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Abstract

Accurate short term solar irradiation forecasting is necessary for smart grid
stability and to manage bilateral contract negotiations between suppliers and
customers. Traditional machine learning methods are unable to acquire and
rectify nonlinear characteristics from solar dataset, which not only com-
plicates model construction but also affect prediction accuracy. To address
these issues, a deep learning based architecture with predictive analysis
strategy is developed in this manuscript. In the first stage, the original solar
irradiation sequences are divided into many intrinsic mode functions to
generate a prospective feature set using a sophisticated signal decomposition
technique. After that, an iteration method is used to generate a prospective
range of frequency related to deep learning model. This method is created
by linked algorithm using the GA and deep learning network. The findings
by the proposed model employing sequences obtained by the preprocessing
methodology considerable improve prediction accuracy as comparison to
conventional models. In contrast, when confronted with a high resolution
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dataset derived from big data set, the chosen dataset may not only conduct
a huge data reduction, but also enhances forecasting accuracy up to 22.74
percent over a variety of evaluation metrics. As a result, the proposed method
might be used to predict short-term solar irradiation with greater accuracy
using a solar dataset.

Keywords: Solar irradiation, EEMD, genetic algorithm, LSTM, evaluation
metrics.

1 Introduction

Because of the greenhouse effect, pollution and the depletion of natural
resources it is now more vital than ever to use renewable energy sources
(RES) that do not pollute the environment and free to use to create electricity.
Among RES, solar energy is one of the most popular energy sources for
generating electricity with zero carbon emission and its market is growing
significantly due to its long-term viability and support [1]. Almost every year,
the earth’s surface receives around 1.5 × 1018 KWh/area of solar energy
which is nearly ten times the current global usage. Among all Asian coun-
tries, China receives the highest annual average daily global solar radiation
(20.2 MJ/(m2.d)) while India receive just (18 MJ/(m2.d)). The renewable
energy sector in India, as an example of emerging countries, has grown at
an exponential rate during the last two decades. India has even established a
special ministry for RES; Ministry of New and Renewable Energy (MNRE),
with a goal of generating 175 GW of energy from RES by the end of 2022;
with 100 GW from solar alone [2, 3]. Furthermore, according to several
studies, the power grid will be completely functioning on the renewable
energy source (RES) by the end of 2050 [4]. But, due to the variability
in weather condition; the intensity of solar GHI is unstable which directly
affect the output of photovoltaic power plant [5]. Result in poor reliability of
photovoltaic power plant. So, a number of forecasted models are developed
in the literature to increase the solar GHI forecasting accuracy [6]. The
solar irradiance forecasting technologies are classified into four categories:
(1) Physical method (2) Machine learning method (3) statistical method
(4) Hybrid methods [7–11]. The physical models uses meteorological and
geographical parameters as an input to forecasting the model and set up a
mathematical relation between meteorological data and forecasted GHI. Due
to its complexity, less precision and high computational cost, these models
are not popular among researchers [12–14]. The statistical methods such
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as Gaussian Progress Regression (GPR) [15, 16] autoregressive integrated
moving average (ARIMA) [17] improve forecasting accuracy and set up a
mathematical relation between meteorological variables and GHI but the poor
correlation among input data and solar GHI leads to weak performance of
these models performance. The machine learning models such as artificial
neural network (ANN) [18], Elman neural network (ELMAN) [19] and
support vector machine (SVM) [20] have a capability to learn itself and
reduce the gap between forecasted and measured data Nevertheless, due to
uncertain behavior of GHI, single machine learning models stuck in local
minima and do not perform efficiently [21]. Therefore, hybrid models are
discussed in literature to overcome these issues. The data decomposition
based technique and machine learning model is one of the mostly used hybrid
models. Several decomposition techniques such as wavelet Transform (WT),
empirical Mode Decomposition (EMD), variational Mode Decomposition
(VMD) etc are discussed in previous studies. The author [22] uses the EMD
decomposition technique to decompose the input data and auto regressive
(AR); ANN model are used to estimate the GHI. The experimental result
shows that the hybrid model achieves better result as compared to standalone
AR and ANN models.

In addition, deep learning emerged as a powerful technique to forecast
the solar GHI and its performance is much better than conventional models
in all aspects. In literature, a number of researchers suggested deep learning
technique with preprocessing strategy to enhance the accuracy of forecasting
model. The author of [26] uses long Short Term Memory (LSTM) network
to forecast the GHI; where weather data is used as an input to the LSTM
network. The study proves the efficiency of LSTM network over BPNN,
linear regression in terms of RMSE. A hybrid model of LSTM and gradient
boosting algorithm are implemented by the author of [27] to prevent the situ-
ation of over fitting and compared with naı̈ve predictor and SVM model. The
performance of ensemble approach shows that proposed model significantly
improves the result in terms of RMSE. Similarly [28] developed a hybrid
approach to forecast the solar irradiance using a combination of Convolution
Neural Network (CNN) and LSTM. The historical properties of the input data
are acquired by using an LSTM network and the geographical data is obtained
using CNN. In addition to deep learning network, various data decomposition
techniques used as a preprocessing strategy to decompose the irradiance
data, clean up and define the input data according to the specifications.
The SOM, WT, EMD, EEMD, normalization, kalman filter are often used
in solar irradiance forecasting. It is confirmed in a number of prior studies
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that WT-based models obtained satisfactory results due to their outstanding
localization properties in both the temporal and sensitive attribute. However,
it’s not clear how to pick the right wavelet function for a set of data [34].
Same humiliation is occurs, when using VMD preprocessing approach, where
the number of modes is an a priori value that must be specified at the start,
but has a major impact on the decomposition results [35]. Given that by
adding intrinsic mode functions, the EEMD technique displays its astonishing
superiority in automatically responding to any irregular time-series [36];
when confronted with such a challenge, it may be the best alternative. Prasad
et al. [37] developed an EEMD-RF model for multi step ahead solar GHI
forecasting. The author adds the results of all sub-predictions from LSTM
model, then rectifying the summation using ant colony optimization tech-
nique. Qin et al. [38] uses fuzzy classification technique with EEMD-LSTM
model. In this study, EEMD divide the incoming data into many IMFs, fuzzy
classification technique categorizes the IMFs into a number of groups and
used LSTM predictor for each group and summing all predictions to obtained
final result. These studies have established a good base for applications that
combine EEMD and LSTM learning models.

However, the problem is that it is useless unless the number of sub-series
is determined in advance using EEMD-based models. Because as the solar
dataset’s temporal resolution improves and the recording period lengthens,
the dataset scale widens, resulting in increased non-linearity and non-stability
in the solar time series. The number of IMFs will increase dramatically as
a result of using the EEMD approach on such a massively dataset. As a
result, at least two barrier processes keep following the routines described
in the preceding literatures [36–38]. Firstly, more IMF components would
result in more untrained data in which raising the overall training cost.
Secondly, if machine learning model employ to predict the IMF components
and forecasting error of each component add up to the final error in which
affect the prediction accuracy of model.

Therefore, with an aim to address this problem and increase to prediction
accuracy; this paper proposes a new framework that combines EEMD: a
signal decomposition technique, Genetic Programming: a feature selection
technique and LSTM: deep learning model. Unlike some prior work in this
field [37, 38], all decomposed component from EEMD method are no longer
used for solar irradiation construction but to provide a prospective feature set
for LSTM model to learn from. Secondly, Genetic Algorithm decreases the
size of the projected feature set collection and changes it into a subset with
more useful data.
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Taking into account all of the preceding processes, the following are the
primary contributions of this work:

• To deal with the increasing scale of datasets, a unique architecture of
ensemble learning system incorporating EEMD, GA, and LSTM for
solar irradiation forecasting is presented. Rather than following the
“decomposition—prediction—reconstruction” design used in previous
investigations [36, 37], the suggested framework attempt to deliver a
more compact and useful set of features out of a total prospective IMFs
obtained by EEMD technique.

• In this framework three year data of Delhi location collected from
NSRDB (National Solar Radiation Database). Two year data used for
training and one year data used for testing on seasonal basis. The testing
data is dividing into seasons: winter, spring, summer, monsoon and
autumn as given in Delhi Tourism website [39].

• A detailed comparative evaluation of the results is undertaken in this
work from a progressive multi-level.

Unlike previous studies [36, 37], where comparisons with other models
are made all at once, this study focused on progressing features. First, a
comparison between the present framework and non-EEMD machine learn-
ing models is made. Then it moves on to a comparison of models that use
the EEMD approach. In the proposed models we check the effectiveness
of EEMD decomposition, genetic algorithm feature selection technique and
long short term memory neural network model.

The remaining sections of this paper are organized as follows: Section 2
will begin with a theoretical background of EEMD and data driven model.
The mechanism for solar irradiation forecasting framework will be explained
in Section 3. Section 4 will look at the suggested model’s outcome as well as
comparisons to other models.. Section 5 concludes the present work.

2 Theoretical Background of EEMD and Data Driven Model

2.1 Ensemble Empirical Mode Decomposition

Huang et al. [40] introduced a decomposition technique based on Hilbert
Huang Transform in 1998 called Empirical Mode Decomposition (EMD).
The technique is used by various researchers due to following advantage: 1. it
can handle irregular and unstable information 2. Unlike wavelet transform or
Fourier transform which require a pre-specified foundation, HHT is entirely
approach by introducing intrinsic mode functions (IMFs). However, a few
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of these IMF include fluctuations of wildly varying magnitude and this
phenomenon is known as “mode mixing.” These fluctuations cause the IMFs
to lose their scientific significance and also reduce the physical significance
of EMD algorithm. In order to address these issue, an improved version of
EMD called EEMD has been introduced in year 2009 [41].

The procedure of EEMD is given as [41]:

1. Creating a new signal z′(t) by combining a Gaussian based stochastic
signal k(t) with the desired sequence z(t) [41]

2. Using the EMD approach, decompose z′(t). Obtain the IMFs yj(t) and
residue jn(t) [41]

3. Carry on with the previous steps. The input sequence is subjected to
unique white noise each time [41]

4. When the Gaussian white noise average value is zero, the final decom-
positions IMFj(t) will be the grand average of all matching IMFs [41]

z′(t) = z(t) + k(t) (1)

z′(t) =
m∑
i=1

yj(t) + jn(t) (2)

zi(t) = z(t) + ki(t) =

m∑
i=1

yij(t) + jin(t) (3)

IMFj(t) =
1

N

N∑
j=1

yij(t) (4)

2.2 Long Short Term Memory Neural Network (LSTM)

J.J. Hopfield developed a recurrent neural network (RNN) in 1982. In this
network, the RNN is related to the input via feedback acting like a dynamic
memory. For short term forecasting this network worked best, but for long
term forecasting it becomes unstable. This inconsistency caused by gradient
boosting i.e. substantial changes in training weights in a short period of time.
This problem is solved by LSTM to permit using of memory cells in a hidden
layer. These memory cells are utilized to store information in an appropriate
manner. The basic configuration of LSTM network is shown in Figure 1.
Each memory cell having a forget gate (ft), input gate (it) and output gate
(ot) to accept or reject any information. For a forward movement function,
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Figure 1 Basic configuration of LSTM network.

the previous cell state ct−1 discarded by the LSTM network [42]

ft = sigmoid(zf · [ht−1, SIi(t)] + ef ) (5)

The LSTM network use the equation below to determine whether data
information should be discarded or maintained [42]

it = sigmoid(zi · [ht−1, SIi(t)] + ei) (6)

c̃t = tanh(zc · [ht−1, SIi(t)] + ec) (7)

ct = ft ∗ ct−1 + it ∗ c̃t (8)

Now the memory cell output represented as [42]:

ot = sigmoid(zo · [ht−1, SIi(t)] + eo) (9)

ht = ot ∗ tanh(ct) (10)

3 Structure of the Proposed EEMD-GA-LSTM Framework

The goal of this project is to increase the accuracy of Solar GHI forecasting
by employing an EEMD-based LSTM network with binary coded genetic
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algorithm. Figure 2 show the schematic diagram of the developed model and
its steps is discussed below:
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Y 

Figure 2 Schematic diagram of the proposed model.

3.1 Data Description and Quality Assurance

The dataset of Indian location is used in the study to forecast solar GHI
because of the substantial improvement in the infrastructure of renewable
sector in India. For this, three year hourly data is used for training, validation
and testing purpose. Table 1 provides a geographical coordinates, climatic
condition and clear sky hour’s details of the selected location.

The input data has great impact on the model performance. Primarily, the
collected data is available in its raw form which is random and non-linear
in nature and has a great influence on the effectiveness of the model. Due
to the weak pyranometer reaction, there is a chance of finding incomplete
and negative data recording [28]. Therefore these data recordings must be
deleting before feeding to forecasting model. To enhance the quality of input
data, this paper calculates normalized value of data in which convert the data
in stationary form. The normalization is calculated as follows [14]

Xnorm =
XR −Xmin

Xmax −Xmin
(11)

Table 1 Geographical details of Delhi Location
Rainfall Clear-Sky Altitude

Location (mm) Hours Climate (m) Longitude Latitude Region
Delhi 714 2809 Cwa, Bsh 225 77.1025◦E 28.7041◦N North
Cwa = Humid Subtropical; Bsh = Hot semi-arid.
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Figure 3 EEMD Decomposition results.

Xnorm represent the standardized value, XR is the value to be normalized,
Xmax is the maximum value in all the values for related variables and Xmin

is the minimum value.

3.2 Binary Coded Genetic Algorithm

In feature extraction architecture and computational intelligence research, the
wrapper is crucial. This study adopted the binary coded based GA to discover
the best IMF as the feature set for training of LSTM in order to enhance the
current solar irradiation predictor performance.

3.2.1 Binary coding
All eight IMFs are arranged from IMF1 to IMF8 to transfer in a small set
of 1 and 0 (binary list) as shown in Figure 4. Combining these two lists via
elemental multiplication yields the final selected list of IMFs. This allows us
to decide whether IMF should be discarded or retained. The element under
the binary list relevant index is set to 1 if an IMF is required; otherwise, it is
set to 0.

3.2.2 Initial trails
For searching algorithms like GA, a proper initial condition is necessary
because it can not only supply viable trails from the start but also disperse
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Figure 4 Genetic Feature selection in binary coding.

the searching spots globally. On the basis of these two considerations, the
original population in this study is made up of binary sets as follows:

I. All of the elements have been set to be one.
II. The value of all items has been set to zero.

III. The first half of the elements has a value of one, while the second half
has a value of zero.

IV. The first halves of the components are assumed to be 0, while the latter
half is assigned to 1.

V. The items with the highest Correlation coefficient with the raw
sequences are given a value of one while the others are given a value
of zero.

VI. The elements having the highest Pearson correlation with the raw
sequence have their associated IMF’s set to zero while the others are
set to one
The Pearson correlation for a set of objective variables (P, Q) is given
as [38]

ρP,Q =
E((P − E(P ))(Q− E(Q)))

σPσQ
(12)

Where P denotes the unprocessed value and Q denotes the intrinsic
mode functions; E(·) and σ(·) indicate the estimation and random deviation
respectively.

3.2.3 Fitness
The best solution of this task is given as [38]

F (ϕ) =
1

min(MAE (ϕ)1,MAE (ϕ)2 . . .MAE (ϕ)i)
(13)
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Where MAE (ϕ)i represent the mean absolute error among the forecasted
and measured sequence on given data utilizing ϕ as the binary list for
extracting features.

3.2.4 Evolutionary procedure
Selection, crossover, and mutation all are parts of GA evolutionary process.
These parts provide an overview of the main process.

3.2.4.1 Selection
There are two prerequisites to the selecting method. First, a generation
greatest individual will sustain themselves and bypass this filter. Furthermore,
individuals with a higher level of fitness will have a greater chance of joining
the next generation; Probability is calculated by the below equation [38]

p(ϕg,k) =
F (ϕg,k)

2∑M
m=1 F (ϕg,m)2

(14)

Where ϕg,k denotes the kth individual in the gth generation, and m
represent the population size.

3.2.4.2 Crossover
Each DNA candidate will have the opportunity to recombine with another
person from the same generation (i.e. crossover rate). The DNA information
from both parent sets will be inherited by the young individual. The partici-
pants and cross-points are picked at random for every cycle of crossover, as
inspired by “the law of independent assortment” [41].

3.2.4.3 Mutation
A mutation mechanism is implemented after the crossover to minimize the
pre-mature issue and to further broaden the seeking area. Should one of the
DNA elements is changed, it goes from 0 to 1 or 1 to 0 but this operation does
not have to be repeated on all members of DNA collections every moment.
As this may produce divergence issues and raise computation costs.

3.3 Performance criteria

In this study, two year data set is utilized as the learning unit, whereas
one year data is used as the testing dataset. To obtain the performance of
developed model, the testing data set is dividing into five seasons: winter,
spring, summer, monsoon and autumn. Assume y = (y1, y2, . . . yk, . . . yn)
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is the solar irradiance time history and ŷ = (ŷ1, ŷ2 . . . ŷk . . . ŷn) is the
forecasted solar irradiance time series, used to calculating the performance
of proposed model [2, 3].

Mean Absolute Error (MAE): This metric provides a difference between
two set of data using Equation (15) [2]

MAE =
1

n

n∑
i=1

|yi − ŷi| (15)

Mean Absolute Percentage Error (MAPE): It provides uniform forecasting
error in percentage using Equation (16) [2]

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (16)

Root Mean Square Error (RMSE): It is a statistic for assessing the largest
expected error in the forecasted data.

Using Equation (17) [2]

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi) (17)

Where n represent total number of points.

4 Result Analyses

This study uses a combination of EEMD-GA-LSTM to improve forecasting
accuracy. The developed model performance is compared with standalone
models: Naı̈ve Predictor, Gate Recurrent Unit (GRU), Recurrent Neural
Network (RNN), Extreme Learning Machine (ELM), Back Propagation Neu-
ral Network (BPNN) and other EEMD based models. All experiments are
performed using MATLAB 2019a and numerous models scenarios are ana-
lyzed. Firstly, the results of the selected features from the GA are discussed.
Secondly the proposed model performance is compared with naı̈ve predictor,
standalone GRU, BPNN, ELM and RNN model. Next, EEMD method is
apply to the all above mentioned standalone models and finally, evaluation
of the selected features is study.
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Figure 5 Generational changes in average and optimum fitness.

4.1 Result of Feature Selection

In this study, the range of GA is set to 30 to balance the exploring ability and
model cost. The synchronization lines of the mean and the optimum fitness
among community are displayed in Figure 5.

As can seen in Figure 5, the average fitness increase steadily over the first
15 iterations and then gradually stabilized after that despite minor oscilla-
tions. The best fitness grew slightly over the first five generations but remains
practically unchanged after that indicates the possible selected features are
discovered early. Because the average activities has not yet convert to the
fitness values, an earlier halt is possible because the modification in fitness
value is expected to be flat at this time.

4.2 Analysis and Assessment by Comparison

In this portion, the discussion would be split into two sections: For the com-
parison study in the first half, various mainstream models will be considered.
In the second half, on the basis of selected features evaluation, the result
obtained by the proposed model is compared to the standalone LSTM model
and the EEMD-LSTM model which consist all prospective features.

Case 1: Comparative research with standalone models

The goal of this scenario is to create an experimental study on benchmark
model and non-EEMD models: GRU, RNN, ELM, BPNN models. This
experiment utilized ten time leg as an input features of the non-EEMD
models whereas solar GHI is forecasted as the output value. The developed
model’s performance is judge using MAPE (%), MAE (W/m2) and RMSE
(W/m2) evaluation metrics. Table 2 shows that the MAPE obtained by the
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Table 2 Performance comparison between proposed model and non-EEMD models
MAPE (%)

Models Winter Spring Summer Monsoon Autumn Annual
1-hr Naı̈ve Predictor 6.10 7.39 4.71 7.81 5.81 6.36
ahead BPNN 5.21 6.20 4.10 7.16 5.11 5.55
solar ELM 4.98 5.86 3.81 6.97 4.21 5.16
GHI RNN 4.73 5.14 3.65 6.61 4.19 4.86
forecasting GRU 4.51 4.41 2.91 5.31 3.84 4.19

Proposed Model 3.20 3.96 1.91 4.91 2.21 3.23
RMSE (W/m2)

Naı̈ve Predictor 5.42 6.91 4.30 7.31 5.33 5.85
BPNN 4.56 5.63 3.91 6.91 4.54 5.11
ELM 4.22 5.22 3.41 6.31 3.84 4.6
RNN 4.13 5.10 3.23 5.12 3.35 4.18
GRU 3.91 4.91 2.90 4.91 3.21 3.96
Proposed Model 2.51 3.31 1.21 3.41 1.83 2.45

MAE(W/m2)
Naı̈ve Predictor 4.90 5.91 3.91 6.91 4.71 5.26
BPNN 4.13 5.12 3.18 6.11 3.91 4.49
ELM 3.61 4.81 2.81 5.61 3.13 3.99
RNN 3.34 4.35 2.66 5.38 2.91 3.72
GRU 3.10 3.10 1.41 4.10 2.61 2.86
Proposed Model 2.16 2.81 0.91 3.82 1.11 2.16

naı̈ve predictor, BPNN, ELM, RNN, GRU and the proposed model is ranges
from 4.71–7.81%, 4.10%–7.16%, 3.81–6.97%, 3.65–6.61%, 2.91–5.31% and
1.91–4.91% for 1-hr ahead solar irradiance forecasting respectively; RMSE
varies from 4.31–7.31 W/m2, 3.91–6.91 W/m2, 3.41–6.31 W/m2, 3.23–5.12
W/m2, 2.90–4.91 W/m2 and 1.21–3.41 W/m2 for 1-hr ahead solar irradiance
forecasting respectively; MAE value ranges from 3.91–6.91 W/m2, 3.18–6.11
W/m2, 2.81–5.61 W/m2, 2.66–5.38 W/m2, 1.41–4.10 W/m2 and 0.91–3.82
W/m2 for 1-hr ahead solar irradiance forecasting respectively. The result
shows that suggested model outperforms standalone models in all perspec-
tives. Figure 6 shows a comparative analysis of developed models on annual
average basis.

Case 2: Comparative research with EEMD based models

This scenario uses EEMD preprocessing technique to decompose the global
horizontal irradiance data in which generate eight IMFs and one residue.
From Table 3, it is observed that for 1-hr ahead solar GHI forecasting,
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Figure 6 MAPE (%), RMSE (W/m2) and MAE (W/m2) of developed models on an annual
average basis.

Table 3 Performance comparison between proposed model and EEMD models

MAPE (%)

Models Winter Spring Summer Monsoon Autumn Annual

1-hr EEMD-BPNN 4.21 5.21 3.11 6.10 4.10 4.54

ahead EEMD-ELM 3.91 4.81 2.81 5.91 3.21 4.13

solar EEMD-RNN 3.81 4.61 2.45 5.31 3.11 3.85

GHI EEMD-GRU 3.71 4.41 2.21 5.12 2.81 3.65

forecasting Proposed Model 3.20 3.96 1.91 4.91 2.21 3.23

RMSE (W/m2)

EEMD-BPNN 3.51 4.60 2.91 5.91 3.50 4.08

EEMD-ELM 3.20 4.21 2.41 5.32 2.81 3.59

EEMD-RNN 3.11 4.11 2.20 5.11 2.65 3.43

EEMD-GRU 2.97 3.91 1.91 4.20 2.21 3.04

Proposed Model 2.51 3.31 1.21 3.41 1.83 2.45

MAE(W/m2)

EEMD-BPNN 3.10 4.10 2.19 5.10 2.99 3.49

EEMD-ELM 2.91 3.61 1.85 4.61 2.10 3.01

EEMD-RNN 2.84 3.21 1.67 4.31 1.91 2.78

EEMD-GRU 2.68 3.10 1.41 4.01 1.61 2.56

Proposed Model 2.16 2.81 0.91 3.82 1.11 2.16

the MAPE obtained by the EEMD-BPNN, EEMD-ELM, EEMD-RNN,
EEMD-GRU and the suggested model is ranges from 3.11–6.10%, 2.81%–
5.91%, 2.45–5.31%, 2.21–5.12% and 1.91–4.91% respectively; RMSE varies
from 2.91–5.91 W/m2, 2.41–5.32 W/m2, 2.20–5.11 W/m2, 1.91–4.20 W/m2

and 1.21–3.41 W/m2 respectively and MAE ranges from 2.19–5.10 W/m2,
1.85–4.61 W/m2, 1.67–4.31 W/m2, 1.41–4.01 W/m2 and 0.91–3.82 W/m2

respectively. The result shows that suggested model outperforms EEMD
based models in all perspectives. Figure 7 shows a comparative analysis of
developed models on annual average basis.
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Figure 7 MAPE (%), RMSE (W/m2) and MAE (W/m2) of developed models on an annual
average basis.

Figure 8 Developed model training procedures were compared.
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Figure 9 MAPE (%), RMSE (W/m2) and MAE (W/m2) of developed models on an annual
average basis.

Case 3: Assessment of the chosen features

In this case, three LSTM models: standalone LSTM, EEMD based LSTM
model include all statistical features and EEMD-GA-LSTM model are com-
pared as an evaluation of selected feature. On the basis of loss function, the
representative training process on three feature set using 200 epochs for same
LSTM network are depicted in Figure 8 When EEMD-GA was included
the training loss decrease gradually from 0.00666 for standalone LSTM to
0.00444 for EEMD based LSTM model and 0.00262 when GA wrapper is
included.

Table 4 indicates the results of standalone LSTM, EEMD based LSTM
and proposed model with respect to MAPE, RMSE and MAE performance
criterion.
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Table 4 Performance comparison of LSTM models
MAPE (%)

Models Winter Spring Summer Monsoon Autumn Annual
1-hr LSTM 4.21 4.20 2.91 5.10 3.21 3.92
ahead EEMD-LSTM 3.51 4.30 2.11 5.11 2.43 3.49
solar Proposed Model 3.20 3.96 1.91 4.91 2.21 3.23
GHI
forecasting

RMSE (W/m2)
LSTM 3.57 4.31 2.61 4.61 2.85 3.59
EEMD-LSTM 2.90 3.72 1.90 4.02 1.94 2.89
Proposed Model 2.51 3.31 1.21 3.41 1.83 2.45

MAE(W/m2)
LSTM 2.82 3.09 1.31 4.12 2.10 2.68
EEMD-LSTM 2.43 3.11 1.10 3.91 1.21 2.35
Proposed Model 2.16 2.81 0.91 3.82 1.11 2.16

5 Discussion

This research performs short term solar irradiance forecasting for the location
of Delhi, India. Various experimental analyses are performed in this study
to obtain precise model with improved forecasting accuracy. The prediction
performance of the proposed model is compared with persistence model,
standalone models (BPNN, ELM, GRU, and RNN) and EEMD based models
in order to demonstrate its superiority. Finally, based on features evaluation,
the prediction results of proposed model is compared to standalone LSTM
model and the EEMD-LSTM model which consist all prospective features.
From the results, it is clear that the EEMD improve the forecasting accuracy
of the standalone models. For a case of summer season, from the table 2 to
3, it is observed that the EEMD improved the RMSE (25.57% for BPNN,
29.32% for ELM, 31.88% for RNN and 34.13% for GRU). However, in case
of monsoon season, the accuracy is decreased due to the data instability of
the season. But it is concluded that that the EEMD improved the forecasting
performance of the standalone model. The similar observations can also be
seen for MAPE and MAE. In continuation to these models, the proposed
model uses the GA as a feature extraction strategy over the EEMD based
models. No doubt from the results, the LSTM model outperforms all stan-
dalone models in all terms. The lower RMSE, MAPE and MAE attained
by LSTM prove its efficiency over other standalone models and enforce
us to utilize this model for further improvements. Therefore, the GA with
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Figure 10 Percentage improvement by proposed model over non-EEMD model.
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Figure 11 Percentage improvement by proposed model over EEMD model.
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Figure 12 Percentage improvement by proposed model over LSTM and EEMD-LSTM
model.

EEMD process is applied on the LSTM to prove the objective of the study.
It is observed that the GA with EEMD credibly improves the forecasting
performance of the LSTM. The proposed model improves the results in terms
of RMSE, MAPE and MAE compared with all considered models. For a case
of annual forecasting, for LSTM and EEMD-LSTM models, the proposed
model improves the RMSE (35.36% for LSTM; 21.59% for EEMD-LSTM),
MAPE (24.35% for LSTM; 9.01% for EEMD-STM) and MAE (30.99% for
LSTM; 10% for EEMD-LSTM). The percentage improvements by proposed
model vs non EEMD based models are shown in Figure 10. Similarly, the
percentage improvement by proposed model vs. EEMD based models is
shown in Figure 11.

Moreover, for a deeper examination of the findings, Figure 13 provides a
graphical representation of real and predicted GHI for four consecutive days
(2nd to 5th day) of summer and monsoon season. For clarity, only real and
predicted GHI curve of suggested model is shown for selected seasons. From
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Figure 14 Steps of the distributed system in practical systems for the present framework.

Figure 13 it is observed that substantial fluctuations in the real GHI generate
a larger error in the results. For example, smooth curve of summer season
indicates the clear environmental circumstances in which easily traceable by
the model on the other hand, monsoon season shows substantial fluctuations
in the real GHI due to existence of overcast or rainy days making it difficult
to trace by the model resulting in maximum inaccuracies. From Figure 13, it
can be deduced that if fluctuations in the real GHI is higher, than similarity
exist between real and predicted GHI is lower.

The suggested short-term solar irradiation prediction may be imple-
mented in practical systems utilizing a distributed system (Figure 14), with
one system training offline models and the other making online forecasting.
The impact of a single future data point on the EEMD spectrum may be small
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for the largely scaled solar history. As a result, the online system may generate
accurate predictions in a short amount of time using pre-trained models.
Furthermore, as new records are received, the offline system can update the
model at the same time. The model will be transmitted back into the web
application for better operations as the volume of data grows significantly.

6 Conclusion

In this study, an ensemble deep learning based architecture is introduced as a
method of predicting solar irradiation using a dataset of solar history. When
time resolution and recording period of the solar dataset increase, expand the
non-linearity in the time series data. The number of IMF will increase dra-
matically as a result of using EEMD approach on increased time series data.
It means more IMF components would result in more untrained data results
in which rising of overall training cost. The deep learning model employs to
predict the IMF components and forecasting error of each component which
them added up to get final error which affect the prediction accuracy of
model. To address this problem and to improve forecasting accuracy three
major algorithms make up the proposed model: EEMD, GA and LSTM.
In the First step, EEMD uses as a preprocessing technique to rectify and
extract the inherent characteristics of time series data to obtain an intrinsic
mode functions. The well tuned deep learning model and the intuitively
picked feature set are synchronized through an optimization method using
the paired GA-LSTM technique. The suggested method demonstrates its
amazing superiority over conventional models using assessment criteria such
as MAE, RMSE and MAPE. To begin, the current model prediction accuracy
is increased by 44.96 percent on average when compared to non-EEMD
models. On the other hand, when comparing with EEMD approach with other
learning prototypes there is a substantial improvement in prediction accuracy
of 28.2 percent on average. Furthermore, when comparing the outcomes of
the same teaching method with multiple feature sets, the suggested technique
is even more powerful from two perspectives: First and foremost it should
be possible to use the GA wrapper for selecting features. The length of the
model input data is reduced to around a 2/3 of the total population set of
features, making it more compact and robust to data fluctuation. Moreover,
when compared to all feature and non-feature models, it exceeds them in
terms of prediction precision across a wide range of evaluation criteria, with
increases of 36.58 percent and 22.74 percent respectively. From all results,
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it is confirmed that proposed framework is good forecasting model in all
perspectives.
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