
LSTM Based Forecasting of PV Power for a
Second Order Lever Principle Single Axis

Solar Tracker

Krishna Kumba∗, Sishaj P. Simon, Kinattingal Sundareswaran
and Panugothu Srinivasan Rao Nayak

Department of Electrical and Electronics Engineering, National Institute of
Technology, Tiruchirappalli, Tamil Nadu, India
E-mail: kumba.krishna@gmail.com
∗Corresponding Author

Received 31 January 2022; Accepted 08 November 2022;
Publication 31 January 2023

Abstract

Nowadays solar power generation has significantly improved all over
the world. Therefore, the power estimation of photovoltaic (PV) using
weather parameters presents the future management of energy utilization in
power system planning. This article presents the power forecast of the Sec-
ond Order Lever Principle Single Axis Solar Tracker (SOLPSAST) system.
A deep neural network is developed using Long Short Term Memory (LSTM)
and is validated on sunny, cloudy and partially cloudy days. The performance
of the proposed LSTM in comparison with Support Vector Machine (SVM)
has improved the Mean Absolute Proportion Error (MAPE) forecasts accu-
racy to 4.29%, 5.16%, and 4.82% for sunny, cloudy and partially cloudy
days, respectively. Also, the estimated Mean Relative Error (MRE) value
of the LSTM model for sunny, cloudy and partially cloudy days is 3.19%,
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4.10%, and 4.02%, respectively. Finally, the forecasted power generation of
the SOLPSAST system’s monthly average and annual generation is found to
be 2.45 Wh, and 29.44 kWh, respectively.

Keywords: LSTM method, photovoltaic, PV forecasting, single axis solar
tracker, solar energy.

1 Introduction

Sun is a significant supplier of solar energy to the Earth. Solar power emerges
as a viable alternative energy source that can meet a larger portion of the
world’s expanding energy demands. Therefore, photovoltaics (PV) has an
important role in increasing the worldwide energy demand scenario. PV
systems convert solar radiation into electricity and play a critical part in
our power system’s energy transition. The generation and performance of
the PV system depend on several factors such as uncertainties of weather
(solar irradiance, module temperature, outside temperature, cloud cover, wind
speed, and humidity of the atmosphere), timing, and operating condition.
Consequently, this poses complications in power system grid supervision
with the PV systems. In supervision, the cost of operations and maintenance
currently has an important impact on the profit of solar PV systems. Technical
development offers the opportunity to generate clean energy at a low cost.

Solar power must be estimated in the short and long term by the energy
market. An accurate PV generate forecast is required for the safe and worth-
while integration of PV in smart grids [1, 2]. PV power estimation in PV
power plants is an extremely dynamic research field. Moreover, forecasting
PV power generation ensures the power grid’s safety and supports reducing
the operational expenses of these solar energy sources. PV power forecasting
is primarily done in three categories. They are physical, numerical, and
machine learning models [3]. A physical model is based mostly on the
interplay of physics rules based on radiation and weather [4]. Numerical
weather forecasting [5], sky imager [6], and satellite perception [7] are
the three subtypes of physical models. Fuzzy system [8], Grey system [9],
Markov chain [10], Autoregressive [11], and Regression method [12] are the
five sub-models of statistical models [13]. The above methods strongly rely
on historical data to be able to predict future time series [14].

Support vector machine [15], and artificial neural networks (ANN) are
sub-models of the machine learning model. Support vector machine (SVM)
models are significant kernel-based learning models that can provide accurate
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predictions using kernel tricks. The SVM is a reliable approach for predict-
ing solar PV power. The main applications of SVM algorithms are non-
linear regression problems like PV power forecasting. Choosing appropriate
kernel functions and accelerating training speed throughout its quadratic
programming process are challenging tasks in SVM algorithms [16]. Hence,
researchers have merged SVM methods with other predictive approaches to
provide more accurate short-term PV forecasting estimates.

A subset of artificial intelligence is machine learning (AI). This improves
the accuracy of software programmers in anticipating outcomes without
requiring them to be particularly developed. It can extract extensively compli-
cated nonlinear characteristics efficiently and have the capability of mapping
straight from input to output. The decision tree [17], The most extensively
utilized algorithm for forecasting time series data is the ANN model [18, 19].
Machine learning algorithms have significantly increased the predicting pre-
cision of PV power that can use historical information. The approaches for
predicting PV generation using ANN and Long Short-Term Memory (LSTM)
are listed below.

Adel Mellit et al. have forecasted the 24 hr ahead power of PV using
solar radiation and ambient air temperature data and achieving an RMSE
value of 32.98–75.48% with the ANN method [20]. A. Yona et al. has fore-
casted day ahead PV power using weather data consisting of solar radiation,
relative humidity, wind speed, and temperature. The RMSE value attained
was 0.478–1.176 of ANN methods [21]. F. Almonacid et al. has forecasted
one hour ahead of PV power using solar radiation, cell temperature, and
IV curve of the PV module data. The RMSE value realized is 3.38% with
this method [22]. Changsong Chen et al. designed an online PV power
predicting model that uses weather data such as solar radiation, humidity,
wind speed, and ambient temperature to forecast PV power 24 hours ahead
of time. MAPE value for the ANN method is 9.33–10.80% [23]. Ercan Izgi
et al. has forecasted 0–60 mins PV power using past values of 750 W solar
PV panel data. The RMSE value obtained is 19.95–54.11 [24]. Hugo T.C
et al. forecasted one and two hours ahead of PV power using the production
of past data. The RMSE value realized is 107 kW and 160.79 kW of the
ANN method [25]. Jie Shi et al. has forecasted one day ahead of PV power
utilizing numerical weather predictions from weather parameters such as
cloudy day, clear sky, rainy day, and foggy. The RMSE average value attained
is 2.10 [26]. Monowar Hossain et al. forecasted one day and one hour ahead
of PV power using average solar irradiation, module temperature, wind speed,
and air temperature. The RMSE value achieved is 35.78 [27]. Jun Liuet
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al. has forecasted 24 hours ahead of the PV power using solar irradiance,
wind speed, humidity, and ambient temperature. The MAPE value obtained
is 6.38–8.27 [28]. The above literature review [20–28] shows that the ANN
forecasts PV power using weather data. However, the arithmetic metrics
parameters RMSE and MAPE are not close to true values. Furthermore, the
difference between the forecasted and actual power of the ANN method is
slightly greater. The literature review of forecasted PV power using LSTM
networks is as follows.

A. Gensler et al. has forecasted day ahead PV power using weather
predictions from the diffuse and direct solar, clear-sky filter, and temperature
parameters. They achieved an RMSE value of 0.0713 using Auto LSTM
methods [29]. Woonghee Lee et al. forecasted day ahead PV power using
weather data received from a rough guess of the national weather center
solar irradiation, temperature, humidity, wind speed, and precipitation. The
RMSE value obtained is 0.0987–0.2520 using LSTM and Convolutional
Neural Networks (CNN) methods [30]. Donghun Lee and Kwanho Kim
forecasted one hour ahead of PV power using real-world weather dataset
solar radiation, temperature, humidity, and cloudiness month of the. The
RMSE value achieved is 0.563–0.874 using the LSTM method [31]. Abdel-
Nasser and Mahmoud forecasted one hour ahead of PV power using datasets
from many locations over for a year. The RMSE value ranges between
82.15–136.87 for five different LSTM methods [32]. Yoonhwa Jung et al.
forecasted monthly PV power using a weather dataset of solar irradiation,
wind speed, humidity, temperature, precipitation, duration of sunshine, and
cloud cover. The RMSE value realized is 7.416% [33]. Mingming Gao et al.
forecasted day ahead and one-hour PV power using condition mean values
of solar radiation, highest and lowest temperature, and relative humidity.
They recorded a RMSE value 4.62–17.3% and 5.34–13.86% [34, 35]. Fei
Mei et al. forecasted the day ahead power of PV using historical PV power,
solar radiation, and temperature. The RMSE value obtained is 58.9834–
71.1089 using LSTM Quantile Regression Averaging [36]. Kejun Wanget al.
forecasted PV power using temperature, phase average active power, global
and solar diffuse horizontal radiation, and wind velocity. The RMSE value
acquired is 0.621 [37]. Fei Wang et al. forecasted day-ahead PV power using
normal solar radiation and temperature and achieved an RMSE value of 6.29–
8.83% [38]. Biaowei Chen et al. forecasted five minutes ahead of PV power
using historical PV data, global and diffuse horizontal solar radiation, tem-
perature, and humidity. The average enhancement of RMSE by this method
is 30.01% [39].
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In recent decades, machine learning techniques such as ANN, SVM,
and LSTM are the developed as models to forecast PV power in the above
literature. According to the aforementioned literature review, deep learning
networks are good at forecasting PV power using renewable meteorological
conditions. However, these techniques use past data from the PV forecasting
models, and various factors also affect the output of PV. The majority of
forecasting techniques do not analyse the relationship between the vari-
ous factors and PV output. The deep learning network mostly outperforms
the conventional ANN and SVM networks in predictions. The majority
of the investigations are carried out for fixed systems using meteorolog-
ical factors for one hour and day-ahead output power forecast. However,
no work is projecting the output power of a PV tracking system based
on weather conditions. Moreover, the energy estimation of the PV system
throughout the year is not been done so far. Therefore, this work evaluates
the forecasting of single-axis solar tracker [40] PV power using a deep
neural network. The following is a summary of this paper’s significant
contributions:

i. An LSTM-based network is developed to forecast the SOLPSAST
system power for the day ahead and throughout the year.

ii. The performance of the LSTM model in forecasting is evaluated for
different weather conditions (sunny, cloudy, and partially cloudy days).

iii. The developed LSTM model is compared with two well-known PV
power forecasting techniques (SVM and Backpropagation Neural Net-
work (BPNN)) to show its efficiency.

The rest of the article is structured as follows. Performance evaluation
of the LSTM model is discussed in Section 2. Methodology and used data
set are discussed in Section 3. Section 4 gives the arithmetic evaluation mea-
sures. Section 5 describes the SOLPSAST system’s operational capabilities.
Section 6 contains the SOLPSAST generated and LSTM, SVM and BPNN
models forecasted results and discussion. The conclusions are presented in
Sections 7.

2 Long Short Term Memory (LSTM) Formation and
Simulation Tool

The LSTM as opposed to traditional feedforward neural networks uses feed-
back connections. The LSTM formation and LSTM cell structure are shown
in Figure 1. The LSTM cell has four basic components: (i) cell (C), (ii) forget
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Figure 1 LSTM model and LSTM cell structure.

gate (ft), (iii) input gate (it), and (iv) output gate (ot). Wherein, x and h are
the input layer and hidden layer. The cell state values and three genes govern
the movement of data in and out of the cell at random time intervals [41].
The variables’ calculation formulas are as follows:

ft = σ(Xt ∗ Uf + ht−1 ∗Wf )

Ct = tanh(Xt ∗ Uc + ht−1 ∗Wc)

It = σ(Xt ∗ Ui + ht−1 ∗Wi)

Ot = σ(Xt ∗ Uo + ht−1 ∗Wo)

Ct = ft ∗ Ct−1 + It ∗ Ct

ht = Ot ∗ tanh(Ct)

Where W, U are weight for ft, it, ot. σ is the activation function.
Here, the significant aim is to develop a proper learning rate for an LSTM

forecast model. MATLAB deep learning toolbox is used in this work and
using this toolbox the LSTM model is developed. The stochastic gradient
descent technique and Adam algorithms are recommended by MATLAB as
the optimization approach for LSTM implementation [42].
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3 Methodology and Dataset

The proposed LSTM for SOLPSAST system for power forecasting is pre-
sented in flowchart (ref Figure 2). In this flow chart, the sequence of actions
carried out is presented. The meteorological data inputs (solar radiation (G),
ambient temperature (Tamb), module temperature (TCell)) and the output data
sets (SOLPSAST system’s power) are recorded placed at a latitude of 10.78◦.
The meteorological data is gathered from the Davis Pro2 weather station and
generated SOLPSAST system output power is taken using a data logger. All
these systems are free from shading effects. The weather and generated power
data are considered from 6.00 AM to 6.00 PM. All these data are standardized
into normalized form with five min intervals. So, the total number of samples
for a given day will be 144. For both current and future needs, the database
will store all input data.

Data pre-processing is performed to confirm the data set entry form to the
LSTM model. Any peak and non-stationary data elements in the input data
forecasting model indicate that the PV power forecasting model is improperly
trained, resulting in a significant prediction error. Consequently, the data pre-
treatment techniques are used for parsimony, missing values, and feature
scaling. Without assuming a certain model relationship, machine learning
can learn on its own and make accurate predictions. Initial time-series data
is divided into training and testing groups. The simulation uses data from 91
days in total. In the simulation, 87 days are used for training, and 4 days are
used for testing. The power generated by the SOLPSAST system is the target
data set. After being trained using training data, the LSTM network will be
put to the test with targeted data.

The PV forecasting model can find the most relevant data to forecast PV
outputs after it has the G, Tamb, and TCell data of the target day. The forecast
model can locate similar seasonal samples and the same weather type. These
days should have the closest solar radiation. Therefore, the test day’s PV
production curve will likely follow a similar pattern. Here, the historical
data of power values already obtained on test days are used to compare
the forecast output of LSTM model. The data obtained on testing days are
used to determine the error metrics. Equation (1) can be used to compute the
temperature of PV module cells. Where NOCT is the normal operating cell
temperature [21].

TCell = Tamb +G
NOCT − 20

800
(1)
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Figure 2 Flowchart of power forecasting method.

4 Performance Evaluation

Four arithmetic metrics are used to assess the LSTM, SVM, and BPNN
forecast models of the SOLPSAST system, whose advantages are explained
as follows [43–45]:

Mean Absolute Error (MAE) is the number of mistakes within paired
observations that demonstrate the same feature.

MAE =
1

n

n∑
i=1

|PForecasted [i]− Pactual [i]| (2)

where n denotes the number of samples.
In Root Mean Square Error (RMSE) the mistakes are squared before

being averaged, and it gives significant errors a comparatively high weight.

RMSE =

√√√√ 1

n

n∑
i=1

(PForecasted [i]− Pactual [i])
2 (3)

The Mean Absolute Proportion Error (MAPE) is a related metric that
displays errors as a percentage of the actual data. The most significant
advantage of MAPE is that it provides a straightforward and natural means
of measuring the degree or impact of mistakes.

MAPE =
1

n

n∑
i=1

∣∣∣∣PForecasted [i]− Pactual [i]

Pactual [i]

∣∣∣∣× 100% (4)



LSTM Based Forecasting of PV Power for a SOLPSAST 383

Mean Relative Error (MRE) is highly useful when comparing measured
data in units. It will give how far the forecasted value is from measured values.
Here, P capacity

PV is the system capacity.

MRE =
1

n

n∑
i=1

|PForecasted [i]− Pactual [i]|
P capacity
PV

(5)

Moreover, the coefficient of discrimination (COD) R2 is usually used
for performance regression analysis. The COD can be calculated using
Equation (6).

R2 = 1−
∑n

i=1 (PForecasted [i]− Pactual [i])
2∑n

i=1 (PForecasted [i]− PForecasted(avg)[i])
2 (6)

Diebold-Mariano Test

The performance of the forecast models with respect to each of the individual
models is statistically analyzed using Diebold-Mariano (DM). In order to go
one step further, DM test is used to find whether this difference between two
or more forecasts is significant or not, or simply because of the sample’s
unique selection of data values [46, 47]. The DM criterion determines if the
two forecasts are significantly different based on general assumptions. Let
Error1 (e1) and Error2 (e2) are the residuals for the two forecasts.

di = e1
2 − e22 (7)

di is loss-differential of time series. The MAE error statistic of function as

d =
1

n

n∑
i=1

di µ = E[di] (8)

for n > k ≥ 1, the autocorrelation function γk defines as

γk =
1

n

n∑
i=k+1

(di − d)(di−k − d) (9)

For m ≥ 1, the DM can be obtained using Equation (10).

DM =
d√

[γ0 + 2
∑m−1

k=1 γk]/n
(10)



384 K. Kumba et al.

In the sufficient value of m = n1/3 + 1.
Thus, if |DM | > zcrit, where zcrit is the two-tailed critical value of

the standard normal distribution, there is a considerable discrepancy in the
forecasts.

zcrit = NORM.S.DIST
(
1− α

2
, TRUE

)
(11)

Where α is the level of significance which is equal to 5% or 0.05.

5 SOLPSAST System

The SOLPSAST system is operating at a latitude of 10.78◦. The SOLPSAST
system is shown in Figure 3. The second-order lever principle governs the
operation of the SOLPSAST system. The PV panel of the SOLPSAST system
is designed by balancing the mass of water with the part mass of the PV panel
on one side (left) of the fulcrum and the mass of the PV panel on the other
side (right) [40]. During sunrise, the PV module of the SOLPSAST system
faces west. A DC pump is employed to fill the water tank by drawing water
from the collector tank in the ground at 6.00 AM of sunrise. The pump fills
the tank with enough water to shift the PV module to face the sun directly to
the east.

A switching automation system controls the ON and OFF of the DC water
pump. A constant pressure valve is placed at the bottom of the water tank. The

Figure 3 SOLPSAST system.
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Figure 4 Morning, Afternoon, and Evening variation of SOLPSAST system.

Figure 5 DC-DC converter of SOLPSAST with the data monitoring system, Controller and
Weather station.

desired filled water tank on the PV panel’s left side will commence leaking
continuously due to the constant pressure value. When water leaks from the
orifice of the water tank, the total weight left side to the fulcrum will reduce
while the weight right side to the fulcrum will be the same as before. Hence
in order to counterbalance the weight reduction left side to the fulcrum a
clockwise torque act upon the SOLPSAST system around the fulcrum axis.
So, it will tend to rotate clockwise from morning to evening. The flow of
water through the orifice is controlled by a constant pressure valve such that
it takes sunrise to sunset time to rotate −45◦ to 45◦. Consequently, the PV
module continuously tracks the sun from sunrise to sunset. The movements of
the SOLPSAST system in three time zones (morning, noon, and evening) are
depicted in Figure 4. To harvest maximum power from the SOLPSAST sys-
tem, the maximum power point tracking (MPPT) approach with the Perturb
and Observe (P&O) algorithm is used in this system. Figure 5. exhibits DC to
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Table 1 Technical specifications of solar panel
Pmax Number of Cells Voc Vmp Isc Imp NOCT
20 W 36 21.6 V 17.24 V 1.31 A 1.16 A 47 ± 2

DC converter of the SOLPSAST system, as well as the Davis vantage PRO2
weather station, and data logging system. The automation system which
uses an Arduino controller is also shown in the same figure. The technical
specifications of the solar panel employed in this work is shown in Table 1.

6 Results and Discussion

The input data parameters solar irradiance, and ambient temperature are
logged in the Davis vantage PRO2 (ref Figure 5) weather station, and module
temperature is recorded using a data logger. The plot for the solar irradiation
(G) data that is used in the simulation is shown in Figure 6. The test site’s
average solar irradiation of the year is about 5.42 kW/m2. The ambient
temperature (Tamb), as well as the SOLPSAST system cell temperature, are
shown in Figure 7. The year’s average ambient and cell temperatures are
32.97◦C and 40.67◦C, respectively.

The standardization procedure is required to pre-process the data because
the dimensions of each type of data in the data collection are not uniform.
Standardization converts all data into the range [0, 1], which aids in the gen-
eralization of the LSTM forecast model and reduces the model’s computation
time. The standardization formula is given in Equation (12). Where, xi, xmax,
and xmin are original data, input samples maximum and minimum values
respectively.

x′i =
xi − xmin

xmax − xmin
(12)
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Figure 6 Solar irradiance.
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Figure 7 Ambient and module cell temperatures.

The forecasting model’s output is still normalized; to compare with actual
values, the output must be denormalized. For denormalization, Equation (13)
is used.

x̂i = x′′i ∗ (xmax − xmin) + xmin (13)

Where x′i, is after normalization data. x′′i , and x̂i are normalized forecast-
ing and forecasting values.

In this study, the LSTM model of the SOLPSAST system consists of
several learning variables. Multiple trials are conducted and determined the
best number of hidden layers and hidden neurons required for the forecast
model to produce the most accurate results. The number of LSTM model
layers (L) is varied from 1 to b and the layers for which MAPE minimum
are fixed. Once the layers are fixed, change the number of neurons (N) for
all layers (L) from 1 to c and fix the number of neurons for which MAPE
minimum. Equation (14) is used to select the best LSTM design for the three
inputs and one output.

Lbest(Nbest) = min MAPE(Lb(Nc)) (14)

Figure 8 depicts the LSTM forecasting model’s training and validation.
The training data set is used to train the LSTM model, the verification set is
used to fine-tune the LSTM model’s parameters, and the test set is utilized to
evaluate the model’s forecasting performance. The MAPE (%) of the trained
LSTM forecast model is shown in Figure 9 for three different weather
conditions (sunny, cloudy, and partially cloudy). The maximum MAPE (%)
values on sunny, cloudy, and partially cloudy days with 2 hidden layers and
5 hidden neurons are 15.32, 18.23, and 17.52, respectively. The minimum
MAPE (%) values on sunny, cloudy, and partially cloudy days with 10 hidden
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Figure 8 Training and validation of LSTM model.

Figure 9 Optimal selection of LSTM model.

layers and 40 hidden neurons are 9.85, 11.25, and 10.55, respectively. So,
majorly the LSTM model produces better accuracy with 10 hidden layers
and 40 hidden neurons.

Moreover, this paper compares the LSTM performance with six SVM
models using the following kernels: Linear SVM (SVM Lin ), Quadratic SVM
(SVM Qua), Cubic SVM (SVM Cub), Fine Gaussian SVM (SVM Fin Gau),
Medium Gaussian SVM (SVM Med Gau), and Coarse Gaussian SVM
(SVM Coa Gau). For regression applications, several approaches use nonlinear
kernel functions. The SVM Fin Gau, radial basis function (RBF) [27] is one
of the efficient kernel functions. The kernel function of the nonlinear radial
basis is given in Equation (15).

K(X1, X2) = exp

(
‖X1 −X2‖2

2σ2

)
(15)
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Figure 10 Box plot of solar radiation, ambient temperature, and actual power.

Where X1 and X2 are the input space vector and the feature vector
generated from the training or the test samples, and σ (0.58): variance.

In addition, we compare the LSTM performance with BPNN also.
The feed-forward BPNN is the most widely used artificial neural network
architecture. The training process of a network is based on the optimization
of weights in all nodes’ connection and bias terms. This process is repeated
until the forecasted output layer values are as close to the actual outputs as
possible. The functions defined in the BPNN model has 3-inputs, 10-hidden
layers, 40-hidden neurons, and 1-output. The Sigma activation function and
the Levenberg Marquart rule are employed. The total number of iterations
is 1500.

Figure 10 depicts a box plot of the SOLPSAST system’s solar radia-
tion, ambient temperature, and actual power on sunny, cloudy, and partially
cloudy days. On three different days, the average sun irradiation of the
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Figure 11 Actual and forecasted power of (a) LSTM, (b) SVMFin Gau, and (c) BPNN
models.

testing site is 451.54 W/m2, 394.40 W/m2, and 493.50 W/m2. The average
ambient temperature (Tamb), as well as the SOLPSAST system average cell
temperature (TCell ) for the 3 days are (28.88◦C, 27.81◦C, 31.13◦C) and
(35.88◦C, 31.13◦C, 38.88◦C), respectively. The actual power and forecasted
power of LSTM, SVM Fin Gau, and BPNN models for 3 days are shown in
Figure 11. Here, the figures show the forecasted output power signal that
appears to respond to each swing and track its movement, mirroring the
overall behavior of the measured output data. Figure 12 shows the forecasted
data is very near to the observed test data. Hence, the LSTM, SVM Fin Gau,
and the BPNN model is fit for power forecasting. The actual generated power
of on sunny, cloudy, and partially cloudy days is 104.78 Wh, 80.19 Wh,
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Figure 12 Actual and forecasted power of LSTM, SVMFin Gau, and BPNN models.

and 90.14 Wh, respectively. However, the forecast power is estimated as
(101.54 Wh, 77.08 Wh, 86.59 Wh) using LSTM, (95.24 Wh, 69.44 Wh,
70.84 Wh) using SVM Fin Gau and (93.44 Wh, 69.44 Wh, 79.75 Wh) using
BPNN.

The linear regression investigation between measured and estimated
power is evaluated. Figure 13 shows the scatter plot of the generated and
forecast power of the LSTM, SVM Fin Gau, and BPNN models during sunny,
cloudy, and partially cloudy days. The SOLPSAST coefficient of discrimi-
nation R2 value for the 3 days is 0.9759, 0.9612, and 0.9734. The R2 value
of the SOLPSAST’s LSTM model is good in contrast to the SVM Fin Gau,
and BPNN models. Moreover, the statistical performance evaluation of the
LSTM, SVM and BPNN models for the SOLPSAST system is given in
Table 2. Furthermore, the MRE (%) of LSTM, SVM, and BPNN models are
presented in Table 3.

During a sunny, cloudy, and partially cloudy day, the MAE and RMSE
values of the LSTM model are 0.35, 0.50, 0.49, and 5.08, 5.71, 5.55,
respectively. The estimated MAE and RMSE values of LSTM are better
when compared to the MAE and RMSE of the SVM and BPNN algorithms.
The LSTM, SVMFin Gau, and BPNN models can forecast power generation
with good accuracy, as shown in Figures 11 and 12. Tables 2 and 3 indicate
that the LSTM model outperforms the SVM and BPNN forecasting models.
Hence, the LSTM model is fit for power forecasting. Figure 14 depicts box
plots of forecasted error versus LSTM, SVM, and BPNN models.
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Figure 13 Linear fit curve of actual and forecasted power LSTM, SVMFin Gau, and BPNN
models.

Table 2 Statistical performance of LSTM, SVM, and BPNN models
Sunny Day Cloudy Day Partially Cloudy Day

Model MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

LSTM 0.35 5.08 0.97 0.50 5.71 0.96 0.49 5.55 0.97
SVM Lin 1.87 7.38 0.81 1.49 7.12 0.83 1.52 7.31 0.81
SVMQua 2.10 8.12 0.89 1.47 7.13 0.84 1.57 7.33 0.86
SVMCub 1.49 7.13 0.84 1.48 7.14 0.82 1.62 7.45 0.86
SVM Fin Gau 1.46 7.10 0.95 1.44 7.09 0.85 1.26 6.95 0.95
SVMMed Gau 1.49 7.12 0.79 1.59 7.34 0.79 1.68 7.55 0.80
SVMCoa Gau 2.10 8.11 0.83 1.91 7.61 0.81 1.79 7.95 0.81
BPNN 2.17 8.39 0.94 1.98 7.68 0.93 2.10 8.35 0.93

6.1 Diebold-Mariano (DM) Statistical Analysis

Furthermore, the forecasted error of the LSTM, SVM, and BPNN model’s
effectiveness is evaluated using the Diebold-Mariano (DM) criterion.
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Table 3 MRE (%) of LSTM, SVM, and BPNN models
Model Sunny Day Cloudy Day Partially Cloudy Day
LSTM 3.19 4.10 4.02
SVM Lin 11.35 13.76 10.41
SVMQua 13.47 14.52 10.91
SVMCub 11.38 13.38 11.99
SVM Fin Gau 10.02 13.19 10.39
SVMMed Gau 10.42 14.91 11.78
SVMCoa Gau 10.57 14.12 11.99
BPNN 12.13 15.48 13.03
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Figure 14 Box plot of forecasted error.



394 K. Kumba et al.

Table 4 |DM|and p statistical values
DM Test Based
on LSTM and

SVM

DM Test Based
on LSTM and

BPNN

DM Test Based
on SVM and

BPNN
|DM| – Sunny day 3.1751 2.8625 3.2963
p-value – Sunny day 0.00149 0.00420 0.00097
|DM| – Cloudy day 3.1685 2.7082 3.0426
p-value – Cloudy day 0.00153 0.00676 0.00234
|DM| – Partially cloudy day 2.6816 2.4918 1.9698
p-value – Partially cloudy day 0.00732 0.01270 0.04886

The residuals represent the difference between the significance in error mea-
surements of the three forecasts data while comparing with one another such
as (LSTM and SVM), (SVM and BPNN), and (LSTM and BPNN). From
error data, by using Equations (7)–(11) we can calculate the DM statistical
and p-values. The DM and p-values are evaluated according to the absolute
error loss.

The order of samples (h) is determined using the equation,m = n1/3+1;
where n = 144. Consider that since m = n1/3 + 1 = 1441/3 + 1 = 6.24,
m = 6 seems to be a suitable value to use after rounding off. Hence, all DM
statistics values will be considered for the order h = 6. The conditions for the
analysis of the significant difference between the two forecasts are:

i. If |DM|> zcrit and p-value < α, then there is a substantial variance
ii. If |DM|< zcrit and p-value > α, then there is no substantial variance

From Equation (11) by putting α = 0.05 we can obtain zcrit = 0.835.
The determined DM values and p-values of each weather condition are
presented in Table 4.

Following a comparison of LSTM, SVM, and BPNN models, the conclu-
sions can be drawn from Table 4:

1. The DM test based on the absolute error loss suggests that |DM|is
greater than zcrit for every weather condition considered.

2. Also, it is observed that the p-value is lesser than α for every weather
condition considered.

Hence, on sunny, cloudy, and partially cloudy days, the |DM|> zcrit
and p-value < α. So, we can conclude that there is a significant difference
between the three forecast models.

The daily actual and forecasted power of the SOLPSAST system is shown
in Figure 15. The SOLPSAST system generates about 80.45 Wh per day on
average. The monthly power generation and efficiency of the same are shown
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in Figure 16. The system efficiency can be calculated using Equation (16).
Here, Pdc is the system power, A is the area of panels, and n is the number of
panels. The average monthly and yearly power generation of the SOLPSAST
system is 2.45 kWh and 29.44 kWh respectively.

Efficiency(η) =
Pdc

G A n
(16)

7 Conclusion

The proper utilization of solar PV energy set forth future benefits in power
system planning applications. The LSTM model is able to forecast the output
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of SOLPSAST PV power with good accuracy. The resultant performance
error indices such as MAE, RMSE, R2 and MRE for the LSTM model infers
that the forecasted output is closer to the actual output power. Furthermore,
the significance of the models is analyzed using the Diebold-Mariano test.
It is observed from the conditions (|DM|> zcrit ) and (p-value < α) that the
three forecasting models are significant for predictive purposes. However,
the proposed LSTM model for the SOLPSAST system can be used for future
operations. One of the limitations of the LSTM approach is the complexity
involved in choosing the right architecture and setting the right control
parameters using some statistical approach for the system and data in hand.
The non-availability of environmental data such as wind velocity, relative
humidity, air temperature, and air pressure definitely reduces the accuracy of
the forecast. The reason is that all machine learning algorithms are system
or data dependent. However, in future, the environmental parameters which
may directly or indirectly effect the forecast output, if considered, will surely
improve the performance of the proposed forecast model.
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