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Abstract

The operation and planning of power systems depend heavily on M-LTLF,
which is complicated and nonlinear, making it challenging for conven-
tional medium- and long-term forecasting models to produce reliable results.
The SARIMA model is chosen for M-LTLF in this study, and the model’s
parameters are tuned. This study takes the electricity consumption data of
the whole Yunnan as the research object. Among them, the electricity con-
sumption data from 2008 to 2018 is used as a training sample for fitting and
analysis, and the electricity consumption of the whole province is predicted
from 2019 to 2020. The end results demonstrate the viability and efficacy of
the SARIMA model for M-LTLF.

Keywords: SARIMA, medium- and long-term load forecasting, time series
models.
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1 Introduction

Accurate power load forecasting is crucial to the functioning of the power
systems because it forms the foundation for planning power layout and
generation over the medium and long term. Even more so under China’s new
economic normal, the new industrial system causes medium- and long-term
loads to present complex asymmetric oscillating and variable characteristics,
which significantly increases the difficulty of accurate power demand-side
load forecasting [1]. Medium- and long-term load forecasting (M-LTLF)
requires a smaller amount of pertinent data and experiences a longer period
of time than short-term load forecasting.

The study of medium- and long-term load demand forecasting is currently
being pursued by a large number of academics. The fundamental concept is
to build a mathematical model by identifying the time-series development
pattern of the overall societal demand for energy and its historical correla-
tion with other connected aspects, and to then realize the forecast through
extrapolation. The following two aspects are included in the research on
M-LTLF.

The first feature is a prediction made using the electrical data’s time-
series development pattern. In order to achieve the fitting and prediction of
electricity load data, Pinjing Zou [2] used a self-memory model with gray
correlation analysis to identify the primary influencing elements of electricity
load variance. The results of domestic and international competitions were
analyzed and compared, and Xincheng Sun [3] et al. proposed a kernel
principal component analysis (KPCA) mid-term prediction model of power
load combined with PSO-BPNN. They also used the data from the European
Network on Intelligent Technologies’ (EUNITE) medium-term load fore-
casting competition to verify the benefits and drawbacks of the forecasting
model. In order to model the local correlation between power attributes
and active power using convolutional and weighting mechanisms, Zheng
Zheng [4] et al. proposed a deep learning model of a multi-headed attentional
convolutional network. They then tested the CNN-LSTM algorithm’s efficacy
using data from the University of California, Irvine’s (UCI) household elec-
tricity dataset. A long short-term memory (LSTM) neural network-based load
forecasting model was proposed by Yongzhi Wang et al. [5] and tested using a
full year’s worth of electricity load data in Spain in 2018. The results showed
that the model was able to predict the daily and weekly variation patterns of
electricity load data with accuracy. Based on gray system theory, Zhaoying Tu
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et al.’s [6] forecasting model for medium- and long-term load combinations
linearly merged the enhanced GM(1,1) model with the quadratic regression
model. To forecast load under the situation of lacking weather and other
crucial information, Hui Hou et al. [7] used eight machine learning models for
forecasting and comparison, a neural network-based machine learning model,
three statistical learning-based machine learning models, and a benchmark
model. Zuleta-Elles I et al. [8] proposed a model based on an artificial neural
network model (ANN) and modeled with data from a microgrid in the Chilean
Atacama Desert. Yang Z C et al. [9] proposed a prediction model based on
discrete cosine transform (DCT) and obtained the optimal DCT coefficients
by combining the prediction model of DCT with the least-squares method.
By analyzing the individual outcomes of the statistical and machine learning
models, Harshit Saxena et al. [10] suggested a hybrid ANN model, ARIMA,
and logistic regression to forecast whether a given day will be a day with
a peak load during the period of billing. In studies on four power demand
forecasting datasets, Maldonado S et al. [11] suggested a strategy for auto-
matic lag selection in time series analysis, which reveals that the proposed
method has advantages in predicting performance. The data provided by the
European Intelligent Technology Network is used for modeling studies, and
Liu Z et al. [12] suggested a prediction model of back-propagation neural
network mixed with kernel principal component analysis. The experimental
findings showed that the prediction model worked as expected. Using data
from the New South Wales (NSW) market in Australia in 2010 and the
New England market in 2009, Gao W et al. [13] suggested a complicated
forecasting method based on feature selection and a multi-stage forecasting
engine. The outcomes confirmed the viability of the suggested model.

The second aspect is the integration of factors correlated with electricity
data such as economic indicators and meteorology for forecasting. Yaoyao He
et al. [14] proposed a medium-term probability density forecasting method
for electricity load based on the least absolute shrinkage and selection opera-
tor (LASSO) quantile regression, which fully integrated external factors such
as air temperature, wind, special date and used historical electricity maximum
load, daily maximum, minimum and average temperature and holiday factors
and holiday factor from October 1, 2012, to January 1, 2013, in a sub-
provincial city in eastern China to model the data. Jiangyong Liu et al. [15]
proposed an additive autoregressive integrated moving average (ARIMA)
model combined with a LSTM network for multi-temporal collaborative
medium-term load forecasting ARIMA-LSTM model, and considered the
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effects of season, temperature and holidays, and then modeled the continu-
ous total electricity load data from August 2017 to July 2018 for a region
in China. Using monthly power consumption data from January 2011 to
December 2017 in one Chinese province as a medium-term load dataset, Jun
Liu et al. [16] suggested a method for medium-term load forecasting that
can take into account the effects of economic and meteorological conditions.
Shan Jiang et al. [17] factor-coupled several macro-indicators such as social
development and regional economic development with the time series data of
regional electricity load, and improved the forecasting model by integrating
BP neural network with difference ARIMA, and found in the experiments of
monthly load forecasting for a provincial region in central China from 2006 to
2018 that the proposed model is feasible in the long-term forecasting task of
regional power load. In order to thoroughly examine the impact of economic
restructuring on the continuous fluctuation of power load data, Zheng Lei
et al. [1] applied ARIMA-TARCH-BP neural network-based M-LTLF model
to the power load analysis of an actual region in China. The residuals of the
model were quadratically corrected by using BP neural network.

The Akaike information criterion (AIC) coefficient matrix, for instance,
can be used to examine the ideal parameters and forecast data for the follow-
ing two years based on 10 years of data. We have developed a method for
medium and long-term power load forecasting using the SARIMA model.
In this study, we thoroughly analyzed the entire set of data on electricity
consumption in Yunnan Province. We discovered that the data had a good
trend and strong seasonality, so after achieving reasonably good results with
the ARIMA model, we decided to use the SARIMA model to capture its
seasonal characteristics. To give a further verification of the effectiveness of
the method, we used three models, ARIMA, HOLT WINTER and LSTM to
forecast the whole electricity consumption data of Yunnan Province with the
SARIMA model used in this paper and made a side-by-side comparison in
terms of accuracy, and finally proved that the method we put up is effective
in medium- and long-term electricity load forecasting.

2 Theories and Methods

2.1 ARIMA Model

Box and Jenkins [18] proposed the ARIMA model in the 1970s, which can
describe and predict time series very well. The entire load of each cluster was
then predicted using it, and the load prediction error was examined. This is
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how the ARIMA (p, d, q) model is expressed:

yt = λ1yt−1 + λ2yt−2 + · · ·+ λpyt−p + ξt

− µ1ξt−1 − µ2ξt−2 − · · · − µpξt−p (1)

Where ξt is the white noise, λ and µ are the coefficients.
The ARIMA model has two parts.

(1) Autoregressive model part

yt = λ1yt−1 + λ2yt−2 + · · ·+ λpyt−p + ξt (2)

(2) Moving average model part

yt = ξt − µ1ξt−1 − µ2ξt−2 − · · · − µpξt−p (3)

The two parts of the ARIMA model reflect the characteristics of the
power system at the past moment and the impact of disturbance on the model
state at the current moment. If the time series is not smooth, a differential
pre-processing is necessary since the ARIMA model performs better when
predicting stationary time series data. The differencing order is d.

The optimal ARIMA model is constructed for Si,t(i = 1, 2, . . . ,K), and
the future load values of them are predicted separately and summed to obtain
the final power system load forecast.

Step 1 The pre-processed series Si,t is first tested to see if it is smooth or
not, and then the non-stable series is converted into a smooth series using
difference computation.

Step 2 The next step is to construct an ARIMA(p,d,q) product model for each
stationary time series data. Limited by the sequence length, here p and q are
restricted to be in a relatively low order, letting q = 0, 1; p = 0, 1, 2;

Step 3 The AIC is used to determine the ideal parameters for each stationary
sequence in all ARIMA models built in step 2 of the process. Because it takes
into account both the complexity of the model and the precision of model
fitting, it is a measure of modeling efficacy.

AIC = 2n+ T ln(fRSS/T ) (4)

Where n is the number of parameters to construct the model; and T is the
degree of the sequence; fRSS is the residual sum of squares, which reflects
the modeling accuracy.
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The ideal model for solving Si,t is the one with the minimum AIC value,
hence the ideal ARIMA model’s mathematical equation is as follows.

minAIC = 2n+ T ln(f2RSS/T )

s.t.


n = p+ q, p = 0, 1, 2; q = 0, 1; q ≤ p

fRSS =

√√√√ T∑
t=1

(Si,t − S∗
i,t)

2

 (5)

where S∗
i,t is the fitted value of Si,t in ARIMA(p,d,q).

2.2 SARIMA Model

The single-integrated autoregressive moving average (ARIMA) model, on
which the SARIMA model is based, is better suited for short-term forecasting
of non-seasonal time series. Some time series data exhibit clear periodic
variations that are caused by seasonal variations (such as quarterly, monthly,
and so forth) or other innate variables. Seasonal series are a type of time
series [19–22]. We transform seasonal time series into ARIMA models
using methods such as formal variance, seasonal variance, and autoregressive
automatic averaging. The SARIMA model algorithm flow is depicted in
Figure 1.

The SARIMA model with a non-stationary order p, d, q, seasonal order
P,D,Q, and a period s is denoted as

SARIMA = ARIMA(p, d, q)× (P,D,Q)s (6)

Uses finite-order seasonal and non-seasonal differences to transform a
non-stationary seasonal time series into a stationary one. The seasonal differ-
ence of the time series yt with seasonal period s is denoted as ∆syt, which is
defined as

∆syt = yt − yt−s (7)

For a time series of length T , the length is T −s after seasonal difference,
which is due to seasonal difference making s data missing.

Some time series have to be both seasonally and normally differenced
to obtain a smooth time series. Non-stationary time series yt becomes a
smooth time series ∆d∆D

s yt after d-order differencing and D-order seasonal
difference.
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Figure 1 SARIMA model algorithm flow chart.

ARIMA(p, d, q)× (P,D,Q)s is defined as

(1− φ1L− · · · − φpLp)(1− α1L
s − · · · − αPL

Ps)∆d∆D
s yt

= (1− θ1L− · · · − θqLq)(1− β1Ls − · · · − βQLQs)ut (8)

or as
ΦP (L)AP (LS)(∆d∆D

s yt) = Θq(L)BQ(Ls)ut (9)

Where: ∆ and ∆s denote non-seasonal difference, seasonal s-period
difference, respectively. d and D denote non-seasonal, seasonal differential
times. Normal difference ∆d = (1 − L)d and seasonal difference ∆D

s =
(1 − Ls)D. And the above parameters are used to convert yt into a smooth
time series. ut ∼ IN(0, σ2) is a white noise process that obeys independent
identical normal distribution.

Φp(L) = (1 − φ1L − · · · − φpLp) is the non-seasonal autoregressive
characteristic polynomial;
AP (LS) = (1 − α1L

s − · · · − αPL
Ps) is the seasonal autoregressive

characteristic polynomial;
Θq(L) = (1 − θ1L − · · · − θqLq) is the non-seasonal moving average
characteristic polynomial;
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BQ(Ls) = (1 − β1Ls − · · · − βQLQs) is the seasonal moving average
characteristic polynomial;

Subscripts p, P, q,Q denote the maximum lag order of the non-seasonal,
seasonal, autoregressive, and moving average operators, respectively. For
quarterly series, s = 4; for monthly series, s = 12.

2.3 Evaluation Indicators of Model Forecast Results

The accuracy of the prediction is the most crucial performance evaluation
criterion, and the method used to assess accuracy is typically based on the
forecast’s error, or the difference between actual and predicted values.

Set (ŷ1, ŷ2, ŷ3, ŷ4, . . . , ŷh) as the forecast value, (y1, y2, y3, y4, . . . , yn) as
the actual value, n as the number of samples, and h as the number of forecast
periods.

2.3.1 Root mean square error (RMSE)

RMSE =

√√√√1

h

h∑
t=1

(yt − ŷt)2 (10)

2.3.2 Mean absolute error (MAE)

MAE =
1

h

h∑
t=1

|yt − ŷt| (11)

2.3.3 Mean absolute percentage error (MAPE)

MAE =
1

h

h∑
t=1

∣∣∣∣yt − ŷtyt

∣∣∣∣ (12)

To compare the forecasted results of the same series in different models,
MAPE is also required because RMSE and MAE primarily depend on the
magnitude of the absolute value of the dependent variable. And the more
accurate the model forecast, the lower the MAPE value must be.

2.4 ADF Test

To determine whether the original time series is smooth, it is necessary to test
the smoothness of the series. There are two methods of smoothness testing:
one is to judge the smoothness by the shape and trend of the time series graph;
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the other is to judge the smoothness by constructing a test statistic. Since the
ADF test in the second method can accurately determine the series stability,
this paper adopts it to determine whether the original series and the series
after differencing are smooth.

2.5 Network Search

The gold standards for evaluating how well a statistical model fits are AIC or
Bayesian Information Criterion (BIC). And their expressions are as follows.

AIC = 2n− 2 lnLF (13)

BIC = n lnm− 2 lnLF (14)

where m is the number of samples, L is the likelihood function, and n is the
number of model parameters. Based on the specific model parameters found
by network search, the AIC and BIC criterion have been employed in this
paper to choose the best parameters.

3 SARIMA-Based M-LTLF

This study is based on the SARIMA model used for Yunnan Province’s power
load forecasting. As a result, we forecast the changing trend of the power
load from 2019 to 2020 using the Yunnan Province’s total society’s energy
consumption from 2008 to 2018 as the training data.

3.1 Data Pre-processing

In our study, the data used was provided by Yunnan Power Grid. We use
seasonal companion features for missing data to ensure data continuity; on the
other hand, in order to reduce the influence of the abnormal data on model
predictions, we remove some abnormal data. Finally, the overall electricity
consumption of various industries of Yunnan Province from 2008 to 2020 are
shown in Figure 2.

The experimental data is split into training set and test set according to the
time period, with the training set being the overall electricity consumption of
various industries from January 2008 to December 2018 and the test set being
the overall electricity consumption of various industries from January 2019
to December 2020.
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Figure 2 The overall electricity consumption of various industries in Yunnan Province from
2008 to 2020.

3.2 Data Analysis

We employed three approaches to analyze the experimental data: lag analysis,
trend and seasonal characteristics analysis, and data smoothness test, in order
to better study the characteristics of the whole society power consumption
data in Yunnan Province.

In time series analysis, the time series elements are generated by the lag
operator to generate an element before the time point, which is also the basis
of the ARIMA model. Therefore, lag analysis of time series data is required.

Trend and seasonal characteristics are the basic characteristics of the
SARIMA model. If the data has obvious periodic changes, the SARIMA
model is used; otherwise, the ARIMA model is used.

When using the SARIMA model, the time series data must be guaranteed
to be stationary, otherwise, differential pre-processing is required, so the data
needs to be checked for data stationarity.

3.2.1 Lag analysis
To check whether the experimental data are autocorrelated, we performed
lag analysis on the experimental data, and the results of the analysis are in
Figure 3.

As can be seen in Figure 3, the data show an overall aggregation trend
as the lag value increases, indicating that the data we used have a strong
autocorrelation.
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Figure 3 Results of lag analysis of the overall electricity consumption of various industries
in Yunnan Province.

3.2.2 Lag analysis
We examined the data for trend and seasonal characteristics in order to
further study the characteristics of the experimental data, and the results are
displayed in Figure 4.

It can be seen clearly from Figure 4 that the experimental data have a
strong trend and show a continuous growth trend, the experimental data have
strong seasonality, and the seasonal characteristics of the experimental data
are considered to be extracted with an emphasis in the subsequent study.

3.2.3 Data stability test
The ADF test (Augmented Dickey-Fuller Testing) was applied to the exper-
imental data to determine whether they have predictive value. The visualiza-
tion outcomes after computing the rolling mean and rolling standard deviation
are displayed in Figure 5.

It can be seen in Figure 5 that the rolling mean is a trend component,
although the rolling standard deviation is relatively constant over time.
To ensure the time series is smooth, we need to ensure that the rolling
statistics remain constant over time, so their curves must all be parallel to
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Figure 4 Results of trend and seasonal characteristics analysis of electricity consumption of
the overall electricity consumption of various industries in Yunnan Province.

Figure 5 Results of smoothness test of electricity consumption of the overall electricity
consumption of various industries in Yunnan Province.
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Figure 6 Difference conversion of electricity consumption of the overall electricity con-
sumption of various industries in Yunnan Province.

the x-axis. Next, we perform ADF test. After testing, we found that the time
series of the experimental data is not stationary, so we decided to use some
stationary time series methods such as logarithmic transformation, exponen-
tial transformation and time split to better determine the model parameters.
The result of the data differential conversion is shown in Figure 6.

These techniques considerably smoothed out the time series, and we used
the ADF test to measure the impact of data modification. The results of the
ADF test are displayed in Table 1.

As can be seen above, the p-value is reduced from 0.99 to 0.000076. Other
values are also closer to the test statistic. This proves that the time series has
been extremely smooth and the next step of optimizing the parameters can be
carried out.

3.2.4 Optimal parameter selection
We make the time series smooth by first-order difference, so the time dif-
ference order d is set to 1 and the period difference order D is set to 1.
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Table 1 Results of ADF test for difference conversion of electricity consumption of the
overall electricity consumption of various industries in Yunnan Province

Indicator Value
Test Statistic 4.722616
p-value 7.6e-5
#Lags Used 12.0
Number of Observations Used 142.0
Critical Value (1%) 3.477262
Critical Value (5%) 2.882118
Critical Value (10%) 2.577743

Figure 7 Parameter optimization of SARIMA-based M-LTLF model.
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The time series has a very strong seasonal character by year, so the periodic
time interval S is set to 12.

From the ACF and PACF plots, we can determine the values of the
optimal parameters. We can consider temporarily taking p to be 1 and q to
be 1. After that, we use the optimal parameter selection method to determine
the maximum lag order p of the non-seasonal average operator to be 0, the
maximum lag order q of the autoregressive average operator to be 1, the max-
imum lag order P of the seasonal average operator to be 0, and the maximum
lag order Q of the moving average operator to be 2.

3.3 Analysis of Forecast Results

We use the electricity consumption of the overall electricity consumption of
various industries in Yunnan Province from 2008 to 2018 for model training,
and use the electricity consumption of the overall electricity consumption
of various industries in Yunnan Province from 2019 to 2020 for testing the
model performance. The final model fitting results are displayed in Figure 8.

To test the forecast results, an accuracy assessment was performed, and
the MAPE was selected as the evaluation criterion of the model in this paper.
The model MAPE error was calculated to be 6.05%.

Figure 8 Results of SARIMA-based M-LTLF.
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Figure 9 Standardized residual plots of SARIMA-based M-LTLF model.

To further test the effectiveness of the forecast, we test the forecast model.

(1) Firstly, the standardized residual plots were drawn to check whether the
SARIMA-based M-LTLF model could make forecasts correctly, specifically
by checking whether the residuals of the model conformed to the character-
istics of the normal distribution through the standardized residual plots, as
shown in Figure 9.

The histogram of the model residual distribution and the model kernel
density curve obtained after running the model are shown in Figure 10, which
clearly shows that the standardized residuals of the forecast model can show
a normal distribution.

(2) Then, we looked into the possibility that the model’s residuals might
exhibit correlation properties. In particular, we produced the Q-Q distribution
of the forecast model residuals and the ACF of the model residuals (shown in
Figure 11). The ACF plot demonstrates that the autocorrelation function and
partial autocorrelation function of the residual series of the model are essen-
tially within the acceptable error range. The Q-Q distribution demonstrates
that the distribution of the residuals follows the trend of normal distribution
and has the characteristics of normal distribution.
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Figure 10 Histogram of residual distribution and kernel density curve of SARIMA-based
M-LTLF model.

Figure 11 Q-Q distribution and residual ACF of SARIMA-based M-LTLF model.

3.4 Comparative Analysis

We have used more than ten models in the experimental process and selected
three of them with better results for cross-sectional comparison. The MAPE
of SARIMA, HOLT WINTER, LSTM, and ARIMA models are 6.05%,
9.18%, 10.67%, and 13.87%, respectively, which shows that the model we
proposed is significantly more effective than the others.



300 C. Yin et al.

Figure 12 Experimental results of comparing electricity consumption data of the whole
society in Yunnan Province.

MAPE is a relative error measure that is suitable for performance com-
parisons of different time series forecasting models, so we use MAPE as a
metric for the model optimizer.

4 Conclusion

In our study, a SARIMA model for M-LTLF is constructed by modeling the
electricity consumption data of the whole society in Yunnan Province from
2008 to 2018. Firstly, the experimental data were pre-processed and analyzed
by using lag analysis, trend and seasonal characteristics analysis, and data
stability test, and the analysis results show that the experimental data have
the characteristics of strong autocorrelation, continuous upward trend, and
strong seasonality; then, log transformation, exponential transformation, and
time splitting were used to make the experimental data smooth; finally, the
parameters of the model were optimized, and the model was tested using the
test set, and the model finally obtained a MAPE of 6.05%.
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By comparing the forecast results with the models of ARIMA,
HOLT WINTER and LSTM, we find that the model we proposed outper-
forms the other models compared in the paper and creates a new idea for
M-LTLF.
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