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Abstract

To realize the intelligent energy governance of hybrid vehicles, a Deep-
Q-Network energy controller based on the construction of parallel hybrid
vehicle model is proposed, which aiming at energy loss problem of parallel
hybrid vehicles and combining deep learning with reinforcement learning,
and it is simulated through the ADVISOR software platform and compared
with the traditional fuzzy logic strategy. The experimental results indicate
that the DQN-based control strategy proposed in this paper reduces both
the energy consumption and exhaust emissions of parallel hybrid vehicles.
Compared with the traditional fuzzy control strategy, fuel consumption is
reduced by 0.43L while the fuel economy increases by 10.9%. and exhaust
gas such as CO4, CO, NOx the emission were reduced by 28.9%, 0.2%, and
7.4%, respectively. It shows the feasibility and effectiveness of the proposed
methods.
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1 Introduction

Electric vehicles were born with increasing fuel vehicle pollution, and more
effective hybrid vehicles were proposed. In hybrid vehicle technology, energy
governance is of great importance, and has strong impacts on the energy loss
of hybrid vehicles. It is considered by the study that the energy governance
is mainly to reasonably allocate the output torque of the engine and the
motor according to the working condition information and working mode of
the automobile, so as to effectively reduce the automobile fuel consumption
and exhaust emissions, then to achieve the purpose of improving the energy
utilization rate. Therefore, how to scientifically conduct scientific control of
hybrid vehicle energy is significance to promote the popularization of electric
vehicles. To solve the problem, Zhang Xudong, Wang Yachao, et al. proposes
a bi-level energy governance strategy of plug-in hybrid electric vehicles with
intelligent state-of-charge (SOC) reference for satisfactory fuel economy and
battery lifetime based on fuzzy control theory [1–5]. In view of fuzzy control
theory, a two-layer energy governance strategy for plug-in hybrid vehicles
with smart state of charge (SOC) reference is proposed to obtain satisfactory
fuel economy and battery life. The Q-learning algorithm is used to generate
the SOC reference before departure by considering the nonlinearities and
physical constraints of the model, while reducing the computational effort.
At the bottom layer, a model predictive control (MPC) controller is designed
to allocate system power flow online and track SOC reference values to
improve fuel economy and extend battery life, using short-term drive speeds
accurately predicted by radial basis function neural networks. In addition, the
terminal SOC constraint is transformed into a soft constraint by a relaxation
operation to ensure the feasibility of the solution and smooth tracking effect.
Finally, the effectiveness of the strategy is verified by simulation, and the
results suggest that the strategy provides significant improvements in fuel
economy and battery life extension compared to the power consumption and
power maintenance methods. More importantly, the robustness of the method
is verified in the case of inaccurate unknown drive information, indicating
that the method is well adapted for practical applications. Hyung-Joon Lee,
Nguy˜̂eo Huy et al. presented a proposed torque distribution strategy for
parallel hybrid vehicles based on real-time optimization. Due to its high
performance for hybrid electric vehicles, it is of interest to develop energy
governance strategies. However, these methods are often complex and may
require a large computational effort, which may hinder their application in
real-world applications. The strategy is designed to minimize engine fuel
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consumption while ensuring battery charge retention through linear quadratic
regulation in a closed-loop control scheme. Moreover, by reformulating the
problem, the obtained strategy does not require the information of the engine
efficiency diagram as in previous works in the literature. The obtained strat-
egy is simple and straightforward, so it is easy to implement on a real-time
platform. The method was evaluated by simulation using dynamic planning as
a benchmark. Meanwhile, the real-time performance of the strategy is verified
through power hardware-in-the-loop simulation experiments [6–10]. Alice
Guille des Buttes et al. proposed that in order to optimize ignition, the ther-
modynamics of the three-way catalyst should be considered [11–15]. Based
on this, this paper combines the research results of the above scholars, and
puts forward the energy intelligent management research on parallel hybrid
vehicles based on deep learning, to reduce the energy loss of hybrid electric
vehicles and improve the energy utilization rate through energy controller
design and system modeling.

2 Basic Principle of DQN Algorithm

Intensive learning belongs to machine learning, and its main character is that
there is no labels in the training process of deep learning, mostly use the
rewards and punishments given by the environment to learn [4]. It is widely
used in Weiqi competitions, robot control and driverless driving, etc.

In reinforcement learning, Q learning is a commonly used algorithm, its
calculation mode is to establish the Q table to save the Q value of various
actions, then select the largest Q value from multiple actions for output, while
using the reward value r to update the parameters [5]. The specific update
formula is:

Q(s, a)← Q(s, a) + a[r + γmaxQ(s, a)−Q(s, a)] (1)

In this equation, γ is a decay coefficient, γ ∈ (0, 1), when γ value is
closer to 1, it indicates that learning should focus on immediate reward [6].
a is the learning rate, the calculation process of the Q learning is shown in
Figure 1:

In practical applications, the table can not store too many movements
because of too large action ranges. Therefore, based on the basic principles of
deep learning in this paper, adds the neural network to replace the Q table and
obtains the output function through the neural network output, Q(s, a|θ) [7].
Thus, the (Deep-Q-Network, DQN ), the characteristic of this algorithm is
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1 Initialize Q (s, a)
2 Initialize the state
3 for each step from episode
4 The s was selected from the state according to Q
(s, a)
5 Perform the action a and get the r,s'
6 Q (s,a)? Q(s,a) +a[r+ maxQ(s’,a’)-Q(s’,a’)]
7 s ? s’
8 Until s is the end value

Figure 1 The computational procedure for Q learning.

to set labels according to the updated method of Q-learning. Removing
redundant data in training through empirical replay, and ultimately to set the
Q prediction and Q target, so as to improve the algorithm stability [8].

DQN combined with Q-learning the update mode, resulted the error
function is as follow:

DQN L(θ) = E(Qtarget −Q(s, a, θ))2 (2)

The Q target expression is as follow:

Qtarget = r + γmaxQ(s, a, θ̄) (3)

DQN by setting the experience pool, transferring the stored data to
the experience pool during learning, and then keeps updating it, so that
the relevance of the data can be broken through, thus improving learning
efficiency and training speed [9].

3 The DQN-based Energy Controller Design

3.1 Overall Strategy of Energy Consumption Optimization

The working condition data of hybrid vehicles is very complex with too
large action rage. It is known that the Q table cannot store too much data
information. Therefore, this paper combines deep and reinforcement learning
for energy controller design for hybrid vehicles via Deep-Q-Network,DQN .

Hybrid electric vehicle energy governance strategy based on DQN is
shown in Figure 2. It can be seen that, in the absence of any rules, its energy
governance strategy is input from the initial state to the network, screened
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Energy management strategy based onDQN
1 Experience pool initialization, Q network and
target network parameters initialization
2 For episode = 1, M do
3 To obtain auto state through theADVISOR
simulation platform
4 Enter the initial r moment state to the Q network
to get the Q value and return to the ADVISO
environment through the greedy policy selection
action.Where the action is randomly selected with
probability e, otherwise the maximum action is
selected with 1- e probability.
5 Perform the a; and receive a reward;
6 System state goes to the next moment sr+ 1,
7 Save the data pairs (s,a,r1,sr+ 1) into the empirical
pool D
8 Samples with the minimum number of samples
sets were selected from the empirical pool D
9 The if state is the last-one, then the y= r1; else y =
r+ max Q (s, a) -Q (s, a)
10 Network updated by gradient descent method, the
loss function is L(?)=E (Q.-Q s a ? )2

11 Copy the main network parameters to the target

network QQ every 20 steps

12 end for
13 end for

Figure 2 DQN-based energy governance strategy of power-mitigation vehicles.

through the greedy algorithm, optimized control after independent learning,
and the actions are finally output [10, 11].

3.2 Q-network Design

In DQN, Q-network has a greater impact on DQN control. the structure of
DQN network is as follows.

The network structure mainly consists of input layer, hidden layer and
output layer, with the input objects being states and actions. The states are
divided into torque difference and battery charge states. The hidden layer is
mainly divided into two layers, which include 20 and 50 nodes, respectively.
The node weights in this network structure are denoted as wl

ij , where l
denotes the number of weight nodes; The depth of the layer is i to j. The
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Figure 3 DQN network structure.

excitation functions for the hidden and output layers are f1(x), f2(x) and
f3(x). The DQN network output can be expressed as Q(s, a|θ), and the
weight expression is:

f1(x) = max(0, x) (4)

f2(x) = max(0, x) (5)

f3(x) = 1/(1 + e−x) (6)

By using the above equations, it can be calculated that:

∂Q(s, a|θ)
∂w3

ij

=
∂f3

∑s3
k=1w

3
ikp

3
k

∂w3
ij

= ḟ3(x)p3j

= f(x)(1− f3(x))p3j (7)

∂Q(s, a|θ)
∂w3

ij

=
∂f3(P3)

∂P3

∂f2(P2)

P2

∂f1
∑s1

k=1w
1
ikp

1
k

∂w3
ij

=

s3∑
j=1

w2
jiḟ3(x)w1

ji ḟ2(x) ḟ1(x)p1
j (8)

3.3 Greedy Policy

In reinforcement learning, optimal control requires achieving the maximum
of the cumulative reward, i.e., R =

∑n
i=1 r1. While achieving the maximum

cumulative reward, it is also necessary to fully meet the requirements of
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economy and avoid the local optimum of the obtained values. To solve this
problem, ε− greedy is proposed to be adjusted by selecting a certain action
arbitrarily by the probability of ε and selecting the best action to be operated
by the probability of 1 − ε. This method can be used to solve the local
optimum problem in reinforcement learning well, so as to maximize the use
of various information. The greedy policy expression is:

f =

{
max 1− ε
random ε

(9)

3.4 Selection of Reward Function

To enhance the effectiveness of the DQN control strategy, suitable reward
functions are selected for the control of engine and motor torque. Taking the
torque difference and the state of charge as the state, it can be expressed
as s(t) = (Tdcmand (t), SOC(t))T . Taking the engine output torque as an
action, it can be expressed as A(t) = Te(t). The output torque is discretized
and divided into 40 subsections, which can be expressed as:

A = {A1, A2, A3, . . . , A40} (10)

The motor torque is obtained by subtracting the total motor demand
torque from the engine torque, and it is intentionally normalized to
improve the training speed and accuracy of the network. The normalization
equation is:

y =
2(x− xmin)

xmax − xmin
− 1 (11)

The ultimate goal of the energy management system is to achieve energy
savings and reduce fuel consumption. Therefore, the SOC value and the
instantaneous fuel consumption of the engine are used as the excitation
function, which results in the expression of the reward function as:

r =



1

ice
ice 6= 0I 0.4 ≤ SOC ≤ 0.7

1

ice+ maxice
ice 6= 0I 0.4 < SOC or > 0.7

1

minice
ice = 0I 0.4 ≤ SOC

− 1

maxice
ice = 0I SOC < 0.4

(12)
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In the above equation, r represents the instantaneous reward; ice is
the instantaneous fuel consumption of the engine; maxice and minice are
the maximum instantaneous fuel consumption and the minimum non-zero
instantaneous fuel consumption, respectively.

Generally speaking, the battery range can be controlled in the range
of 0.4∼0.7 by the reward function, thus effectively preventing the phe-
nomenon of over charging and discharging to further save the amount of fuel
consumption.

The loss function is then the variance of the error between the Q estimate
and the Q reality, and the expression is:

l(θ) = E[(r + γmax Q(st+1, at+1, θ̄)−Q(st, at, θ))
2] (13)

Where, Q(s, a, θ) denotes the output of the parameter; γmaxQ(st+1,
at+1, θ̄) is the target Q-value network. By constructing a loss function for a
Q-network slower than the current network, the stability of the algorithm can
be improved.

3.5 Experience Replay

To achieve global optimum, experience replay is set so that the control policy
can be updated. Specifically, 50 sets of historical data (st, at, rt, st+1) are
first selected to be placed in the experience pool and used as historical
data;Then x is preserved in the experience pool, and the smallest data from it
is arbitrarily selected to update the action, thus improving the randomness of
action selection and achieving global optimum.

The experience pool data are selected from the ADVISOR platform,
where the minimum number of samples in DQN is set to 40, the total number
of experience pool samples is set to 1000, the discount factor γ is set to 0.99,
and the learning rate ε is set to 0.9, and the minimum ε is taken to be 0.2.

4 Simulation Test

4.1 Modeling of Parallel Hybrid Vehicle Systems

To better test, in view of the characteristics of the hybrid vehicle system,
this paper try to structure models of the engine, the motor, the battery, the
wheels, the main reducer, the vehicle dynamics, the transmission and the
whole vehicle.
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Figure 4 Engine model.

4.1.1 Engine model
In the vehicle drive, the engine is the most critical driving force. The basic
principle is to burn gasoline or diesel fuel to release energy to turn the
crankshaft, from chemical to mechanical energy, so to boost the car driving
force. Because the complexity of hybrid system, the engine has nonlinear
characteristics. Therefore, this paper combines experimental knowledge and
theoretical knowledge, scientifically and reasonably selects input and output
data, simplifies the calculation while modeling and divides the model into
four modules: torque calculation, speed estimation, fuel consumption and
emission calculation. The specific model is shown in Figure 4.

4.1.2 Motor model
Motor model, belongs to the second power source in hybrid vehicles, motor
operation mainly switches between the engine and generator, the system
choose the energy according to how the car runs. When the car torque is
large, the motor can convert electric energy into mechanical energy, when
the car brake, the motor can convert the remaining mechanical energy back
to electric energy, so as to charge the battery [12]. The model can obtain
the torque of inertia using the speed signal, thereby obtaining input torque
and output power by meter checking. The generator model is mainly divided
into three modules, namely the actual output torque of, the speed calculation
module and temperature calculation module [13].

4.1.3 Battery model
In the hybrid vehicle system, the battery is the most basic electric energy
storage device. The model is easily susceptible to temperature in the process
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Figure 5 Motor simulation model.

of charging or power generation, and it is an electrochemical process. At the
same time, the model is affected by multiple factors during working, which
is a non-linear process [14].

This paper based on the characteristics of the parallel hybrid vehicle
system, adopting to Rmt model improved and optimized by the lead-acid
battery model, which can analog out many steps when running the system.
Mainly includes five modules: open circuit voltage and internal resistance
calculation module, power limit module, current calculation module, SOC
estimation module and thermal model module.

4.1.4 Wheel model
This module mainly outputs the actual torque and rotational speed according
to the main reducer to perform its movement state, thus obtaining the traction
force and speed of the tire. During system modeling, focus should be placed
on the effects of resistance, inertia and friction produced during motion.
Finding out the torque and angular speed of the wheel demand through the
impact of the tire in contact with the ground [15]. The formula is as (4):

Twh r = (Freq limited − Ffront break req)× rwh + Tloss + Tinertia (14)

The wheel angular speed formula according to the sliding rate is.

s =
(w · r − v)

v
(15)

ωwh r =
(1 + Swh r )× Vreq limited

rwh
(16)
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In this formula, Freq limited represents the traction force of the front
wheel; Ffront break req represents the braking force of the front wheel; rwh

the radius of the wheel; ωwh r the sliding rate of the wheel; Vreq limited the
limiting speed of the front wheel.

4.1.5 Main reducer model
In the parallel hybrid vehicle system, the main reducer model can intuitively
see the speed reduction and torque increase only when the car is moving.
Therefore, to model the main reducer mainly can start from these two aspects:
friction torque loss and accelerated torque of inertia. Generally, the friction
torque loss is set to a fixed value. In this study, the main reducing gear model
is shown in Figure 6 below.
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Figure 6 Simulation model of main reducing gear.

4.1.6 Vehicle kinetic model
This model is mainly solved by the force between wheel and ground friction.
The iterative method is used to find out the acceleration of the vehicle.
Meanwhile, considering the rolling, ramp and air resistance of the working
state of the car, the vehicle speed should be calculated according to the
integral step by step. Therefore, based on the above considerations, the whole
vehicle model is designed as shown in Figure 7 below.
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Figure 7 Simulation model of the whole vehicle dynamics.

4.1.7 Transmission model
Transmission is to transfer the rotational velocity and drive torque of the
engine or motor according to each transmission ratio, so to achieve the
purpose of deceleration and torque increasing. In ADVISOR software, the
transmission model is generally located in the main reducer, generator and
engine positions for power transmission. The main factors are the transmis-
sion ratio, inertia and friction loss, etc., which are modeled by the empirical
formula.

First, the path is analyzed by the input torque and rotation speed signal,
so that the torque and rotation speed are calculated as follows:

Tgb in r =
Tgb out r

ratio
+ Tloss + Tinertia (17)

ωgb in r = ωgb out r × ratio (18)

In this formula, Tgb in r represents the input torque of the main reducer;
ωgb out r the transfer speed; ratio the torque of mechanical friction loss;
Tinertia the torque of accelerated inertia.
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Figure 8 Vehicle simulation model.

4.1.8 Car model
After various sub-models of hybrid EVs are detailed, simulation experiments
will be performed in the Matlab program and Simulink software. ADVISOR
software is used to build the model structure is as follows. In the model, the
arrow from left to right is the backward simulation path, which is the energy
demand for each module in a specific cycle condition, and the arrow from
right to left is the forward simulation path, that is, the actual energy output of
each module.

4.2 Simulation Environment and Parameters

To verify whether the DQN control strategy designed in this paper meets the
driving requirements of most working conditions, the UDDS working con-
dition map in urban roads developed by EPA is selected as the experimental
parameters. The UDDS operating condition parameters are shown in Table 1.

Simulation parameters of parallel hybrid vehicles are shown in Table 2:
In this paper, the DQN control strategy is introduced to the automobile

model of ADVISOR software for simulation experiments. Selecting the
working diagram and specific parameters using UDDS, and the simulation
results of fuzzy logic tactics are compared as follows:

As can be seen from Figure 9, compared with the control strategy based
on fuzzy logic, the DQN control strategy engine proposed in this paper is
mostly concentrated in the medium and high efficiency range, indicating that
the engine proposing the DQN control strategy has better efficiency. As can
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Table 1 UDDS operating condition parameters
Items Parameters
duration(s) 1369
Driving distance(km) 12.01
Maximum speed(km/h) 90.00
Average speed(km/h) 32.34
Maximum acceleration(m/s2) 0.50
Average acceleration(m/s2) 1.48
Maximum speed reduction(m/s2) −1.48
Average speed reduction(m/s2) −0.58
Idle time(s) 259.00
Parking times 17.00

Table 2 Whole-vehicle simulation parameters
Items Parameters Value

Vehicle Quality of vehicle 1.35t

Wind resistance coefficient 0.335

Windward area 2.0

Wheel radius 0.282

Engine Disposition 1.0

Maximum power 41

Motor (permanent magnet synchronization) Rated speed 2000

Maximum speed 10000

Battery (lead-acid) Discharge capacity 25

Block number 25

Transmission (manual 5th gear) Transmission ratio 2.84∼13.45

be seen from Figure 10, the engines are centrally distributed in the high
efficiency range, thus reducing the energy consumption of parallel hybrid
vehicles.

Figure 11 is a torque diagram of the engine and generator, as driven by
the combination of the engine and generator of a hybrid motor. From the
comparison, the engine is off when the car just starts, and the generator
provides all the demanded torque for the car; when the engine output torque
is low, the generator delivers the remaining torque to the engine, from which
the engine and the generator provide the demand torque together. Reducing
the energy consumption can thus be achieved. The simulation comparison
results of fuel consumption emissions based on DQN hybrid vehicle energy
goverance tactics and fuzzy logic control strategy are shown in Table 3.
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Figure 11 Engine and generator torque diagram.

Table 3 Comparison of the simulation results of fuel consumption and emission parameters
Fuel Consumption and Fuzzy Logic A DNQ-based
Emission Parameters Control Policy Control Policy
Fuel consumption (L/100 km) 3.91 3.48
CH4 (g/km) 0.197 0.140
CO (g/km) 1.283 1.280
NOx (g/km) 0.256 0.237

According to the table above, the fuzzy logic control strategy fuel
consumption is 3.91 L per 100 km. The DQN-based control strategy fuel
consumption is 3.48 L per 100 km, 0.43 L less compared with the fuzzy
control strategy. Fuel economy was improved by 10.9%. As for exhaust gas
emission, HC is 0.197 km, CO is 1.283 km, NOx is 0.256 km, in the fuzzy
logic control strategy. But in the control strategy of this paper, CH4, CO and
NOx are 0.140 km, 1.280 km, 0.237 km, reducing 0.057, 0.003 and 0.019,
respectively compared with fuzzy logic control strategy. To sum up, based
on DNQ control strategy to contrast the fuzzy logic control strategy, the
automobile fuel economy is improved and the automobile exhaust emissions
are reduced. The balance of battery charging and power generation is realized
to meet the expected effect of this paper.
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5 Conclusion

It is found by the study that the proposed control strategy based on DQN can
reduce the energy loss of parallel hybrid vehicles effectively, and improve the
vehicle fuel economy greatly. Meanwhile, the simulation experiment results
indicate that compared with the fuzzy logic control strategy, the proposed
engine based on the DQN control strategy is mainly concentrated in the high
efficiency control field., indicating that it is more efficient. Combining the
engine and the generator can reduce energy consumption of the hybrid car.
However, due to condition limitations, this study is mainly manifested in the
simulation experimental method, which is too idealized and impossible to
simulate automobile conditions in real situations. Therefore, in a subsequent
study, control strategy will be applied to real life to do experiments through
real environment and real vehicles to achieve better experimental results.
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