, SQL stood for the acronym of “structured query
language,” but now it has become generally accepted as a non-acronym
standard to access the internal data of a database, usually a table-based
relational database.

Unlike full-featured programming languages such as C/C++, VB,
and Java, SQL is not a full-fledged programming language. It may be
considered as a sub-language to create, retrieve, and manipulate infor-
mation contained in databases. It can be dynamically coded into high-
level languages like C/C++, Java, or VB to facilitate the control of the
underlying databases.

SQL consists of a set of text-based commands or queries to control
data. The SQL commands can be classified into two major categories:
data definition language (DDL) and data manipulation language (DML).
DDL is used to create tables or change table structures, while DML is
used to insert, delete, or modify rows of tables. The DDL commands
include the statements CREATE, ADD, DROP, ALTER, and others. The
DML commands include statements of SELECT, INSERT, UPDATE,
DELETE, JOIN, UNION, and others.

The following brief examples are given as a quick guide to explain
how the SQL commands work. The examples are based on the needs of
a utility information system administrator who wants to create a data-
base table to host information, populate the table, manipulate the table,
etc.

55Summer 2004, Vol. 24, No. 1

1. Create a table
The following command creates a blank table with the similar

schema as the second table in Figure 2.

CREATE TABLE Water_Consumption(ID TEXT(20),
Measurement_Date DATE, Measurement_Time TIME, Gallons
DOUBLE)

The above CREATE command creates a table named
Water_Consumption. The table has four columns called ID,
Measurement_Date, Measurement_Time, and Gallons. The data types of
these four columns are a text string of 20 characters, Date, Time and
Double, respectively. The Date data type is usually input in the format
of “MM/DD/YEAR” or “YEAR/MM/DD.” The Time data type is usu-
ally input in the format of HOUR:MINUTE:SECOND with the HOUR
filed using a 24-hour clock. For example, “18:45:00” is input for 6pm, 45
minutes and 0 seconds.

2. Populate a table
The following command adds a row into the table

Water_Consumption. It should be noted that a text column is enclosed
by opening and closing quotes (single or double). Columns in Date or
Time data type should be enclosed in quotes as well.

INSERT INTO Water_Consumption VALUES (‘X1003’, ‘1/1/2003’,
’18:45:00', 165.82)

To add many rows into the table, users may use the command in
the format like “INSERT INTO target SELECT … FROM source,” in
which the “SELECT…FROM” statement will be mentioned next.

3. Select data
The most popular command used in SQL is probably the SELECT

statement. The following command selects all rows and all columns
from a table.

SELECT * FROM Water_Consumption

The * represents all columns in the selected table. Users may select

56 Strategic Planning for Energy and the Environment

partial columns by specifying the actual column names. For example,
the following SQL command selects all rows but only ‘ID’ and ‘Gallons’
columns.

SELECT ID, Gallons FROM Water_Consumption

There are also various clauses that can be appended after the above
SELECT statements to filter some rows. For example, the following com-
mand selects the information only related to Meter X1003 using WHERE
clause.

SELECT ID, Gallons FROM Water_Consumption WHERE
ID=’X1003’

4. Delete data
The following command deletes all rows from the table

Water_Consumption.

DELETE * FROM Water_Consumption

The WHERE clause can be used as a filter for DELETE statement.
The following command deletes the rows from meter X1003 and with a
date no later than 12/31/2001.

DELETE * FROM Water_Consumption WHERE ID=’X1003’ AND
Measurement_Date<’01/01/2002’

Since this article is not a detailed SQL guide, the above examples
do not cover all aspects of SQL commands. For details about SQL, users
may check references 1 and 2. Despite its simplicity, this section is ex-
pected to serve as a quick start for further SQL studies.

SQL CODED IN OTHER PROGRAMMING LANGUAGES

Although SQL is a powerful tool specifically designed for database
access, it is not a full-featured programming language. Hence, to maxi-
mize the benefit of SQL in applications, embedded SQL is used. That is,
SQL is coded into a programming language like C/C++, VB, or Java in

57Summer 2004, Vol. 24, No. 1

a database-driven application. The programming language is employed
to perform the common “programming” tasks while the embedded SQL
queries are utilized to access the database. This interactive process can
be described as follows:

1. The application creates a connection to a database so that the host
application can “talk” with the database and its tables.

2. The application generates an SQL query to obtain a table in the
database.

3. The content in the table is retrieved and then mapped to the inter-
nal data structure of the application.

4. Operations on the data are carried out. This could be very simple
or complicated, depending on the application’s requirement.

5. The updated data may be saved back into the database and output
may be generated.

The VB code shown in Figure 4 illustrates a sample process of the
five steps above, including how to set up a database connection, retrieve
data from a database, identify rows with gallon amount over a pre-
defined threshold, and generate a warning report. The report file con-
tains all metering records with a gallon amount over the threshold.

In short, SQL queries could not do much but access the database.
Programming languages are more flexible and powerful in many other
functions, but not in direct database access. Hence, the combination of
these two is a good choice to create fast, efficient, and easy-to-program
applications involving underlying databases.

DATA ACCESS INTERFACES

After reading the previous example, readers may have this ques-
tion: “How does the database receive the SQL query, interpret it, and
then send the response back to the VB application?” To answer this
question, the mechanism of database access interfaces is explained.

Database access interfaces are software modules that provide con-
nections between an application and a specific database. They play a key
role in implementing database-driven applications. Different vendors
may have different database drivers. At times, this could cause portabil-
ity and extensibility problems, since users may have to deal with differ-

58 Strategic Planning for Energy and the Environment

ent vendors and even different platforms. An early solution to this prob-
lem was the ODBC (open database connectivity) [4] technique provided
by Microsoft. The ODBC module sits between applications and vendor-
specific databases to provide the necessary connectivities.

Microsoft has recently replaced ODBC with universal data access
(UDA), which provides access to all kinds of data sources like ODBC
databases, traditional SQL data, non-SQL data like spreadsheets, etc.
UDA is the database access part of Microsoft’s component object model
(COM), which is an overall framework for creating and distributing
object-oriented programs in a network. UDA consists mainly of the
high-level application program interface (API) called activeX data ob-

Figure 4: An example of VB and SQL queries

 Dim dbs As Database, rst As Recordset

Dim OutputFileName As String
Dim k As Long
Dim TheID As Long, TheDate As String, TheTime As String, TheGallons As Double

'Connect to a database
Set dbs = OpenDatabase("MyTestEIS.mdb")

'Create a SQL query to obtain the database table Water_Consumption
Set rst = dbs.OpenRecordset("SELECT * FROM Water_Consumption")
If rst.RecordCount = 0 Then

MsgBox "No record in the table."
Exit Sub

End If

OutputFileName = "OutputTest.csv" 'Output to a CSV spreadsheet file
Write #1, "ID", "DATE", "TIME", "GALLONS" 'Output a header

Open OutputFileName For Output As #1 'Open an output report file
For k = 1 To rst.RecordCount

'Retrieve the field and store it in VB's internal data structures

TheID = rst("ID")
TheDate = CStr(rst("Measurem ent_Date")) 'Get date in string format
TheTime = CStr(rst("Measurement_Time")) 'Get time in string format

TheGallons = rst("Gallons")

'Perform operations on the extracted data. Here, GetThresholdFor()

'is a function to obtain the warning threshold of a m etering device
Threshold = GetThresholdFor(TheID)

Write #1, TheID, TheDate, TheTime, TheGallons

rst.MoveNext
Next k
Close #1

'Close the database connection
rst.Close

dbs.Close

59Summer 2004, Vol. 24, No. 1

jects (ADO) and the lower-level services called OLE DB. SQL queries are
sent to ADO interfaces from applications and then forwarded to OLE-
DB interfaces. OLE-DB communicates with vendor-specific data provid-
ers to retrieve information from physical databases. The retrieved infor-
mation is then sent back to the applications. This database access strat-
egy is shown in Figure 5.

SQL Server
Data Provider

Oracle Data
Provider

Data Provider
for ODBC

SQL
Server DB Oracle DB

ODBC

Any DB

ADO

OLE -DB

Application

SQL Query

Non -SQL
Data

Figure 5: Architecture of Microsoft’s UDA

Sun Microsystems presents another data access technology, Java
database connectivity (JDBC) [5], which is an API that can be used to
access almost any tabular data source from the Java programming lan-
guage. The JDBC interface provides cross-DBMS connectivity to a wide
range of SQL databases. The latest JDBC API also provides access to
other tabular data sources, such as spreadsheets.

JDBC architecture contains a driver manager and database-specific
drivers to provide transparent connectivity to databases from different
vendors. This is shown in Figure 6. A JDBC driver translates standard
JDBC calls into a protocol that the underlying database can understand.

60 Strategic Planning for Energy and the Environment

This translation function makes JDBC applications able to access many
different databases. There are four distinct types of JDBC drivers. Details
about the four drivers and their mechanisms are beyond this article, but
can be found in reference 5.

An interesting and noteworthy point is that Sun’s JDBC technology
supports multiple operating systems but is restricted to the Java pro-
gramming language. As opposed to JDBC, Microsoft’s UDA technology
is restricted to the Windows platforms but supports multiple languages
like VB, C/C++, J++, and the latest .NET technology.

JDBC
Driver

JDBC
Driver

SQL
Server DB Oracle DB

ODBC

Any DB

JDBC API

JDBC Driver Manager

Java Application/Applet/Servlet

JDBC
Driver

SQL Query

Tabular
Data

Figure 6: Architecture of Sun’s JDBC technology

Although a thorough discussion of the technologies on database
access interfaces is beyond the scope of this article, it is helpful to read-
ers to understand the basic concepts. With the assistance of these inter-
faces, applications can essentially “talk” with physical databases and
efficiently retrieve the information contained in various databases. Also,
database access interfaces like ADO and JDBC can minimize application

61Summer 2004, Vol. 24, No. 1

developers’ efforts, because developers only need to deal with the ADO
or JDBC rather than do the detailed work that the interfaces perform.

DATABASES AND WEB APPLICATIONS

Like stand-alone applications, web applications [6-8] may rely on
database technologies for efficiency. The architecture of a database-
driven web application is illustrated in Figure 7. The information flows
and activities are also illustrated with the arrow-lines. Here is the de-
scription of the activities in the figure.

1. A client browser sends an HTTP request to a web server for a
specific web page that may contain regular HTML code as well as
code written in server-side script (SSS).

2. The web server receives the request. If the requested web page
involves SSS code, the web server invokes a SSS engine to process
the SSS code.

3. If the SSS code involves database operations, the SSS engine que-
ries the database through database interfaces to obtain the needed
results, and may generate part of the returning HTML code based
on query results.

4. The web server creates a response HTML page that is a combina-
tion of the returning HTML code from the SSS engine and the regu-
lar HTML code in the original web page.

5. The response HTML page is sent back to the client browser and the
browser displays it for users.

The server-side script (SSS) is employed to generate dynamic web
pages, which may require database manipulations. Since HTML is a
markup language designed mainly for information display, it cannot
handle complicated computation and database access. To make a web
server more powerful, some scripts are usually embedded into an
HTML page to direct the web server to perform some specific tasks. The
web server invokes the SSS engine to handle complicated tasks like
database access. The SSS engine passes the database queries to the da-
tabase interface/driver that communicates with the physical databases.

Typically, the associated database interface/driver is located at the
server side. This makes many database-related operations at the server-

62 Strategic Planning for Energy and the Environment

H
T

M
L

P

a
g

e

H
T

T
P

S
S

S
 C

o
d

e

C
lie

nt

(W
eb

-B
ro

w
se

r)

W
eb

 S
er

ve
r

S

e
rv

e
r-

S
id

e
 S

cr
ip

t
E

n
g

in
e

D
a

ta
b

a
se

In

te
rf

a
ce

/D
ri
ve

r

D
a

ta
b

a
se

In
te

rn
et

H

T
T

P

H
T

M
L

C
od

e
to

 R
ep

la
ce

S

S
S

 C
od

e

H
T

M
L

P
ag

e

H

T
M

L
C

od
e

H
T

M
L

C
od

e

S
er

ve
r-

si
de

S

cr
ip

t C
od

e

R
eq

ue
st

ed
 W

eb
 p

ag
e

co
nt

ai
ni

ng
 H

T
M

L
an

d
S

S
S

H

T
M

L
C

od
e

H
T

M
L

C
od

e

H
T

M
L

C
od

e
fr

om
 S

S
S

 E
ng

in
e

R
es

po
ns

e
H

T
M

L
P

ag
e

Fi
gu

re
 7

:
G

en
er

ic
 a

rc
h

it
ec

tu
re

 o
f

a
d

at
ab

as
e-

d
ri

ve
n

 W
eb

-b
as

ed
 a

p
p

li
ca

ti
on

63Summer 2004, Vol. 24, No. 1

side transparent to the client side. This is an advantage of web-based
applications, because users do not need to worry about the complicated
database access and set-up processes. Once everything at the server side
is set up, users from anyplace with Internet access can benefit from the
web application.

SERVER-SIDE SCRIPT TECHNOLOGIES FOR
DATABASE-DRIVEN WEB APPLICATIONS

There are several server-side script technologies that can assist
developers in implementing database-driven web applications. Two of
them, Active Server Pages (ASP) and FoxWeb, are briefly reviewed in
this section.

ASP
ASP is Microsoft’s technology for building dynamic and interactive

web pages. The overall architecture of ASP-centered web applications is
similar to the generic architecture depicted in Figure 7. The main differ-
ence is that the so-called ASP script engine replaces the SSS engine in
Figure 7. The ASP script engine can handle various requests including
intensive database manipulations. The requests are coded in ASP scripts
that are usually written in the VB script language. An ASP web page is
a text file with the extension of *.asp that contains HTML code and ASP
scripts.

FoxWeb
FoxWeb is another technology that enables developers to create

dynamic web pages, especially if the pages involve underlying FoxPro
databases. The overall architecture of FoxWeb-centered web applications
is also similar to that depicted in Figure 7. The FoxWeb script engine is
a specific SSS engine. Like the ASP script engine, the FoxWeb script
engine can handle complicated database manipulations, especially for
FoxPro databases. This makes FoxWeb very attractive to developers who
need to convert legacy desktop applications powered by FoxPro data-
bases to web-based, FoxPro-driven applications. Similar to an ASP web
page, a FoxWeb web page is essentially a text file with extension of *.fwx
that contains HTML code as well as FoxWeb scripts. Also, the latest
FoxWeb scripting object is compatible with Microsoft’s Active Server

64 Strategic Planning for Energy and the Environment

Pages (ASP) objects. This makes it easier for developers who are already
familiar with ASP to become familiar with FoxWeb.

There are also other similar server-side technologies such as
JavaServlet, JSP, PHP, WestWind, etc., which use mechanisms similar to
(but implementations different from) ASP or FoxWeb technologies to
process server-side tasks. Since all of the above technologies are devel-
oped to carry out server-side tasks including database access, those tech-
nologies, together with database technologies, are the driving force of
the evolution of web applications.

CONCLUSION

Like many other information systems, utility information systems
usually employ database technology to store and retrieve data to
achieve high performance and efficiency. Database technology is espe-
cially important to web-based information applications since a large
amount of data needs to be processed at the server-side and distributed
to geographically remote clients. As a quick tutorial and guide, this ar-
ticle reviews the basics of database technology such as relational data-
bases, SQL, and database access interfaces. The article also provides an
illustration about common architecture of database-driven web applica-
tions.

Acknowledgement
The author would like to thank Mr. David Green and Dr. Barney

L. Capehart for their valuable comments and suggestions. The author
would also like to thank Ms. Lynne Capehart for her careful editing and
formatting of the final document.

References
[1] Raghu Ramakrishnan, Database Management Systems, McGraw-Hill,

1997.
[2] Jesse Feiler, Database-Driven Web Sites, Morgan Kaufmann Publish-

ers, Inc., 1999.
[3] Paul Dorsey and Joseph. R. Hudicka, Oracle 8 - Design Using UML

Object, Oracle Press, 1999.
[4] Kyle Geiger, Inside ODBC, Microsoft Press, 1995.
[5] Cay Horstmann and Gary Cornell, Core Java, vol. 2, The Sun

65Summer 2004, Vol. 24, No. 1

Microsystems Press, 2001.
[6] Chris Ullman, et al, Beginning ASP 3.0, Wrox Press Ltd., January

2000.
[7] Fangxing Li, Lavelle A.A. Freeman, Richard E. Brown, “Web-En-

able Applications for Outsourced Computing,” IEEE Power and
Energy Magazine, vol. 1, no. 1, (Premier issue) January-February
2003.

[8] Dustin R. Callaway, Inside Servlets: Server-Side Programming for the
Java™ Platform, Second Edition, Addison Wesley Professional, May
2001.

————————————————————————————————
ABOUT THE AUTHOR

Fangxing Li is presently a senior R&D engineer at ABB Inc. He
received his B.S. and M.S. degrees both in electric power engineering
from Southeastern University, China, in 1994 and 1997 respectively. He
received his Ph.D. degree in computer engineering from Virginia Tech in
2001. His main experience includes development of several power in-
dustry applications, such as Electric Power Research Institute (EPRI)’s
Distribution Engineering Workstation (DEW) for power distribution
planning and analysis, ABB’s Power Distribution Optimizer (PDO) for
Web-based distribution reliability planning, and ABB’s GridView for
energy market simulation. Dr. Li is a member of IEEE and Sigma Xi. He
can be reached at fangxing.li@us.abb.com or fangxing.li@ieee.org.

